1,463,015 research outputs found

    Sensitivity Analysis for a Scenario-Based Reliability Prediction Model

    Get PDF
    As a popular means for capturing behavioural requirements, scenariosshow how components interact to provide system-level functionality.If component reliability information is available, scenarioscan be used to perform early system reliability assessment. Inprevious work we presented an automated approach for predictingsoftware system reliability that extends a scenario specificationto model (1) the probability of component failure, and (2) scenariotransition probabilities. Probabilistic behaviour models ofthe system are then synthesized from the extended scenario specification.From the system behaviour model, reliability predictioncan be computed. This paper complements our previous work andpresents a sensitivity analysis that supports reasoning about howcomponent reliability and usage profiles impact on the overall systemreliability. For this purpose, we present how the system reliabilityvaries as a function of the components reliabilities and thescenario transition probabilities. Taking into account the concurrentnature of component-based software systems, we also analysethe effect of implied scenarios prevention into the sensitivity analysisof our reliability prediction technique

    Reliability Analysis of Complex NASA Systems with Model-Based Engineering

    Get PDF
    The emergence of model-based engineering, with Model- Based Systems Engineering (MBSE) leading the way, is transforming design and analysis methodologies. The recognized benefits to systems development include moving from document-centric information systems and document-centric project communication to a model-centric environment in which control of design changes in the life cycles is facilitated. In addition, a single source of truth about the system, that is up-to-date in all respects of the design, becomes the authoritative source of data and information about the system. This promotes consistency and efficiency in regard to integration of the system elements as the design emerges and thereby may further optimize the design. Therefore Reliability Engineers (REs) supporting NASA missions must be integrated into model-based engineering to ensure the outputs of their analyses are relevant and value-needed to the design, development, and operational processes for failure risks assessment and communication

    Rich Interfaces for Dependability: Compositional Methods for Dynamic Fault Trees and Arcade models

    Get PDF
    This paper discusses two behavioural interfaces for reliability analysis: dynamic fault trees, which model the system reliability in terms of the reliability of its components and Arcade, which models the system reliability at an architectural level. For both formalisms, the reliability is analyzed by transforming the DFT or Arcade model to a set of input-output Markov Chains. By using compositional aggregation techniques based on weak bisimilarity, significant reductions in the state space can be obtained

    Reliability prediction in model driven development

    Get PDF
    Evaluating the implications of an architecture design early in the software development lifecycle is important in order to reduce costs of development. Reliability is an important concern with regard to the correct delivery of software system service. Recently, the UML Profile for Modeling Quality of Service has defined a set of UML extensions to represent dependability concerns (including reliability) and other non-functional requirements in early stages of the software development lifecycle. Our research has shown that these extensions are not comprehensive enough to support reliability analysis for model-driven software engineering, because the description of reliability characteristics in this profile lacks support for certain dynamic aspects that are essential in modeling reliability. In this work, we define a profile for reliability analysis by extending the UML 2.0 specification to support reliability prediction based on scenario specifications. A UML model specified using the profile is translated to a labelled transition system (LTS), which is used for automated reliability prediction and identification of implied scenarios; the results of this analysis are then fed back to the UML model. The result is a comprehensive framework for addressing software reliability modeling, including analysis and evolution of reliability predictions. We exemplify our approach using the Boiler System used in previous work and demonstrate how reliability analysis results can be integrated into UML models

    SRAT-Distribution Voltage Sags and Reliability Assessment Tool

    Get PDF
    Interruptions to supply and sags of distribution system voltage are the main aspects causing customer complaints. There is a need for analysis of supply reliability and voltage sag to relate system performance with network structure and equipment design parameters. This analysis can also give prediction of voltage dips, as well as relating traditional reliability and momentary outage measures to the properties of protection systems and to network impedances. Existing reliability analysis software often requires substantial training, lacks automated facilities, and suffers from data availability. Thus it requires time-consuming manual intervention for the study of large networks. A user-friendly sag and reliability assessment tool (SRAT) has been developed based on existing impedance data, protection characteristics, and a model of failure probability. The new features included in SRAT are a) efficient reliability and sag assessments for a radial network with limited loops, b) reliability evaluation associated with realistic protection and restoration schemes, c) inclusion of momentary outages in the same model as permanent outage evaluation, d) evaluation of the sag transfer through meshed subtransmission network, and e) simplified probability distribution model determined from available faults records. Examples of the application of the tools to an Australian distribution network are used to illustrate the application of this model

    Model-based Reliability Analysis of Power Electronic Systems

    Get PDF

    Space station software reliability analysis based on failures observed during testing at the multisystem integration facility

    Get PDF
    Quality of software not only is vital to the successful operation of the space station, it is also an important factor in establishing testing requirements, time needed for software verification and integration as well as launching schedules for the space station. Defense of management decisions can be greatly strengthened by combining engineering judgments with statistical analysis. Unlike hardware, software has the characteristics of no wearout and costly redundancies, thus making traditional statistical analysis not suitable in evaluating reliability of software. A statistical model was developed to provide a representation of the number as well as types of failures occur during software testing and verification. From this model, quantitative measure of software reliability based on failure history during testing are derived. Criteria to terminate testing based on reliability objectives and methods to estimate the expected number of fixings required are also presented

    Applying Bayes linear methods to support reliability procurement decisions

    Get PDF
    Bayesian methods are common in reliability and risk assessment, however, such methods often demand a large amount of specification and can be computationally intensive. Because of this, many practitioners are unable to take advantage of many of the benefits found in a Bayesian-based approach. The Bayes linear methodology is similar in spirit to a Bayesian approach but offers an alternative method of making inferences. Bayes linear methods are based on the use of expected values rather than probabilities, and updating is carried out by linear adjustment rather than by Bayes Theorem. The foundations of the method are very strong, based as they are in work of De Finetti and developed further by Goldstein. A Bayes linear model requires less specification than a corresponding probability model and for a given amount of model building effort, one can model a more complex situation quicker. The Bayes linear methodology has the potential to allow us to build ''broad-brush' models that enable us, for example, to explore different test setups or analysis methods and assess the benefits that they can give. The output a Bayes linear model is viewed as an approximation to 'traditional' probabilistic models. The methodology has been applied to support reliability decision making within a current United Kingdom Ministry of Defence (MOD) procurement project. The reliability decision maker had to assess different contractor bids and assess the reliability merit of each bid. Currently the MOD assess reliability programmes subjectively using expert knowledge - for a number of reasons, a quantitative method of assessment in some projects is desirable. The Bayes linear methodology was used to support the decision maker in quantifying his assessment of the reliability of each contractor's bid and determining the effectiveness of each contractor's reliability programme. From this, the decision maker was able to communicate to the project leader and contractors, why a specific contractor was chosen. The methodology has been used in other MOD projects and is considered by those within the MOD as a useful tool to support decision making. The paper will contain the following. The paper will introduce the Bayes linear methodology and briefly discuss some of the philosophical implications of adopting a Bayes linear methodology within the context of a reliability programme analysis. The paper will briefly introduce the reliability domain and the reasons why it is believed that the Bayes linear methodology can offer support to decision makers. An in-depth analysis of the problem will then be given documenting the steps taken in the project and how future decision makers can apply the methodology. A brief summary will then be given as to possible future work for those interested in the Bayes linear methodology
    • ā€¦
    corecore