310,524 research outputs found

    Concurrent Design of Embedded Control Software

    Get PDF
    Embedded software design for mechatronic systems is becoming an increasingly time-consuming and error-prone task. In order to cope with the heterogeneity and complexity, a systematic model-driven design approach is needed, where several parts of the system can be designed concurrently. There is however a trade-off between concurrency efficiency and integration efficiency. In this paper, we present a case study on the development of the embedded control software for a real-world mechatronic system in order to evaluate how we can integrate concurrent and largely independent designed embedded system software parts in an efficient way. The case study was executed using our embedded control system design methodology which employs a concurrent systematic model-based design approach that ensures a concurrent design process, while it still allows a fast integration phase by using automatic code synthesis. The result was a predictable concurrently designed embedded software realization with a short integration time

    Modeling reconfigurable Systems-on-Chips with UML MARTE profile: an exploratory analysis

    Get PDF
    International audienceReconfigurable FPGA based Systems-on-Chip (SoC) architectures are increasingly becoming the preferred solution for implementing modern embedded systems, due to their flexible nature. However due to the tremendous amount of hardware resources available in these systems, new design methodologies and tools are required to reduce their design complexity. In this paper we present an exploratory analysis for specification of these systems, while utilizing the UML MARTE (Modeling and Analysis of Real-time and Embedded Systems) profile. Our contributions permit us to model fine grain reconfigurable FPGA based SoC architectures while extending the profile to integrate new features such as Partial Dynamic Reconfiguration supported by these modern systems. Finally we present the current limitations of the MARTE profile and ask some open questions regarding how these high level models can be effectively used as input for commercial FPGA simulation and synthesis tools. Solutions to these questions can help in creating a design flow from high level models to synthesis, placement and execution of these reconfigurable SoCs

    HW/SW Co-design and Prototyping Approach for Embedded Smart Camera: ADAS Case Study

    Get PDF
    In 1968, Volkswagen integrated an electronic circuit as a new control fuel injection system, called the “Little Black Box”, it is considered as the first embedded system in the automotive industry. Currently, automobile constructors integrate several embedded systems into any of their new model vehicles. Behind these automobile’s electronics systems, a sophisticated Hardware/Software (HW/SW) architecture, which is based on heterogeneous components, and multiple CPUs is built. At present, they are more oriented toward visionbased systems using tiny embedded smart camera. This visionbased system in real time aspects represents one of the most challenging issues, especially in the domain of automobile’s applications. On the design side, one of the optimal solutions adopted by embedded systems designer for system performance, is to associate CPUs and hardware accelerators in the same design, in order to reduce the computational burden on the CPU and to speed-up the data processing. In this paper, we present a hardware platform-based design approach for fast embedded smart Advanced Driver Assistant System (ADAS) design and prototyping, as an alternative for the pure time-consuming simulation technique. Based on a Multi-CPU/FPGA platform, we introduced a new methodology/flow to design the different HW and SW parts of the ADAS system. Then, we shared our experience in designing and prototyping a HW/SW vision based on smart embedded system as an ADAS that helps to increase the safety of car’s drivers. We presented a real HW/SW prototype of the vision ADAS based on a Zynq FPGA. The system detects the fatigue/drowsiness state of the driver by monitoring the eyes closure and generates a real time alert. A new HW Skin Segmentation step to locate the eyes/face is proposed. Our new approach migrates the skin segmentation step from processing system (SW) to programmable logic (HW) taking the advantage of High-Level Synthesis (HLS) tool flow to accelerate the implementation, and the prototyping of the Vision based ADAS on a hardware platform

    Including hardware/software co-design in the ASSERT model driven engineering process.

    Get PDF
    Abstract. The ASSERT project de?ned new software engineering methods and tools for the development of critical embedded real-time systems in the space domain. The ASSERT model-driven engineering process was one of the achievements of the project and is based on the concept of property- preserving model transformations. The key element of this process is that non-functional properties of the software system must be preserved during model transformations. Properties preservation is carried out through model transformations compliant with the Ravenscar Pro?le and provides a formal basis to the process. In this way, the so-called Ravenscar Computational Model is central to the whole ASSERT process. This paper describes the work done in the HWSWCO study, whose main objective has been to address the integration of the Hardware/Software co-design phase in the ASSERT process. In order to do that, non-functional properties of the software system must also be preserved during hardware synthesis. Keywords : Ada 2005, Ravenscar pro?le, Hardware/Software co-design, real- time systems, high-integrity systems, OR

    From MARTE to dynamically reconfigurable FPGAs : Introduction of a control extension in a model based design flow

    Get PDF
    System-on-Chip (SoC) can be considered as a particular case of embedded systems and has rapidly became a de-facto solution for implement- ing these complex systems. However, due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless method- ologies and tools to handle the SoC co-design aspects. This paper addresses this issue and proposes a novel SoC co-design methodology based on Model Driven Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by OMG (Object Management Group), in order to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs; and allow to implement the notion of Partial Dy- namic Reconfiguration supported by current FPGAs. The overall objective is to carry out system modeling at a high abstraction level expressed in UML (Unified Modeling Language); and afterwards, transform these high level mod- els into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    Targeting Reconfigurable FPGA based SoCs using the MARTE UML profile: from high abstraction levels to code generation

    Get PDF
    International audienceAs SoC design complexity is escalating to new heights, there is a critical need to find adequate approaches and tools to handle SoC co-design aspects. Additionally, modern reconfigurable SoCs offer advantages over classical SoCs as they integrate adaptivity features to cope with mutable design requirements and environment needs. This paper presents a novel approach to address system adaptivity and reconfigurability. A generic model of reactive control is presented in a SoC codesign framework: Gaspard. Afterwards, control integration at different levels of the framework is illustrated for both functional specification and FPGA synthesis. The presented work is based on Model-Driven Engineering and the UML MARTE profile proposed by Object Management Group, for modeling and analysis of real-time embedded systems. The paper thus presents a complete design flow to move from high level MARTE models to code generation, for implementation of dynamically reconfigurable SoCs

    On the Task Mapping and Scheduling for DAG-based Embedded Vision Applications on Heterogeneous Multi/Many-core Architectures

    Get PDF
    Embedded vision applications have stringent performance constraints that must be satisfied when they are run on low-power embedded systems. OpenVX has emerged as the de-facto reference standard to develop such applications. Starting with a DAG representation of the application and by relying on a primitive-based programming model, it allows for automatic system-level optimizations and synthesis of an implementation onto the target heterogeneous multi-core architecture. However, the state-of-the-art algorithm for task mapping and scheduling in OpenVX does not provide the performance necessary for such applications when deployed on embedded multi-/many-core architectures. %does not implement an efficient algorithm task mapping and scheduling onto embedded multi/many-core architectures. Our work addresses this challenge by making the following three contributions. First, we implemented a static task scheduling and mapping approach for OpenVX using the heterogeneous earliest finish time (HEFT) heuristic. We show that HEFT allows us to improve the system performance up to 70% on one of the most widespread embedded vision systems (i.e., NVIDIA VisionWorks on NVIDIA Jetson TX2). Second, we show that HEFT, in the context of an embedded vision application where some primitives may have multiple implementations (e.g., for CPU and for GPU), can lead to an imbalance in load amongst heterogeneous computing elements (CEs); thereby, suffering from degraded performance. Third, we propose an algorithm called exclusive earliest finish time (XEFT) that introduces the notion of exclusive overlap between single implementation primitives to improve the load balancing. We show that XEFT can further improve the system performance up to 33% over HEFT, and 82% over OpenVX. We present the results on different benchmarks, including a real-world localization and mapping application (ORB-SLAM) combined with the NVIDIA image recognition application based on deep-learning

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    A Model Driven Design Framework for High Performance Embedded Systems

    Get PDF
    Modern embedded systems integrate more and more complex functionalities. At the same time, the semiconductor technology advances enable to increase the amount of hardware resources on a chip for the execution. High performance embedded systems specifically deal with the optimized usage of such hardware resources to efficiently execute their functionalities. The design of high performance embedded systems mainly relies on the following challenging issues: first, how to deal with the parallelism in order to increase the performances; second, how to abstract their implementation details in order to manage their complexity; third, how to refine these abstract representations in order to produce efficient implementations. This paper presents the Gaspard design framework for high performance embedded systems as a solution to the above issues. Gaspard uses the repetitive Model of Computation (MoC), which offers a powerful expression of the parallelism available in both system functionality and architecture. Embedded systems are designed at a high abstraction level with the MARTE (Modeling and Analysis of Real-time and Embedded systems) standard profile, in which our repetitive MoC is described by the so-called Repetitive Structure Modeling (RSM) package. Based on the Model-Driven Engineering (MDE) paradigm, MARTE models are refined towards lower abstraction levels, which make possible the design space exploration. By combining all these capabilities, Gaspard allows the designers to automatically generate code for formal verification, simulation and hardware synthesis from high level specifications of high performance embedded systems. Its effectiveness is demonstrated with the design of an embedded system for a multimedia application

    A Model based design flow for Dynamic Reconfigurable FPGAs

    Get PDF
    International audienceAs System-on-Chip (SoC) based embedded systems have become a de-facto industry standard, their overall design complexity has increased exponentially in recent years, necessitating the introduction of new seamless methodologies and tools to handle the SoC co-design aspects. This paper presents a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard, permitting us to raise the abstraction levels and allows to model fine grain reconfigurable architectures such as FPGAs. Extensions of this methodology have enabled us to integrate new features such as Partial Dynamic Reconfiguration supported by Modern FPGAs. The overall objective is to carry out system modeling at a high abstraction level expressed in a graphical language like UML (Unified Modeling Language) and afterwards transformation of these models, automatically generate the necessary code for FPGA synthesis
    corecore