172 research outputs found

    Movement Analytics: Current Status, Application to Manufacturing, and Future Prospects from an AI Perspective

    Full text link
    Data-driven decision making is becoming an integral part of manufacturing companies. Data is collected and commonly used to improve efficiency and produce high quality items for the customers. IoT-based and other forms of object tracking are an emerging tool for collecting movement data of objects/entities (e.g. human workers, moving vehicles, trolleys etc.) over space and time. Movement data can provide valuable insights like process bottlenecks, resource utilization, effective working time etc. that can be used for decision making and improving efficiency. Turning movement data into valuable information for industrial management and decision making requires analysis methods. We refer to this process as movement analytics. The purpose of this document is to review the current state of work for movement analytics both in manufacturing and more broadly. We survey relevant work from both a theoretical perspective and an application perspective. From the theoretical perspective, we put an emphasis on useful methods from two research areas: machine learning, and logic-based knowledge representation. We also review their combinations in view of movement analytics, and we discuss promising areas for future development and application. Furthermore, we touch on constraint optimization. From an application perspective, we review applications of these methods to movement analytics in a general sense and across various industries. We also describe currently available commercial off-the-shelf products for tracking in manufacturing, and we overview main concepts of digital twins and their applications

    EFFICIENT AND SECURE ALGORITHMS FOR MOBILE CROWDSENSING THROUGH PERSONAL SMART DEVICES.

    Get PDF
    The success of the modern pervasive sensing strategies, such as the Social Sensing, strongly depends on the diffusion of smart mobile devices. Smartwatches, smart- phones, and tablets are devices capable of capturing and analyzing data about the user’s context, and can be exploited to infer high-level knowledge about the user himself, and/or the surrounding environment. In this sense, one of the most relevant applications of the Social Sensing paradigm concerns distributed Human Activity Recognition (HAR) in scenarios ranging from health care to urban mobility management, ambient intelligence, and assisted living. Even though some simple HAR techniques can be directly implemented on mo- bile devices, in some cases, such as when complex activities need to be analyzed timely, users’ smart devices should be able to operate as part of a more complex architecture, paving the way to the definition of new distributed computing paradigms. The general idea behind these approaches is to move early analysis to- wards the edge of the network, while relying on other intermediate (fog) or remote (cloud) devices for computations of increasing complexity. This logic represents the main core of the fog computing paradigm, and this thesis investigates its adoption in distributed sensing frameworks. Specifically, the conducted analysis focused on the design of a novel distributed HAR framework in which the heavy computation from the sensing layer is moved to intermediate devices and then to the cloud. Smart personal devices are used as processing units in order to guarantee real-time recognition, whereas the cloud is responsible for maintaining an overall, consistent view of the whole activity set. As compared to traditional cloud-based solutions, this choice allows to overcome processing and storage limitations of wearable devices while also reducing the overall bandwidth consumption. Then, the fog-based architecture allowed the design and definition of a novel HAR technique that combines three machine learning algorithms, namely k-means clustering, Support Vector Machines (SVMs), and Hidden Markov Models (HMMs), to recognize complex activities modeled as sequences of simple micro- activities. The capability to distribute the computation over the different entities in the network, allowing the use of complex HAR algorithms, is definitely one of the most significant advantages provided by the fog architecture. However, because both of its intrinsic nature and high degree of modularity, the fog-based system is particularly prone to cyber security attacks that can be performed against every element of the infrastructure. This aspect plays a main role with respect to social sensing since the users’ private data must be preserved from malicious purposes. Security issues are generally addressed by introducing cryptographic mechanisms that improve the system defenses against cyber attackers while, at the same time, causing an increase of the computational overhead for devices with limited resources. With the goal to find a trade-off between security and computation cost, the de- sign and definition of a secure lightweight protocol for social-based applications are discussed and then integrated into the distributed framework. The protocol covers all tasks commonly required by a general fog-based crowdsensing application, making it applicable not only in a distributed HAR scenario, discussed as a case study, but also in other application contexts. Experimental analysis aims to assess the performance of the solutions described so far. After highlighting the benefits the distributed HAR framework might bring in smart environments, an evaluation in terms of both recognition accuracy and complexity of data exchanged between network devices is conducted. Then, the effectiveness of the secure protocol is demonstrated by showing the low impact it causes on the total computational overhead. Moreover, a comparison with other state-of-art protocols is made to prove its effectiveness in terms of the provided security mechanisms

    Production Engineering and Management

    Get PDF
    The annual International Conference on Production Engineering and Management takes place for the sixth time his year, and can therefore be considered a well - established event that is the result of the joint effort of the OWL University of Applied Sciences and the University of Trieste. The conference has been established as an annual meeting under the Double Degree Master Program ‘Production Engineering and Management’ by the two partner universities. The main goal of the conference is to provide an opportunity for students, researchers and professionals from Germany, Italy and abroad, to meet and exchange information, discuss experiences, specific practices and technical solutions used in planning, design and management of production and service systems. In addition, the conference is a platform aimed at presenting research projects, introducing young academics to the tradition of Symposiums and promoting the exchange of ideas between the industry and the academy. Especially the contributions of successful graduates of the Double Degree Master Program ‘Production Engineering and Management’ and those of other postgraduate researchers from several European countries have been enforced. This year’s special focus is on Direct Digital Manufacturing in the context of Industry 4.0, a topic of great interest for the global industry. The concept is spreading, but the actual solutions must be presented in order to highlight the practical benefits to industry and customers. Indeed, as Henning Banthien, Secretary General of the German ‘Plattform Industrie 4.0’ project office, has recently remarked, “Industry 4.0 requires a close alliance amongst the private sector, academia, politics and trade unions” in order to be “translated into practice and be implemented now”. PEM 2016 takes place between September 29 and 30, 2016 at the OWL University of Applied Sciences in Lemgo. The program is defined by the Organizing and Scientific Committees and clustered into scientific sessions covering topics of main interest and importance to the participants of the conference. The scientific sessions deal with technical and engineering issues, as well as management topics, and include contributions by researchers from academia and industry. The extended abstracts and full papers of the contributions underwent a double - blind review process. The 24 accepted presentations are assigned, according to their subject, to one of the following sessions: ‘Direct Digital Manufacturing in the Context of Industry 4.0’, ‘Industrial Engineering and Lean Management’, ‘Management Techniques and Methodologies’, ‘Wood Processing Technologies and Furniture Production’ and ‘Innovation Techniques and Methodologies

    Implementing Industry 4.0 in SMEs

    Get PDF
    This open access book addresses the practical challenges that Industry 4.0 presents for SMEs. While large companies are already responding to the changes resulting from the fourth industrial revolution , small businesses are in danger of falling behind due to the lack of examples, best practices and established methods and tools. Following on from the publication of the previous book ‘Industry 4.0 for SMEs: Challenges, Opportunities and Requirements’, the authors offer in this new book innovative results from research on smart manufacturing, smart logistics and managerial models for SMEs. Based on a large scale EU-funded research project involving seven academic institutions from three continents and a network of over fifty small and medium sized enterprises, the book reveals the methods and tools required to support the successful implementation of Industry 4.0 along with practical examples

    PRESTK : situation-aware presentation of messages and infotainment content for drivers

    Get PDF
    The amount of in-car information systems has dramatically increased over the last few years. These potentially mutually independent information systems presenting information to the driver increase the risk of driver distraction. In a first step, orchestrating these information systems using techniques from scheduling and presentation planning avoid conflicts when competing for scarce resources such as screen space. In a second step, the cognitive capacity of the driver as another scarce resource has to be considered. For the first step, an algorithm fulfilling the requirements of this situation is presented and evaluated. For the second step, I define the concept of System Situation Awareness (SSA) as an extension of Endsley’s Situation Awareness (SA) model. I claim that not only the driver needs to know what is happening in his environment, but also the system, e.g., the car. In order to achieve SSA, two paths of research have to be followed: (1) Assessment of cognitive load of the driver in an unobtrusive way. I propose to estimate this value using a model based on environmental data. (2) Developing model of cognitive complexity induced by messages presented by the system. Three experiments support the claims I make in my conceptual contribution to this field. A prototypical implementation of the situation-aware presentation management toolkit PRESTK is presented and shown in two demonstrators.In den letzten Jahren hat die Menge der informationsanzeigenden Systeme im Auto drastisch zugenommen. Da sie potenziell unabhĂ€ngig voneinander ablaufen, erhöhen sie die Gefahr, die Aufmerksamkeit des Fahrers abzulenken. Konflikte entstehen, wenn zwei oder mehr Systeme zeitgleich auf limitierte Ressourcen wie z. B. den Bildschirmplatz zugreifen. Ein erster Schritt, diese Konflikte zu vermeiden, ist die Orchestrierung dieser Systeme mittels Techniken aus dem Bereich Scheduling und PrĂ€sentationsplanung. In einem zweiten Schritt sollte die kognitive KapazitĂ€t des Fahrers als ebenfalls limitierte Ressource berĂŒcksichtigt werden. Der Algorithmus, den ich zu Schritt 1 vorstelle und evaluiere, erfĂŒllt alle diese Anforderungen. Zu Schritt 2 definiere ich das Konzept System Situation Awareness (SSA), basierend auf Endsley’s Konzept der Situation Awareness (SA). Dadurch wird erreicht, dass nicht nur der Fahrer sich seiner Umgebung bewusst ist, sondern auch das System (d.h. das Auto). Zu diesem Zweck mšussen zwei Bereiche untersucht werden: (1) Die kognitive Belastbarkeit des Fahrers unaufdringlich ermitteln. Dazu schlage ich ein Modell vor, das auf Umgebungsinformationen basiert. (2) Ein weiteres Modell soll die KomplexitĂ€t der prĂ€sentierten Informationen bestimmen. Drei Experimente stĂŒtzen die Behauptungen in meinem konzeptuellen Beitrag. Ein Prototyp des situationsbewussten PrĂ€sentationsmanagement-Toolkits PresTK wird vorgestellt und in zwei Demonstratoren gezeigt

    Decision-Theoretic Planning for User-Adaptive Systems: Dealing With Multiple Goals and Resource Limitations

    Get PDF
    While there exists a number of user-adaptive systems that use decision-theoretic methods to make individual decisions, decision-theoretic planning has hardly been exploited in the context of useradaptive systems so far. This thesis focuses on the application of decision-theoretic planning in user-adaptive systems and demonstrates how competing goals and resource limitations of the user can be considered in such an approach. The approach is illustrated with examples from the following domains: user-adaptive assistance for operating a technical device, user-adaptive navigation recommendations in an airport scenario, and finally user-adaptive and location-aware shopping assistance. With the shopping assistant, we have analyzed usability issues of a system based on decision-theoretic planning in two user studies. We describe how hard time constraints, as they are induced, for example, by the boarding of the passenger in an airport navigation scenario, can be considered in a decision-theoretic approach. Moreover, we propose a hierarchical decision-theoretic planning approach based on goal priorization, which keeps the complexity of dealing with realistic problems tractable. Furthermore, we specify the general workflow for the development and application of Markov decision processes to be applied in user-adaptive systems, and we describe possibilities to enhance a user-adaptive system based on decision-theoretic planning by an explanation component

    Multimodal sentiment analysis in real-life videos

    Get PDF
    This thesis extends the emerging field of multimodal sentiment analysis of real-life videos, taking two components into consideration: the emotion and the emotion's target. The emotion component of media is traditionally represented as a segment-based intensity model of emotion classes. This representation is replaced here by a value- and time-continuous view. Adjacent research fields, such as affective computing, have largely neglected the linguistic information available from automatic transcripts of audio-video material. As is demonstrated here, this text modality is well-suited for time- and value-continuous prediction. Moreover, source-specific problems, such as trustworthiness, have been largely unexplored so far. This work examines perceived trustworthiness of the source, and its quantification, in user-generated video data and presents a possible modelling path. Furthermore, the transfer between the continuous and discrete emotion representations is explored in order to summarise the emotional context at a segment level. The other component deals with the target of the emotion, for example, the topic the speaker is addressing. Emotion targets in a video dataset can, as is shown here, be coherently extracted based on automatic transcripts without limiting a priori parameters, such as the expected number of targets. Furthermore, alternatives to purely linguistic investigation in predicting targets, such as knowledge-bases and multimodal systems, are investigated. A new dataset is designed for this investigation, and, in conjunction with proposed novel deep neural networks, extensive experiments are conducted to explore the components described above. The developed systems show robust prediction results and demonstrate strengths of the respective modalities, feature sets, and modelling techniques. Finally, foundations are laid for cross-modal information prediction systems with applications to the correction of corrupted in-the-wild signals from real-life videos

    Privacy-preserving human mobility and activity modelling

    Get PDF
    The exponential proliferation of digital trends and worldwide responses to the COVID-19 pandemic thrust the world into digitalization and interconnectedness, pushing increasingly new technologies/devices/applications into the market. More and more intimate data of users are collected for positive analysis purposes of improving living well-being but shared with/without the user's consent, emphasizing the importance of making human mobility and activity models inclusive, private, and fair. In this thesis, I develop and implement advanced methods/algorithms to model human mobility and activity in terms of temporal-context dynamics, multi-occupancy impacts, privacy protection, and fair analysis. The following research questions have been thoroughly investigated: i) whether the temporal information integrated into the deep learning networks can improve the prediction accuracy in both predicting the next activity and its timing; ii) how is the trade-off between cost and performance when optimizing the sensor network for multiple-occupancy smart homes; iii) whether the malicious purposes such as user re-identification in human mobility modelling could be mitigated by adversarial learning; iv) whether the fairness implications of mobility models and whether privacy-preserving techniques perform equally for different groups of users. To answer these research questions, I develop different architectures to model human activity and mobility. I first clarify the temporal-context dynamics in human activity modelling and achieve better prediction accuracy by appropriately using the temporal information. I then design a framework MoSen to simulate the interaction dynamics among residents and intelligent environments and generate an effective sensor network strategy. To relieve users' privacy concerns, I design Mo-PAE and show that the privacy of mobility traces attains decent protection at the marginal utility cost. Last but not least, I investigate the relations between fairness and privacy and conclude that while the privacy-aware model guarantees group fairness, it violates the individual fairness criteria.Open Acces
    • 

    corecore