512 research outputs found

    OBJECTIVE AND SUBJECTIVE EVALUATION OF DEREVERBERATION ALGORITHMS

    Get PDF
    Reverberation significantly impacts the quality and intelligibility of speech. Several dereverberation algorithms have been proposed in the literature to combat this problem. A majority of these algorithms utilize a single channel and are developed for monaural applications, and as such do not preserve the cues necessary for sound localization. This thesis describes a blind two-channel dereverberation technique that improves the quality of speech corrupted by reverberation while preserving cues that affect localization. The method is based by combining a short term (2ms) and long term (20ms) weighting function of the linear prediction (LP) residual of the input signal. The developed and other dereverberation algorithms are evaluated objectively and subjectively in terms of sound quality and localization accuracy. The binaural adaptation provides a significant increase in sound quality while removing the loss in localization ability found in the bilateral implementation

    Single- and multi-microphone speech dereverberation using spectral enhancement

    Get PDF
    In speech communication systems, such as voice-controlled systems, hands-free mobile telephones, and hearing aids, the received microphone signals are degraded by room reverberation, background noise, and other interferences. This signal degradation may lead to total unintelligibility of the speech and decreases the performance of automatic speech recognition systems. In the context of this work reverberation is the process of multi-path propagation of an acoustic sound from its source to one or more microphones. The received microphone signal generally consists of a direct sound, reflections that arrive shortly after the direct sound (commonly called early reverberation), and reflections that arrive after the early reverberation (commonly called late reverberation). Reverberant speech can be described as sounding distant with noticeable echo and colouration. These detrimental perceptual effects are primarily caused by late reverberation, and generally increase with increasing distance between the source and microphone. Conversely, early reverberations tend to improve the intelligibility of speech. In combination with the direct sound it is sometimes referred to as the early speech component. Reduction of the detrimental effects of reflections is evidently of considerable practical importance, and is the focus of this dissertation. More specifically the dissertation deals with dereverberation techniques, i.e., signal processing techniques to reduce the detrimental effects of reflections. In the dissertation, novel single- and multimicrophone speech dereverberation algorithms are developed that aim at the suppression of late reverberation, i.e., at estimation of the early speech component. This is done via so-called spectral enhancement techniques that require a specific measure of the late reverberant signal. This measure, called spectral variance, can be estimated directly from the received (possibly noisy) reverberant signal(s) using a statistical reverberation model and a limited amount of a priori knowledge about the acoustic channel(s) between the source and the microphone(s). In our work an existing single-channel statistical reverberation model serves as a starting point. The model is characterized by one parameter that depends on the acoustic characteristics of the environment. We show that the spectral variance estimator that is based on this model, can only be used when the source-microphone distance is larger than the so-called critical distance. This is, crudely speaking, the distance where the direct sound power is equal to the total reflective power. A generalization of the statistical reverberation model in which the direct sound is incorporated is developed. This model requires one additional parameter that is related to the ratio between the direct sound energy and the sound energy of all reflections. The generalized model is used to derive a novel spectral variance estimator. When the novel estimator is used for dereverberation rather than the existing estimator, and the source-microphone distance is smaller than the critical distance, the dereverberation performance is significantly increased. Single-microphone systems only exploit the temporal and spectral diversity of the received signal. Reverberation, of course, also induces spatial diversity. To additionally exploit this diversity, multiple microphones must be used, and their outputs must be combined by a suitable spatial processor such as the so-called delay and sum beamformer. It is not a priori evident whether spectral enhancement is best done before or after the spatial processor. For this reason we investigate both possibilities, as well as a merge of the spatial processor and the spectral enhancement technique. An advantage of the latter option is that the spectral variance estimator can be further improved. Our experiments show that the use of multiple microphones affords a significant improvement of the perceptual speech quality. The applicability of the theory developed in this dissertation is demonstrated using a hands-free communication system. Since hands-free systems are often used in a noisy and reverberant environment, the received microphone signal does not only contain the desired signal but also interferences such as room reverberation that is caused by the desired source, background noise, and a far-end echo signal that results from a sound that is produced by the loudspeaker. Usually an acoustic echo canceller is used to cancel the far-end echo. Additionally a post-processor is used to suppress background noise and residual echo, i.e., echo which could not be cancelled by the echo canceller. In this work a novel structure and post-processor for an acoustic echo canceller are developed. The post-processor suppresses late reverberation caused by the desired source, residual echo, and background noise. The late reverberation and late residual echo are estimated using the generalized statistical reverberation model. Experimental results convincingly demonstrate the benefits of the proposed system for suppressing late reverberation, residual echo and background noise. The proposed structure and post-processor have a low computational complexity, a highly modular structure, can be seamlessly integrated into existing hands-free communication systems, and affords a significant increase of the listening comfort and speech intelligibility

    New Approaches for Speech Enhancement in the Short-Time Fourier Transform Domain

    Get PDF
    Speech enhancement aims at the improvement of speech quality by using various algorithms. A speech enhancement technique can be implemented as either a time domain or a transform domain method. In the transform domain speech enhancement, the spectrum of clean speech signal is estimated through the modification of noisy speech spectrum and then it is used to obtain the enhanced speech signal in the time domain. Among the existing transform domain methods in the literature, the short-time Fourier transform (STFT) processing has particularly served as the basis to implement most of the frequency domain methods. In general, speech enhancement methods in the STFT domain can be categorized into the estimators of complex discrete Fourier transform (DFT) coefficients and the estimators of real-valued short-time spectral amplitude (STSA). Due to the computational efficiency of the STSA estimation method and also its superior performance in most cases, as compared to the estimators of complex DFT coefficients, we focus mostly on the estimation of speech STSA throughout this work and aim at developing algorithms for noise reduction and reverberation suppression. First, we tackle the problem of additive noise reduction using the single-channel Bayesian STSA estimation method. In this respect, we present new schemes for the selection of Bayesian cost function parameters for a parametric STSA estimator, namely the W�-SA estimator, based on an initial estimate of the speech and also the properties of human auditory system. We further use the latter information to design an efficient flooring scheme for the gain function of the STSA estimator. Next, we apply the generalized Gaussian distribution (GGD) to theW�-SA estimator as the speech STSA prior and propose to choose its parameters according to noise spectral variance and a priori signal to noise ratio (SNR). The suggested STSA estimation schemes are able to provide further noise reduction as well as less speech distortion, as compared to the previous methods. Quality and noise reduction performance evaluations indicated the superiority of the proposed speech STSA estimation with respect to the previous estimators. Regarding the multi-channel counterpart of the STSA estimation method, first we generalize the proposed single-channel W�-SA estimator to the multi-channel case for spatially uncorrelated noise. It is shown that under the Bayesian framework, a straightforward extension from the single-channel to the multi-channel case can be performed by generalizing the STSA estimator parameters, i.e. � and �. Next, we develop Bayesian STSA estimators by taking advantage of speech spectral phase rather than only relying on the spectral amplitude of observations, in contrast to conventional methods. This contribution is presented for the multi-channel scenario with single-channel as a special case. Next, we aim at developing multi-channel STSA estimation under spatially correlated noise and derive a generic structure for the extension of a single-channel estimator to its multi-channel counterpart. It is shown that the derived multi-channel extension requires a proper estimate of the spatial correlation matrix of noise. Subsequently, we focus on the estimation of noise correlation matrix, that is not only important in the multi-channel STSA estimation scheme but also highly useful in different beamforming methods. Next, we aim at speech reverberation suppression in the STFT domain using the weighted prediction error (WPE) method. The original WPE method requires an estimate of the desired speech spectral variance along with reverberation prediction weights, leading to a sub-optimal strategy that alternatively estimates each of these two quantities. Also, similar to most other STFT based speech enhancement methods, the desired speech coefficients are assumed to be temporally independent, while this assumption is inaccurate. Taking these into account, first, we employ a suitable estimator for the speech spectral variance and integrate it into the estimation of the reverberation prediction weights. In addition to the performance advantage with respect to the previous versions of the WPE method, the presented approach provides a good reduction in implementation complexity. Next, we take into account the temporal correlation present in the STFT of the desired speech, namely the inter-frame correlation (IFC), and consider an approximate model where only the frames within each segment of speech are considered as correlated. Furthermore, an efficient method for the estimation of the underlying IFC matrix is developed based on the extension of the speech variance estimator proposed previously. The performance results reveal lower residual reverberation and higher overall quality provided by the proposed method. Finally, we focus on the problem of late reverberation suppression using the classic speech spectral enhancement method originally developed for additive noise reduction. As our main contribution, we propose a novel late reverberant spectral variance (LRSV) estimator which replaces the noise spectral variance in order to modify the gain function for reverberation suppression. The suggested approach employs a modified version of the WPE method in a model based smoothing scheme used for the estimation of the LRSV. According to the experiments, the proposed LRSV estimator outperforms the previous major methods considerably and scores the closest results to the theoretically true LRSV estimator. Particularly, in case of changing room impulse responses (RIRs) where other methods cannot follow the true LRSV estimator accurately, the suggested estimator is able to track true LRSV values and results in a smaller tracking error. We also target a few other aspects of the spectral enhancement method for reverberation suppression, which were explored before only for the purpose of noise reduction. These contributions include the estimation of signal to reverberant ratio (SRR) and the development of new schemes for the speech presence probability (SPP) and spectral gain flooring in the context of late reverberation suppression

    Speech Dereverberation Based on Multi-Channel Linear Prediction

    Get PDF
    Room reverberation can severely degrade the auditory quality and intelligibility of the speech signals received by distant microphones in an enclosed environment. In recent years, various dereverberation algorithms have been developed to tackle this problem, such as beamforming and inverse filtering of the room transfer function. However, this kind of methods relies heavily on the precise estimation of either the direction of arrival (DOA) or room acoustic characteristics. Thus, their performance is very much limited. A more promising category of dereverberation algorithms has been developed based on multi-channel linear predictor (MCLP). This idea was first proposed in time domain where speech signal is highly correlated in a short period of time. To ensure a good suppression of the reverberation, the prediction filter length is required to be longer than the reverberation time. As a result, the complexity of this algorithm is often unacceptable because of large covariance matrix calculation. To overcome this disadvantage, this thesis focuses on the MCLP dereverberation methods performed in the short-time Fourier transform (STFT) domain. Recently, the weighted prediction error (WPE) algorithm has been developed and widely applied to speech dereverberation. In WPE algorithm, MCLP is used in the STFT domain to estimate the late reverberation components from previous frames of the reverberant speech. The enhanced speech is obtained by subtracting the late reverberation from the reverberant speech. Each STFT coefficient is assumed to be independent and obeys Gaussian distribution. A maximum likelihood (ML) problem is formulated in each frequency bin to calculate the predictor coefficients. In this thesis, the original WPE algorithm is improved in two aspects. First, two advanced statistical models, generalized Gaussian distribution (GGD) and Laplacian distribution, are employed instead of the classic Gaussian distribution. Both of them are shown to give better modeling of the histogram of the clean speech. Second, we focus on improving the estimation of the variances of the STFT coefficients of the desired signal. In the original WPE algorithm, the variances are estimated in each frequency bin independently without considering the cross-frequency correlation. Thus, we integrate the nonnegative matrix factorization (NMF) into the WPE algorithm to refine the estimation of the variances and hence obtain a better dereverberation performance. Another category of MCLP based dereverberation algorithm has been proposed in literature by exploiting the sparsity of the STFT coefficients of the desired signal for calculating the predictor coefficients. In this thesis, we also investigate an efficient algorithm based on the maximization of the group sparsity of desired signal using mixed norms. Inspired by the idea of sparse linear predictor (SLP), we propose to include a sparse constraint for the predictor coefficients in order to further improve the dereverberation performance. A weighting parameter is also introduced to achieve a trade-off between the sparsity of the desired signal and the predictor coefficients. Computer simulation of the proposed dereverberation algorithms is conducted. Our experimental results show that the proposed algorithms can significantly improve the quality of reverberant speech signal under different reverberation times. Subjective evaluation also gives a more intuitive demonstration of the enhanced speech intelligibility. Performance comparison also shows that our algorithms outperform some of the state-of-the-art dereverberation techniques

    Blind MultiChannel Identification and Equalization for Dereverberation and Noise Reduction based on Convolutive Transfer Function

    Get PDF
    This paper addresses the problems of blind channel identification and multichannel equalization for speech dereverberation and noise reduction. The time-domain cross-relation method is not suitable for blind room impulse response identification, due to the near-common zeros of the long impulse responses. We extend the cross-relation method to the short-time Fourier transform (STFT) domain, in which the time-domain impulse responses are approximately represented by the convolutive transfer functions (CTFs) with much less coefficients. The CTFs suffer from the common zeros caused by the oversampled STFT. We propose to identify CTFs based on the STFT with the oversampled signals and the critical sampled CTFs, which is a good compromise between the frequency aliasing of the signals and the common zeros problem of CTFs. In addition, a normalization of the CTFs is proposed to remove the gain ambiguity across sub-bands. In the STFT domain, the identified CTFs is used for multichannel equalization, in which the sparsity of speech signals is exploited. We propose to perform inverse filtering by minimizing the â„“1\ell_1-norm of the source signal with the relaxed â„“2\ell_2-norm fitting error between the micophone signals and the convolution of the estimated source signal and the CTFs used as a constraint. This method is advantageous in that the noise can be reduced by relaxing the â„“2\ell_2-norm to a tolerance corresponding to the noise power, and the tolerance can be automatically set. The experiments confirm the efficiency of the proposed method even under conditions with high reverberation levels and intense noise.Comment: 13 pages, 5 figures, 5 table
    • …
    corecore