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Abstract

Reverberation significantly impacts the quality and intelligibility of speech. Several 

dereverberation algorithms have been proposed in the literature to combat this problem. 

A majority of these algorithms utilize a single channel and are developed for monaural 

applications, and as such do not preserve the cues necessary for sound localization. This 

thesis describes a blind two-channel dereverberation technique that improves the quality 

of speech corrupted by reverberation while preserving cues that affect localization. The 

method is based by combining a short term (2ms) and long term (20ms) weighting 

function o f the linear prediction (LP) residual of the input signal. The developed and 

other dereverberation algorithms are evaluated objectively and subjectively in terms of 

sound quality and localization accuracy. The binaural adaptation provides a significant 

increase in sound quality while removing the loss in localization ability found in the 

bilateral implementation.

Keywords: Binaural, dereverberation, reverberation, cue preservation, LP residual, 

localization
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Chapter 1

Introduction

Speech is the most important and prominent form of communication in our society.

Be it in person, over the phone, or via the internet, speech is involved in nearly any 

occupation or task. However, in a typical communication setting, speech is corrupted by 

background noise, interference, and/or reverberation which impact its perception. The 

presence of hearing loss compounds this issue, as it has been shown that noise and 

reverberation synergistically degrade the speech understanding capabilities o f a hearing 

impaired listener [1]. There has been a growing interest in the development of digital 

signal processing (DSP) strategies to mitigate the effects o f noise and reverberation in 

communication devices and assistive hearing instruments. The focus of this thesis is on 

reverberation, DSP algorithms that reduce reverberation (“dereverberation”), and the 

evaluation o f their effect on speech perception and localization.

1.1 Effects o f reverberation on speech perception

Under good conditions, speech is quite easily understood by a person with normal 

hearing. However, speech is almost always subjected to one or more forms of corruption. 

One of the most common causes of corruption in speech is reverberation. Reverberation 

is the reflection o f sound waves off walls and other surfaces. The travel path of the 

reflected sound is longer than that of the direct sound, creating delayed versions of the 

original sound source at the listener.
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Figure 1-1: Model o f  reverberation in an enclosed space.

Reverberation can be modelled as

x(n) = h(n) * s(n ) (1.1)

where s(ri) is the uncorrupted source, h(n) is the room impulse response, x(n) is the 

input at the listener, and * is the convolution operator. From the perspective of the 

listener, it appears as if the signal has been smeared in the time-domain. This temporal 

smearing can make it difficult to understand words spoken in succession as the 

reverberation from one word may overlap and interfere with the next one. As well, 

reverberation tends to cause an increase in low frequency'energy relative to higher 

frequency energy [1]. This effect is due to most materials having a lower coefficient of 

absorption at low frequencies than high frequencies. In other words, more high frequency 

energy is lost relative to low frequency energy with each reflection. When these 

reflections are summed at the listener, an overall increase of low frequency energy is 

observed. Due to the design of the auditory system, low frequencies are effective at 

masking higher frequencies, which can cause confusion or uncertainty for a listener 

trying to identify words, vowels, or other parts of speech [2].

Many studies have demonstrated the negative effects of reverberation on speech 

perception. Nabelek and Pickett demonstrate that small increases in reverberation can 

have profound effects on speech intelligibility, especially when coupled with background 

noise [1]. In a later study, Nabelek demonstrates that reverberation has a significant 

impact on vowel identification in listeners with sensorineural hearing loss, and that
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performance in reverberation decreases with increased loss [3]. As well, age has been 

shown to have a negative effect on speech intelligibility in reverberation, even if the 

listener has otherwise normal hearing [4] [5]. Another study by Rogers et al. [6] suggests 

that elderly bilingual listeners may be more susceptible to the effects of reverberation 

than a monolingual listener with similar hearing loss. These studies demonstrate that 

reverberation has a significant impact on speech perception.

1.2 Effects o f reverberation on localization

Reverberation is also known to have a negative impact on localization [7], the ability to 

determine the location of a sound source. Humans localize sound using a variety of cues 

which can be categorized as binaural and monaural cues [2]. Monaural cues, also known 

as spectral cues, are based on the filtering characteristics of the outer ear. These cues 

have been shown to aid in azimuth estimation, but contribute mostly to elevation 

estimation [2]. Binaural cues refer to the interaural level/intensity difference (ILD/IID) 

and the interaural time/phase difference (ITD/IPD). ILDs exist due the head shadow 

effect (HSE) in which an acoustic shadow is created on the side of the head opposite the 

sound source. This shadow is created by the diffraction of sound waves around the head. 

Higher frequencies, having smaller wavelengths, are more obstructed by the head than 

lower frequencies. As well, energy absorbed or reflected off the head and shoulders 

contributes to the difference in the sound pressure level at each ear. Hair and clothing 

absorb more energy at higher frequencies [8], contributing to greater ILDs at higher 

frequencies. Numerous studies have shown that the ILD as a localization cue is 

significant at frequencies greater than 1500 Hz, whereas the ITD is the dominant cue for 

frequencies below 1500 Hz [9] [10], This idea has been termed the duplex theory o f 

localization. More recent research has found that this frequency is not a hard cut-off and 

that the ILD and ITD can influence localization of sounds beyond this threshold [11] 

[12], However, as a simple model of binaural localization, duplex theory is rather robust.

In a reverberant environment, reflections approach the listener from directions other than 

direct path from source to listener. This not only flattens the ILD, but also introduces
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multiple ITDs for the auditory system to process. However, localizing in reverberant 

environments can still be accomplished with accuracy, using what is known as the 

precedence effect [13]. The auditory system applies much greater weighting to the first 

wavefront that passes by the ears for localization. This technique is effective since the 

first wave will almost always pass by both ears before any reflections are returned. 

However, the effectiveness of the precedent effect has been found to be dependent on 

whether early reflections agree with the direct path location [14]. If only localization 

along the horizontal plane is considered and if  the first reflections come from the floor 

and the ceiling, the binaural cues of these reflections will strengthen the perceived 

direction towards the actual location. However, early reflections from a side wall will 

interfere with the direct path ITD and ILD, causing a decrease in localization 

performance.

1.3 Dereverberation algorithms

Dereverberation attempts to remove or lessen the negative effects that reverberation has 

on intelligibility and sound quality. Dereverberation is achieved in a multitude of ways, 

including channel inversion, maximization of second-order statistics through adaptive 

filtering, and spectral subtraction. Typically, dereverberation implementations are 

designed to operate on a single input channel. Since the signals from a sound source at 

the left and right ears are not the same due to the HSE, independently operating 

dereverberation processes may change the scale or time of arrival of the signals relative 

to each other. This change is a modification of the natural ITD and ILD, distorting a 

listener’s perception of the actual sound location. As such, binaural processing, which 

strives to preserve these cues, is preferred.

1.4 Measures o f speech perception

In order to validate the performance of any speech processing algorithm, it is necessary to 

use some measure of how it influences speech perception. Measures of speech perception 

can be categorized in several ways. This review will examine two ways of categorization; 

subjective or objective speech evaluation, and intelligibility or quality metrics.
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1.4.1 Intelligibility versus quality measures

When evaluating speech perception, it is important to differentiate between intelligibility 

and quality and determine which is most appropriate for the system being tested. 

Intelligibility is defined as the degree to which speech can be understood whereas quality 

usually refers the perceived naturalness or pleasantness of a speech sample.

More specifically, intelligibility commonly refers to the percentage correct of speech 

units observed by a listener, where speech units may refer to sentences, words, 

phonemes, or other parts of speech [15]. Intelligibility tests are typically only appropriate 

when the system being tested produces considerable degradation. In systems with mild 

degradation, ceiling effects where subjects score near 100% are generally observed. This 

limitation can be circumvented in certain instances by introducing a known degradation 

to the system, such as additive noise, that makes the task more difficult.

Quality tests, which attempt to measure the perceived quality of a speech sample, do not 

suffer from ceiling effects as intelligibility tests do. As such, quality tests are useful for 

differentiating highly intelligible systems. In a quality test, subjects are asked to focus on 

a particular aspect of speech such as pleasantness or naturalness, or overall quality.

1.4.2 Subjective versus objective measures

Speech perception measures can be differentiated as being either subjective or objective. 

Subjective measures rely on feedback from a test subject, and are hence subject to 

preferences or ability at a task. Subjective testing can be costly and time consuming, 

however, subjective evaluation is important as it measures directly the effect of a system 

on people’s perception o f speech.

Objective metrics attempt to predict or estimate results from subjective testing by 

analyzing properties of a speech sample. Objective metrics carry several benefits 

associated with computer processing. For one, objective metrics are able to provide 

immediate feedback on a system which is useful for testing and fine tuning. Second, 

objective metrics can be calculated over a much larger set of speech samples than 

normally feasible for a subjective study. In this way, objective metrics are useful for
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identifying dependencies on the talker, angle of presentation, and other parameters that 

can only be addressed in a large study. However, objective metrics tend to only be valid 

for the particular type of distortion that was used in their associated subjective test.

Objective metrics themselves can be classified as either intrusive or non-intrusive. An 

intrusive measure requires the original and enhanced signals to determine a score, usually 

by comparing the time-frequency differences between the input and output. In contrast, a 

non-intrusive measure determines a score based on the output only and is useful in 

situations where the input signal may not be readily available. When using objective 

metrics to measure the performance of speech enhancement algorithms, there are 

generally three signals o f interest: the original (clean) speech, the corrupted speech, and 

the enhanced speech. The amount of enhancement can be characterized as the difference 

between the scores for the corrupted speech and the enhanced speech. For intrusive 

measures, the clean speech is used as the reference input in both cases.

1.5 Summary and statement o f problem

Reverberation impacts speech quality and intelligibility as well as our ability to localize 

sounds. While dereverberation techniques have evolved over the past few years, they 

have been primarily designed for monaural applications. In a binaural application, two 

independently operating dereverberation algorithms may distort the cues necessary for 

sound localization, and may upset the naturalness o f the processed speech, highlighting 

the need for a binaural dereverberation approach. Furthermore, typical hearing aids have 

been independent devices, individually programmed for the left and right ears with no 

communication between the two. With advances in wireless technologies, it is becoming 

more common for hearing aids to employ a wireless link between each aid. This link 

allows hearing aids to share information, leading to improved speech processing 

techniques. As such, binaural signal processing techniques are quickly becoming of great 

interest to hearing aid manufacturers as well. Binaural implementations of 

dereverberation techniques are relatively new and unexplored. There is little data on 

whether binaural implementations can provide significant improvements over their 

monaural counterparts, in terms of speech quality and intelligibility enhancement, as well
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as localization ability. Intuitively, one would expect binaural implementations to offer an 

improvement in localization, but there is no formal evidence of this effect as of yet.

1.6 Research objectives

The primary objective of this research is to develop a binaural dereverberation method 

that meets the following criteria:

• Provides an improvement in speech quality over reverberant speech,

• Preserves or improves the cues that are used for localizing speech, and

•  Has reasonable computational complexity to run in real-time on a portable device.

Secondary objectives of this research include:

• determining the relationship, if  any, between binaural and bilateral 

dereverberation on sound source localization,

• examining the quality of objective metrics at predicting user preferences of 

speech in reverberation, and

• developing a binaural impulse response database for the purpose of generating 

reverberant speech.

1.7 Organization

The thesis is organized as follows. Chapter 2 begins by reviewing the effects of binaural 

versus monaural listening. It goes on to explore the variety of single and multi-channel 

dereverberation techniques that exist in literature, followed by a review of several 

objective speech evaluation metrics. Chapter 3 describes the development o f a binaural 

room impulse response (BRIR) database created for the purpose of generating 

reverberant speech. The measurement procedure and characteristics of the measured 

impulse responses are all detailed. Chapter 3 concludes with an overview of another 

BRIR used for generating reverberant speech and evaluating dereverberation techniques 

[16]. Chapter 4 proposes a new binaural dereverberation technique using the linear 

predictive (LP) residual of the speech signal. An overview of the method described in
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[17], from which the binaural implementation is derived, is presented as well as the 

motivations and changes involved in the new method. Chapter 5 evaluates the 

dereverberation techniques as well as another recent binaural dereverberation technique 

by Jeub et al. [18] in terms o f sound quality and localization. The methodology o f two 

subjective listening tasks by normal hearing listeners are explained and the results of the 

tasks are analyzed and compared against objective measures to determine correlations. 

Chapter 6 summarizes the conclusions and findings of this thesis and provides 

recommendations for future work.
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Chapter 2

Literature Review

This section provides a review on research done on topics pertaining to this thesis.

First, common methods of objective and subjective speech evaluation techniques 

and their appropriateness towards evaluating dereverberation algorithms are discussed. 

Second, the different types of dereverberation techniques found in literature are 

examined.

2.1 Electroacoustic speech evaluation

2.1.1 Sound quality

Effective evaluation of the intelligibility or quality of speech is of importance in many 

fields of speech research. The most common method of subjective evaluation of speech 

quality is the mean opinion score (MOS). The MOS is a five point scale o f speech 

quality, described in Table 2-1.

Rating Speech Quality Level of Distortion
5 Excellent Imperceptible
4 Good Just perceptible, but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying, but not objectionable
1 Unsatisfactory Very annoying and objectionable

Table 2-1 : Mean Opinion Score description.
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Electroacoustic measures are most commonly developed for evaluating speech coding 

systems [19] [20] [21] such as code excited linear prediction (CELP), however their 

effectiveness at evaluating speech enhancement systems varies. A comprehensive study 

on the effectiveness of typical speech quality metrics for evaluating speech enhancement 

algorithms was done by [22], The score o f 13 different speech enhancement algorithms in 

four noise conditions are compared against subjective data. It is demonstrated that certain 

measures, such as the segmental SNR [23], Itakura-Saito distance (IS) [24], and weighted 

spectral slope (WSS) [25], are poor to moderate predictors of overall quality with 

Pearson’s correlation coefficients of 0.36, 0.60, and 0.64 respectively. However, other 

measures, like the cepstrum distance [19], log-likelihood ratio [23], and perceptual 

evaluation of speech quality (PESQ) [21], performed well with Pearson’s correlation 

coefficients of 0.79, 0.85, and 0.89 respectively. While this study shows good 

performance for speech in noise, it does not address how preferences may change in 

reverberation. PESQ, the highest correlating measure o f quality for speech in noise, 

suggests that it should not be used for evaluation when talker echo is present [21].

A study by [26] evaluates objective metrics in reverberant environments with RTôo’s 

between 291 -  447 ms. Their results indicate that the correlation of the cepstral distance 

to overall speech quality drops considerably (p = 0.17) from the speech in noise 

conditions in [22]. This study demonstrates that metrics that perform reasonably well in 

speech in noise cannot be assumed to have similar performance in reverberation. Falk and 

Chan [27] introduced a new, non-intrusive metric, the speech to reverberation modulation 

energy ratio (SRMR). The SRMR measures the ratio of low frequency envelope 

modulations over higher frequency envelope modulations in a speech signal. First, the 

input signal is filtered by a 23-channel gammatone filterbank. The Hilbert transform is 

used to compute the envelope within each band in 256 ms frames with 87.5% overlap. 

Each envelope frame is multiplied by a 256 ms Hamming window. The modulation 

spectral energy for each band j  is computed as the squared magnitude of the discrete 

Fourier transform of the temporal envelope frames. êj k denotes the average modulation 

energy over all frames of the jth  band, grouped by the klh modulation filter, where
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j  =  1 ,..., 23 and k = 1 ,..., 8. The average per-modulation band energy ek is then defined 

as

and the SRMR is defined as

SRMR = T i t= l  £k

I & s h '

(2. 1)

(2.2)

where K* is the modulation band that accounts for 90% of the total modulation energy.

Falk and Chan [27] demonstrate that envelope modulations greater than 20 Hz are 

associated with reverberation. Thus, the ratio of envelope modulations to modulations 

due to reverberation should provide a measure of the severity o f reverberation. The 

SRMR achieves a correlation of 0.80 for overall quality with normal hearing subjects, 

outperforming other state-of-the-art algorithms [27].

2.1.2 Localization

Unlike sound quality, there are few electroacoustic predictors of localization ability 

beyond simple measures such as the ILD error. However, Faller and Merimaa [28] 

present an improved method of selectively picking the ILD and ITD in time frames above 

a certain interaural coherence. This method models the precedence effect in that 

localization in reverberant conditions relies heavily on the first wavefront. For 

determining the ILD (our primary concern), the input signals are divided into 20 ms (320 

samples at a sampling rate of 16 kHz) frames with 99.9% overlap (319 samples). Each 

frame is filtered using a 24 band Gammatone cochlear filterbank [29] [30] with center 

frequencies according to the Glasberg and Moore model [31]. The interaural coherence is 

calculated for each sub-band frame and those above a threshold are used for the ILD 

determination. Jeub et al. [18] extend this method by introducing a variable threshold, in 

which only the 10% most reliable values in any given sub-band are used for ILD 

determination. They then examine the mean ILD difference between different 

dereverberation algorithms and reverberant speech and the variance of this error and
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conclude that large variations in the ILD difference affects source localization. However, 

this relationship has not been thoroughly explored.

2.2 Dereverberation techniques

In the last decade, dereverberation has been an area of great interest for researchers. A 

wide variety o f techniques have been used to reduce the effects of reverberation on 

speech. This section will review many of these solutions, organized by the general 

approach taken.

2.2.1 Direct RIR inversion

A popular method for dereverberation attempts to find the inverse of the room impulse 

response. Using the reverberation model in (l.l), the original source signal can be 

recovered by convolving x(n ) with the inverse of the room impulse response.

s(n) = h_1(n) * x(n) (2.3)

The problem is a matter of efficiently and accurately determining h-1 (n) without a priori 

knowledge o f s(n ). This problem is known as blind channel estimation and has a wide 

variety o f applications in communications. Huang and Benesty [32] consider the 

estimation of a single input multiple output (SIMO) FIR system. By employing multiple 

system outputs, or for the purposes o f dereverberation, a multi-microphone system, a set 

of error functions can be defined by taking the difference between each combination of 

inputs convolved with an estimated impulse response. These error functions are 

combined in a cost function which can be solved using a least mean squares (LMS) or 

Newton algorithm. However, this method is not demonstrated for practical 

dereverberation. Room impulse responses are considerably larger than those tested in this 

study (500 samples to convergence for a length 15 two-channel FIR system, versus a RIR 

which could range from 800 to 8000 samples at a sampling frequency of 8 kHz). As well, 

the source signal used was an uncorrelated binary phase shift keying (BPSK) sequence 

which has a white power spectrum. If speech is assumed to be the source signal, the 

convergence time will increase due to its coloured power spectrum.
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Attempts have been made to address these issues. Studies [33] and [34] suggest that the 

complexity of the LMS algorithm can be reduced by updating a fraction of the total filter 

coefficients. Kokkinakis and Loizou [34] report improvement to reverberant speech with 

computational times feasible in portable systems. Zhang et al. [35] take an alternate 

approach, instead adapting the length o f the adaptive filter to minimize the mean-square 

deviation at each iteration. Tong Zhou [36] provides a variable step size implementation 

o f the variable tap-length filter, offering moderate improvements to convergence time and 

steady state error. However, for all presented solutions, the convergence time with speech 

as an input remains unknown. With all these systems, care must be taken when 

determining the inverse RIR. Real acoustic spaces tend to have mixed-phase impulse 

responses, and as such do not have stable inverses [37] [38]. However, Miyoshi and 

Kaneda [37] have demonstrated that it is possible to determine the exact inverse o f a 

mixed-phase system using multiple inputs/outputs.

2.2.2 LP residual and statistical methods

The linear predictive residual of speech has many properties that are beneficial towards 

effective dereverberation. Yegnanarayana and Murthy [17] looked at the LP residual and 

its properties. Among their findings was that the LP residual has strong peaks that 

correspond with the glottal cycle and that in reverberant speech, the regions between 

glottal peaks have added noise. Building on this discovery, they developed a single 

channel method that weights the LP residual to enhance the peaks of the glottal cycles 

while suppressing the smaller peaks caused by reverberation. In [39], enhancement of the 

glottal cycle is achieved by coherently adding the LP residual from a microphone array. 

Since the peaks due to reverberation occur randomly across the array, the overall signal 

to noise ratio is increased.

Gillespie et al. [40] also exploit the properties of the LP residual through a multi-channel 

technique that maximizes LP residual kurtosis using a gradient-descent adaptive filter. A 

similar method was implemented in [41] using the skewness of the LP residual instead. 

Wu and Wang [42] found that while such methods were capable of reducing the 

colouration distortion caused by early reverberation, they do little to reduce the effects of 

long-term reverberation. To tackle this issue, a second stage was employed by [43],
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which uses pitch periodicity as a measure of reverberation time and enhances the speech 

through spectral subtraction. Nakatoni and Miyashi [44] describe a similar technique 

where the harmonic structure is estimated and weighted to enhance dominant harmonics 

while reducing noisy components. However, this technique requires an extensive training 

period, making it unsuitable in situations where the RIR is not constant.

2.2.3 Coherence based post-filtering

A common method of speech enhancement in noise uses the multi-channel Wiener filter 

to estimate the desired signal. Zelinski [45] applied the same theory to dereverberation 

and presents an adaptive post-filtering scheme based on the Wiener filter fed by a 4- 

microphone delay and sum beamformer. However, in this scheme, the determination of 

the filter coefficients assumes that the noise signal is uncorrelated with the source, which 

is false for realistic conditions. Recognizing this inaccuracy, McCowan and Bourlard [46] 

replace the assumption of incoherent noise with a known spatial coherence function. The 

spatial coherence function is a normalized measure of the correlation between two points 

in space. Specifically, McCowan and Bourlard [46] use the coherence function of a 

diffuse noise field, given in [47] as

where dij is the distance separating two positions i and j , f  is frequency in Hz, and c is 

the speed of sound. While more accurate than the assumption o f complete incoherency,

Thus, Jeub and Vary [48] developed a new coherence function that models the complex 

geometry o f the head as two spatially separated circular plates at each side of the head. 

Assuming an ear separation of 17 cm, an approximation of the noise field coherence is 

given by

(2.4)

this coherence function is not ideal for binaural use as it ignores the head shadow effect.

(2.5)

where P =  3 and the model parameters are as given in Table 2-2.
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V ct„
V b P CP

1 1 18.97 291.1
2 14.5 * 10-3 875.2 105.7
3 2.38 » 10-3 1371 151.5

Table 2-2: Coefficients o f  the binaural coherence model for a microphone separation o f  17 cm.

Post-filtering using this coherence function shows an improvement in the SRMR scores 

over the diffuse and incoherent noise fields [48].

2.2.4 Binaural speech enhancement

Binaural processing is a recent area o f interest among researchers and remains relatively 

unexplored. The goal of binaural processing is to preserve the ITD and ILD cues that 

account for much of our localization ability. Klasen et al. [49] present a binaural noise- 

reduction algorithm that preserves the inter-aural transfer function (ITF), and thereby the 

ITD and ILD, by adding terms representing the error from the desired ITF into the cost 

function o f the Wiener filter. While not a dereverberation algorithm, the modifications to 

the cost function can be applied to any technique incorporating the Wiener filter, such as 

those described in section 2.2.3. The disadvantage o f such a method is the inherent trade­

off between ITF preservation and noise reduction. Demanding greater ITF preservation 

comes at the cost of SNR improvement. In [50], it is demonstrated that when a subject is 

presented noise and speech from two different angles, the bilateral multichannel Wiener 

filter “moves” the noise source to that o f the speech. Intelligibility of speech increases 

when the noise and speech are spatially separated [51], suggesting that the reduction in 

SNR improvement from preserving the ITF will be offset by some degree by the spatial 

release from masking. However, this improvement is shown to not be great enough to 

overcome the negative effects o f the ITF preservation [50], and is only relevant when the 

noise is initially spatially separated from the speech. Since reverberation can be 

considered to be correlated noise, it is reasonable to expect similar effects with Wiener 

based dereverberation techniques.

Jeub et al. [18] present a two-stage binaural dereverberation method that will be used as a 

comparison against the binaural technique developed in this thesis. The first stage
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consists o f a spectral subtraction rule designed to remove late reverberation. Using a 

statistical model of late reverberation, the variance of the late reverberant speech is 

estimated. Time-frequency frames where the estimated reverberant variance is high are 

suppressed. The second stage uses the circular plate coherence model described in 2.2.3 

for dereverberation of early reflections. Preservation of the binaural cues is achieved in 

the first stage by employing a delay-and-sum beamformer. The output o f the beamformer 

is used to determine the spectral subtraction weights which are applied to the left and 

right channels. Similarly, the second stage uses the dual-channel Wiener filter and 

produces one set of gains which are applied to both left and right channels. Therefore, the 

ILD is unaffected. The phase of the input signal is kept, ensuring no changes in the ITD. 

The Two-Stage method is shown to have significant improvement in SRMR over the 

other coherence based methods. Furthermore, subjective evaluation with 17 experienced 

listeners revealed that the Two-Stage binaural method is preferred over the bilateral 

version, both in terms of preservation o f ITD/ILD cues and speech quality.

2.3 Summary

Single-channel dereverberation has a rich history, employing a wide variety of 

techniques. The effects these techniques have on localization remains relatively 

unknown. As well, reverberation has only recently become the focus for developing 

objective sound quality and intelligibility metrics. The SRMR measure shows promise, 

but has yet to reach widespread use.
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Chapter 3

Development o f Binaural Impulse Response 

Database

In order to evaluate the effects of dereverberation algorithms on speech quality and 

localization, it is necessary to first generate reverberant speech. This task can be 

accomplished in several ways. The most straightforward approach is to simply make a 

recording of speech in a reverberant environment. This approach, however, requires 

recordings to be made for each stimulus, and becomes unfeasible when large amounts of 

stimuli are required. As well, one must have the proper presentation and recording 

equipment to make such measurements and an appropriate room to make them in. To 

avoid these constraints, considerable work has been done on creating computer 

simulations of reverberant transfer functions. There are two main methods of acoustic 

simulation, the image source method and the ray tracing method.

The image-source model simulates reverberation in a rectangular space by creating 

mirrored copies of the room and speaker position around the original room with the 

listener [38]. The contribution o f each copied sound source is adjusted for the distance to 

the original listener and the absorption at each reflecting wall. The image source method 

suffers from being restricted to rooms with simple geometry. As well, the reflections it 

produces tend to be too perfect from what would be seen in a real room, especially at 

longer reverberation times [52]. The ray tracing method models sound as particles 

scattering from a source location. The particles travel in straight lines, reflecting off of
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surfaces a set number o f times. To determine the impulse response at a point, a certain 

volume or area must be taken to catch rays that pass through. Due to finite particles and 

reflections, ray tracing has the chance o f missing reflections. Hybrid methods exist which 

can produce realistic simulations [53], but these solutions are expensive.

In order to achieve the flexibility of simulation methods with the realism of real room 

recordings, a binaural impulse response database was created. Using recordings made in 

reverberant environments, it is possible to extract the speaker to ear impulse response 

which can then be convolved with any stimulus. The recordings were made through a 

Head and Torso Simulator (HATS) within the Beltone Anechoic Chamber (BAC) and the 

reverberation chamber at the National Centre for Audiology (NCA). A brief description 

of the room properties along with the experimental procedure to record the impulse 

responses is given below.

3.1 Room specifications

3.1.1 NCA reverberation chamber

The dimensions of the reverberation chamber are given in Table 3-1. It conforms to
'*N _

specifications in ISO 3741:1999 for measuring sound power levels. Two removable 

heavy fabric curtains and a piece o f acoustic foam were used to adjust the properties of 

the chamber to achieve varying degrees of reverberation. The different configurations are 

depicted in Figure 3-1 and Table 3-2 lists their respective reverberant properties. These 

configurations will be referred to as R l, R2, R3, and R4 for the setups depicted in Figure 

3-1 a, b, c, and d respectively.
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Figure 3-1 : Four configurations o f the reverb chamber with respect to manikin (HATS) positioning. Thick
line indicates curtain, thin line indicates acoustic foam.

3.1.2 Beltone Anechoic Chamber

The BAC is a semi-anechoic chamber. The ceiling and walls are constructed with a 125 

Hz cut-off wedge system. Unused floor space is filled with moveable sound absorbing 

floor panels and acoustic foam. The dimensions of the BAC are given in Table 3-1. See 

Appendix A for pictures o f the HATS setup in each chamber.

Room Length Width Height Volume (cu ft)
Beltone Anechoic Chamber 12’ 23’ 18’ 4,968

Reverberation Chamber 20.3’ 13.3’ 8.7’ 2,349

Table 3-1 : Anechoic and reverberant room dimensions.
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3.2 Procedure

3.2.1 Equipment and measurement setup

The measurements were carried out using quality audio equipment available at the 

National Centre for Audiology. All playback and recording was done at a sampling rate 

of 44.1 kHz via an Echo AudioFire 12 sound card. The output channels o f the AudioFire 

12 were connected to a Soundweb 9088iis DSP unit which performs speaker 

equalization, channel switching, and level adjustments. Samples were played out through 

an array of 16 Tannoy Di5 DC loudspeakers, which were situated in a circle with radius 

1.4 m spaced equally apart by 22.5 degrees. Lab.Gruppen C Series and QSC CX 168 

power amplifiers were used as the interface between the Soundweb system and the 

loudspeakers in the reverberation and anechoic chambers respectively.

The recordings were made through a Brtiel & Kjaer Type 4128C HATS and connected to 

a G.R.A.S Type 12AA Power Module. The height of the HATS was adjusted such that 

the ear canal was level with the vertical centre of the surrounding loud speakers.

3.2.2 Impulse response measurement

The binaural impulse responses were constructed using the swept sine method as 

described in [54]. In this method, a signal s(n ) is constructed as a sine wave that 

exponentially increases in frequency over time T.

s(ri) =  sin(j((e~n/Lfs —  if),  (3.1)

where K = 7^  and L =In 2̂  In-2-0>! U>i

and a>i = 2 007T, a)2 = 320007T, 7 = 3

s(n ) is repeated to form the stimulus that is presented from the loudspeaker. Let x(n) be 

the recorded signal from one ear of the HATS. The first half of x(n) is discarded such 

that only the recording of the second sine sweep is kept, and the Fourier Transform of
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s(n) and the truncated x(n) is taken. Dividing S(to) by XT(co) element-wise and taking 

the real portion of the inverse Fourier Transform results in the impulse response from the 

loudspeaker to the ear.

xT = x (y  + 1: Af), where M is the length of x

5(o>) = !F[s(n)], XT(io) = T[xT(ri)]

h(ri) = real (3.2)

Recordings were made at each of the 16 loudspeakers around the HATS. This procedure 

was repeated for the left and right channels of each recording to produce binaural impulse 

responses from a stimulus at each angle. For all azimuth angles referred to in this thesis, 0 

degrees refers to the loudspeaker positioned directly in front of the HATS, with azimuth 

increasing in the clockwise direction.

3.3 Aachen impulse response (AIR) binaural database

For a more accurate comparison of the dereverberation algorithms, reverberant speech 

was also generated using the binaural database defined in [16]. This database was also 

designed specifically for the evaluation o f dereverberation techniques. The AIR database 

has impulse responses measured in real environments (a meeting room, office, lecture 

hall, and stairwell). Using the AIR Database in conjunction with the RIR’s of the NCA 

chambers allows for a greater range of reverberation times to be tested. As well, it can be 

seen how evaluation metrics differ for similar reverberation times between a test chamber 

and a real environment.

3.4 RT60 estimation

RTso is commonly used to categorize the degree of reverberation in an environment. It is 

defined as the amount of time required for a source that is switched off to decay by 60 

dB. A modified version of the Schroeder method [55] was used to estimate the RT6q.
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Let h(ri) be a channel of a binaural impulse response where n =  0 ,1 ,2  ... M — 1. To 

determine the Schroeder integral s(n ), h(n) is squared and normalized such that the sum 

of all elements of h2(n) equals 1. This normalization is not necessary, but aids in 

visualization o f the Schroeder integral. Next, the power decay function is found by taking 

the cumulative sum of the reversed normalized squared impulse response. Finally, s(n ) is 

converted into dB.

I7 , ,  h2(n)nnormW (3.3)

M-l
s(ji) — ^  ^normCO (3.4)

i=n

sdb(n) = 10 log1Qs(n) (3.5)

Because impulse responses rarely have the dynamic range to directly measure a 60 dB 

decrease in power, the RT60 is more commonly calculated by taking a linear fit of a 10, 

20, or 30 dB drop and extrapolating. For the calculations in this thesis, a 10 dB drop 

between -5 dB and -15 dB was used to find the linear fit. Figure 3-2 depicts the Schroeder 

integral for a sample RIR. The dashed red lines show the region between -5 dB and -15 

dB at which the linear fit is calculated. The green line shows the extension of the linear fit 

to -60 dB where the RT6o is read.

To verify the RT60 measurements of the NCA chambers, the RT6o’s of the impulse 

responses provided by the AIR database were measured using the above procedure and 

compared to their reported values. Figure 3-3 shows the results across all rooms in the 

AIR database except for the stairway, as no reverberation times for those RIRs were 

provided.
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Figure 3-3: Comparison o f RT^ reported by [16] and measured using the Schroeder method.
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As seen, the correlation between the measured and reported RT60 is quite high (R2 = 

0.99). It can be concluded that the RT6 0 of the NCA chambers is accurate and that results 

from both databases can be compared together. For consistency, all RT60 values used in 

this thesis will be measured using the Schroeder method as described above. Table 3-2 

outlines the RT60 o f the AIR stairway at three distances and each o f the NCA chamber 

configurations.

Room Speaker -  Microphone Distance (m) RT60 ( s)

AIR Stairway i 0.55
AIR Stairway 2 0.68
AIR Stairway 3 0.73

NCARO 1.4 0.04
NCAR1 1.4 0.7 6
NCAR2 1.4 0.89
NCAR3 1.4 0.97
NCAR4 1.4 1.39

Table 3-2: Overview o f measured reverberation times for each room. All values are averaged between the
left and right channels and for all available angles.

For a more complete characterization of the reverberation in each configuration, the RTeo 

values for each room were calculated across frequency, shown in Figure 3-4. Similar to 

the AIR database, the NCA chambers exhibit sloping RT60 at high frequencies. The 

impulse responses were filtered with 1/3 octave filters according to the ANSI S 1.1-1986 

standard [56] and then measured using the same method as described above.
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Figure 3-4: Reverberation time across frequency averaged over left and right channels and a) all angles and
b) zero degrees azimuth

3.5 Summary

A binaural room impulse response database has been developed for generating stimuli in 

realistic conditions. A total of five room conditions are made available, one in an 

anechoic setting and four at different levels of reverberation. The presented database is 

fully characterized by RT6o and extends the available range of testing conditions offered 

by other BRIR databases.
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Chapter 4

Dereverberation Implementation

This chapter will cover the development and implementation of the dereverberation 

algorithms used for testing. Section 4.1 provides an explanation of the 

dereverberation technique used in [17], which will be referred to as the YM method. 

Section 4.2 describes the adaptation of the single-channel YM method to a binaural one 

as well as modifications made to the weighting functions for improved dereverberation. 

Last, an overview of the cue-preserving technique in [18] is provided as a comparison to 

the other methods.

X

4.1 Bilateral LP residual weighting

The basis o f the technique presented in [ 17] is that the direct component of speech should 

be enhanced while suppressing regions where the reverberant component dominates. 

Weighting the data in this way gives the effect of enhancement since perception of speech 

is highly influenced by regions with higher energies. Thus, it is necessary to determine 

which regions of the data signal contain the direct component and which areas are 

dominated by the reverberant component. Yegnanarayana and Murthy [17] perform an in- 

depth investigation into the statistics and spectra of clean and reverberant speech 

segments to determine how these regions can be effectively determined. The results are 

summarized as follows.

Processing should be performed on the LP residual, rather than on the speech signal 

directly. The LP residual is more suitable as distortions caused by processing will be
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smoothed out due to the all-pole synthesis filter upon reconstruction [17]. Let x (n ) be the 

input signal to be processed. The predicted signal, x(n), is given by

v
m  = ^  at*(n -  0 . C4-1)

i= 1

where p is the order o f the linear predictor and at are the predictor coefficients solved 

using the autocorrelation method. The residual is then given as error between the original 

and the predicted signal.

e(n ) =  x(n ) — x(n) (4.2)

The LP residual will be modified in short (2 ms) and long (20 ms) segments. Weighting 

o f the long segments (gross weight function) is achieved by estimating the entropy of the 

LP residual, defined in (4.3). Similarly, weighting o f the short segments (fine weight 

function) is computed from the normalized prediction error, defined in (4.6).

4.1.1 Gross weight function

The linear prediction residual for the gross weighting function is developed using a frame 

size of 20 ms (160 samples at 8  kHz sampling rate), Hamming Window, and a 10th order 

LP analysis using the autocorrelation method. The residual signal is segmented into 20 

ms frames with 10 ms overlap. To identify the regions of high and low signal to 

reverberation component ratio (SRR), the entropy of the kth frame, Hk, is calculated as,

M

Hk =  -  ^ p i lo g p i  (4.3)
¿=i

where Pi is the probability of a sample falling in the ith bin, and M is the total number of 

bins. To obtain a good estimate of p i5  the number of bins is chosen as M =  7. The bins 

are evenly distributed between the minimum and maximum sample values within each 

frame. In the event that no samples fall in a bin, p* logp; is taken as zero. It is necessary 

to obtain a weight for each sample of the LP residual. Thus, the entropy determined for 

each frame is replicated by 10 ms worth of samples (80 samples at 8  kHz sampling rate) 

and concatenated to form an extended entropy function with a length equal to the LP
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residual. Next, this expanded entropy function is smoothed with a 75 ms moving average 

window to remove discontinuities from the expansion procedure.

In regions where there is a strong direct component, the probability density function of 

the samples is skewed, reducing the entropy. Likewise, in regions with reverberant tails 

or no speech, the probability density function of the samples is closer to a Gaussian 

distribution, increasing the entropy. Thus, a weighting function that is inversely 

proportional to the entropy is needed. The non-linear weighting function proposed by 

[17] is given by,

wgross _
' g r o s s  _  w gross\

2  "“n j  tank (at x(Hk -  a ))

+
gross gross, 

wmax t  mmin j
2  j

(4 .4)

where = 1, w ^ ° ss =  0.1, a =  —1.5, and a =  1.55. a defines the slope of the
^ross _̂ _̂ gross

weight function and a is the entropy at which w 9ross = max min . The mapping 

function o f the entropy to the gross weight function is depicted in Figure 4-1.

Figure 4-1: Gross weight mapping function o f the entropy o f  the LP residual.
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4.1.2 Fine weight function

The fine weight function is intended to improve the definition of the glottal cycle, thereby 

reducing the perceived reverberation. The fine weight function is formed using a 

mapping function similar to that o f the gross weight function, but instead is calculated 

using the normalized prediction error. Letting x(n) be the input speech, the 5 order LP 

coefficients are computed in 2 ms frames. For any frame k, the linear prediction estimate 

is given by,

And the normalized prediction error, enorm(ri), is found at each sample.

(4 .5)

■norm (n) =
|x(n) -  x(n)| 

max(\x(n) — x(n)|)
(4 .6)

Next, the trend in the prediction error is removed by smoothing the prediction error with 

a 1 Oms Hamming window and subtracting it from the normalized prediction error. The 

fine weight function, w^ine, is given by,

w,f in e  _  w f in e \

X  =
m ax min tank (agn(r}'k)) +

'  fin e  \ fine  w J 4- w  . w m ax  T  ™min (4 .7)

where 7 7 ' is the de-trended normalized LP error at frame k, w^ax = F  wmin =  0-^. and 

a =  1.5. The mapping function of the normalized LP error to the fine weight function is 

depicted in Figure 4-2. A sample of the fine weight function for the sentence “The birch 

canoe slid on the smooth planks” is provided in Figure 4-3.
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Figure 4-3: Sample fine weight function.
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4.1.3 Synthesis

The enhanced speech is synthesized from the 2 ms, 5th order LP residual used to 

determine the fine weight function. Each sample of the LP residual is weighted by the 

combined weight function, which is the product of the gross and fine weight functions.

w combined _  w g ro ssw fin e  (4 8)

Yegnanarayana and Murthy [17] demonstrate the need to increase the spectral flatness of 

the short time segments to further enhance the degraded speech by modifying the LP 

coefficients. A damping factor for each sample, rn, is defined using a linear mapping of 

the fine weight function such that 0.9 <  rn < 1.

wfine
r" = î V + o -9  (4-9)

The new LP coefficients for the nth sample are now defined as,

a-ni =  aninT‘ i  =  L 2 ,... p (4.10)

where ani is the ith LP coefficient for the nth frame.

4.2 Binaural adaptation o f  the YM method

The YM method is only applicable to single-input, single-output systems. However, with 

applications such as digital hearing aids in mind, it is of interest to evaluate how this 

technique functions in a binaural sense and how it can be adapted to be more suitable for 

binaural applications. The key issue when implementing a single-channel system 

bilaterally is how it affects the binaural cues. In the case of the YM method, reverberation 

is reduced by weighting the LP residual. If a system incorporating YM method operates 

independently on inputs to the left and right ears, the weighting functions must be 

identical to preserve the ILD. A preliminary investigation into the effect such a system 

would have on the ILD was to examine the gross weighting function of the left and right 

ears for speech presented at different angles. Figure 4-4 shows the gross weight functions 

for the left and right inputs for the sentence “The birch canoe slid on the smooth planks.”
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In this example, the sentence was presented from an azimuth of 45 degrees. As seen, the 

right is weighted higher than the left channel at nearly all points. This effect becomes 

more pronounced at greater angles. Thus, the YM method exaggerates the natural ILD.

Figure 4-4: Gross weight function for a sentence presented from 45 degrees.

4.2.1 Binaural cue preserving schemes

The goal of a binaural implementation of the YM method is to preserve the ILD. The 

only way this goal can be achieved is if the same weighting is applied to both channels. 

In this way, the ILD is preserved and no loss in localization ability should be observed. 

Only the gross weighting function is considered, as disparity in the gross weighting 

functions contributes most of the ILD difference. This synchronization can be achieved in 

several ways. A simple method is to simply choose a channel and apply its weightings to 

both channels. However, only through analysis of an entire word or sentence can it be 

determined which weight would result in better performance. For the sentence shown in 

Figure 4-4, one would expect that choosing the left coefficients would result in overall 

poorer performance than the right channel. The right weights more accurately reflect the 

clean envelope since the source location was closer to the right.
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Another method would be to average the resulting weight functions from both channels. 

It avoids solving the question of which weight results in better performance by accepting 

weights that guaranteed to be neither best nor the worst. Figure 4-5 shows the block 

diagram of such a system.

Figure 4-5: Block diagram o f averaged weights method.

The final method investigated implements a delay-and-sum beamformer (DSB) to 

combine the input channels and then calculate the weights of the resulting signal. The 

implemented beamformer uses the generalized cross-correlation with phase transform 

method of time-delay estimation (GCC-PHAT) (see [57]). This technique presents 

several advantages. Since the DSB provides a degree of dereverberation by coherently 

adding direct speech components while incoherently adding reverberation, the entropy 

function of the DSB output will more closely resemble the anechoic entropy. This in turn 

will cause better determination of the weighting function since reverberation tends to 

flatten the entropy function. As well, the DSB lends itself well to scaling the system. This 

implementation assumes one microphone at each ear, however, it is quite common in 

hearing aid design to have multiple microphone inputs on each device. Thus, the DSB 

method should improve in quality as the number of inputs increases, while preserving 

binaural cues. Another advantage of the DSB method is that the weights only ever need 

to be calculated for one signal, reducing computational complexity for multi-microphone 

systems. For these reasons, the beamformer implementation was selected as the binaural
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implementation of choice for the modified YM dereverberation algorithm presented in 

section 4.4.

Figure 4-6: Block diagram o f beamformer method.

4.3 Limitations o f the YM method

The gross weight function in the YM method weights the LP residual via a mapping of its 

entropy. The significance of the weighting is based on the difference between the entropy 

of a given frame and the chosen midpoint of the mapping function. For maximum 

effectiveness, the mapping function should be centered on the average value of the 

entropy. However, an examination of the entropy of speech in different reverberant 

environments shows that a static mapping may not yield ideal results.

Figure 4-7 plots the smoothed entropy function of a sentence in three reverberant 

conditions along with the upper and lower limits of the gross weight mapping function. 

As seen, nearly all the entropy values fall within the range of the mapping function in the 

R2 condition, but in the stairway most of the entropy exceeds the upper limit.

As seen, the parameters are well suited for the R2 condition, but are ill-suited for the 

same sentence presented in the stairway. The effect this has on the weighting function is 

demonstrated in Figure 4-8. The YM method is incapable of determining useful weights 

for speech with entropy that falls outside the range of the defined mapping function.
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Figure 4-7: Comparison o f the entropy and gross weighting parameters in several reverberant conditions.

S a m p le s  x 1Q4

Figure 4-8: Gross weighting function using the YM method o f a sentence in the R2 and stairway
environments
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4.4 Modifications to the YM method

The limitations of the YM method make it unsuitable for use unless the mapping 

functions are adapted to the current environment. Thus, a method of adapting a, the 

midpoint parameter of the gross weighting function, was developed.

Yegnanarayana and Murthy’s [17] examination of the entropy of the LP residual 

demonstrated that the entropy decreased in regions with high SRR and increased in 

regions with low SRR. This effect creates local minima in the entropy function around 

words. Different words with different talkers also have varying amounts of entropy. As 

demonstrated in Figure 4-7, it is possible for the entropy of a word to fall entirely outside 

the range of the mapping function, creating a negligible impact on the weighting function 

despite large changes in the entropy. A linear mapping function would capture the effects 

of these local minima, but would distort the relative amplitudes between high SRR 

regions. Instead, it would be ideal to calculate the LP residual weights on a per word 

basis. Let a new gross weighting function be defined as

where ak is the entropy of frame k at which w3ross =  Wmax ^Wmin~. By letting ak be the

running average o f the LP residual entropy, changes in the entropy function that were 

previously unobserved are weighted effectively. The duration of the moving average filter 

was selected experimentally to provide balance between quick adjustment to the current 

word and a long enough delay to measure changes in the entropy function. If the moving 

average window is too short, the difference between Hk and ak will be consistently small 

and the effects of the variations in H will go unobserved. Setting the window length too 

large will cause effects similar to those observed in the original YM method.

(4.11)
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By letting ak be the mean entropy of the previous 150 ms of H,

O.ISfs

ak = y  -^5=2. (4.12)
k Z j 0.15fs

n=0

This definition of tracks the short time (150ms) mean of the entropy function H. 

When the entropy function exceeds this mean, the gross weighting function will decrease. 

Likewise, the gross weighting function will increase when the entropy falls below ak. 

Figure 4-9 demonstrates how the modified gross weight function is derived with respect 

to the variable ak.

a)

Figure 4-9: Comparison o f a) the variable midpoint parameter a and the smoothed entropy function and b)
the resulting weighting function.
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Figure 4-10 illustrates the difference in the modified method versus the original proposed 

by Yegnanarayana and Murthy [17]. As can be seen, there is greater definition between 

words and word sounds using the modified method than with the original. As well, the 

trailing reverberant tail is considerably reduced. Even in higher reverberation (Figure 

4-11), the modified method has comparable performance, if not better.
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Figure 4-10: Normalized spectrograms of the sentence “The birch canoe slid on the smooth planks” 
presented from 0 degrees as recorded in the left ear o f a HATS in the a) anechoic chamber, b) lecture hall, 

c) lecture hall after bilateral YM dereverberation, and d) lecture hall after binaural modified YM
dereverberation
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Figure 4-11: Normalized spectrograms o f the sentence “Clams are small, round, soft, and tasty” presented 
from 0 degrees as recorded in the left ear o f the HATS in the a) anechoic chamber, b) R2, c) R2 after 

bilateral YM dereverberation, and d) R2 after binaural modified YM dereverberation
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4.5 Two-Stage binaural dereverberation

The Two-Stage method is a recently developed binaural dereverberation algorithm [18]. 

Results showed that it is preferred over a bilateral implementation and provides 

additional dereverberation over other Wiener filter based techniques [18]. As its name 

suggests, it consists of two sections designed to target early and late reverberation: the 

spectral subtraction (SS) stage and a Wiener filtering stage. The Two-Stage method is 

used as a comparison to the developed algorithm in this thesis, and as such will be 

described in detail here.

4.5.1 Spectral subtraction stage

The SS stage assumes a statistical model to estimate the variance o f late reverberation. 

The point where late reverberation begins, Th is assumed to be 100 ms. The reverberation 

tail can be modelled as the exponentially decaying random sequence

hlate(k )  =  n(Ji)e~pkfs 1 f o r  k  > 0  , (4 .13)

where n(k)  is zero-mean, normally distributed sequence of random variables. The decay 

time, p, is governed by an estimate of the RT60 as

3 in  1 0
P = RTe o

(4 .14)

For the purposes of this thesis, the RT60 is assumed to be known. Blind estimation of the 

reverberation time is possible, but is beyond the scope of this thesis. For a binaural 

implementation, there are two input signals for the left and right ears. Each input is 

segmented into 16 ms Harm frames with 50% overlap. The 256 point FFT of each frame 

is taken and the estimator of late variance for a given time-frequency frame is given by

axlate =  e 2pTla l { X - N u n),  (4 .15)

where A is the frame index, p  is the FFT index, and Nt is the number of frames 

corresponding to the time 7). a 2, the spectral variance o f the reverberant speech is 

calculated using recursive averaging with a smoothing factor a =  0.9 as
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oÎ&AO = a-o-J? (A - l , /0  + ( l - a ) |X re /(A,//)|2, (416>

where 2fre^ (A, ¿i) is the output of a delay and sum beamformer of the time-aligned left 

and right input channels. The suppression weights are then given as

G late CA» M) 1  -
x late (A,iu)

i m ^ o i
(4 .17)

The values of G[ate are then bounded by a lower bound of 0.3 to prevent overestimation 

of the late spectral variance. To reduce processing distortions in regions of high SNR, a 

measure of the power ratio between the input and enhanced signals is found as

ïV = ï\G la te& ti-W .A \2
Ifcè\xa.n)\2 (4 .18)

where M is the FFT size. Based on this ratio, an adaptively sized smoothing window is 

applied to the weights within each time frame. The length of the window is given by

NSW  =
'1

2 •round £ 0 ) \
Ct/ir /

V +  1,

>  <thr

else, (4 .19)

where the threshold for windowing (thr = 0 . 4  and the scaling factor T  = 25. The 

moving average window can be expressed as an impulse response as

HsQ-.il) = L a y  
(o

n <  ns a )

else
(4 .20)

Finally, the smoothed gains are applied equally to the left and right input channels.

s,a,/i) = * (a  ,m) • (c'late a,M) * fya,^)
S A l t i  =  Xr (A,[i) ■ (G[a[e(A,n)  * Hs(A,n))

(4 .21)

4.5.2 Wiener filter stage

In this section, only the implementation of the Wiener filter is examined. For derivation 

of the optimal Wiener filter gains, see [18].
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First, the left and right input signals are segmented as in the SS stage (16 ms Hann 

frames, 256 point FFT). Next, the auto power spectral densities (APSDs) and cross power 

spectral density (CPSD) are recursively estimated from the input signals as follows.

$xlXl\xrxM '^)  = a$XlXl\xrxM  “  + C1  ~  «)|*i|r(A,/0 | 2 (4-22)

$XlXra  M) = cc$XlXra  +  a)Xt(A, n) • x;{A, n) (4.23)

The smoothing factor a is set as 0.8. The estimated APSD of the original uncorrupted 

signal is given by

Qs (2 < m)
Re{$XlXr(A,y)} - j R e { r XlXr(f2)} (A,/f) +  $XrXr( A , ^  

1 -  Re{rxiXr(D)} '
(4.24)

where rxiXr(fi) is the head coherence function given in (2.5) and returns the real 

part of its argument. The coherence function is bounded to 0 < rxiXr(i2) < 0.99 to 

prevent division by zero errors. The Wiener filter gains are then determined as

G(A, / 0  = <£Ss(A,m)

2  ' + ^XrXr (A. / 0 ^
(4.25)

A lower limit of 0.3 is applied to the Wiener filter gains to control against overestimation 

of errors. The spectral weights are then applied evenly to each of the two channels.

5;(A,/f) =  A) (A, m) • G(A,ju) 

5r (A ,/ f )= * r (A,i0-G(A,/f)
(4.26)
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Chapter 5

Subjective and Objective Evaluation

In this Chapter, subjective and objective evaluations are used to analyze the 

performance of bilateral and binaural dereverberation in terms of sound quality and 

localization. First, the dereverberation algorithms are evaluated by overall sound quality 

using the objective SRMR metric and through a subjective sound quality study. Second, 

the algorithms are evaluated by their ability to preserve binaural localization cues. 

Objectively, the ILDs are measured using the variable selection threshold method 

described in section 2.1.2. Subjective performance was measured through a localization 

task.

5.1 Sound quality evaluation

Overall sound quality was evaluated objectively and subjectively for five different 

conditions: unprocessed (reverberant), bilateral YM, binaural modified YM (BMYM), 

binaural spectral subtraction (SS) (first stage of the Two-Stage method [18]), and 

binaural SS + Wiener (SS+W) filtering (Two-Stage method in [18]).

5.1.1 Obj ective evaluation

Objective evaluation of each condition was performed using 16 sentences (8 male, 8 

female) from the TIMIT corpus of speech [58]. For each room condition in the AIR and 

NCA BRIR databases, the BRIR was downsampled to 16 kHz to match that o f the clean 

speech. The speech samples were then convolved with the downsampled BRIRs to



45

generate reverberant speech. The resulting corrupted speech was then processed using the 

aforementioned dereverberation techniques. The SRMR score is averaged across the left 

and right channels of the reverberant/processed speech and across all talkers. In rooms 

where angular data is available (AIR Stairwell and all NCA conditions), the SRMR is 

averaged across available positions from -90 to 0 degrees azimuth. Figure 5-1 shows the 

improvement in SRMR score from each dereverberation technique with respect to the 

reverberant condition. In the sound booth, meeting room, and office, the BMYM method 

outperforms the Two-Stage method. In the stairwell conditions they have comparable 

performance. However, in the NCA reverberation chambers, the Two-Stage method 

outperforms the BMYM method. In all but the least reverberant conditions, the YM 

method demonstrated the least SRMR improvement. Obviously, the reverberant 

conditions have an effect on the SRMR improvement. To investigate this effect, the 

SRMR improvement scores were plotted against the RT60 of each room condition in 

Figure 5-2. The results are separated between the AIR and NCA rooms because the 

characteristics of the NCA reverberation chamber caused an overall lower SRMR 

improvement in all algorithms. The BMYM method significantly outperforms the Two- 

Stage method until an RT60 of 0.55 seconds (AIR Stairway 1). After this point, the Two- 

Stage method shows greater SRMR improvement. This effect can be explained by the 

nature o f the Two-Stage method, namely the SS block, and the effects of reverberation on 

the YM method. The SS stage of the Two-Stage method is designed specifically to target 

late reverberation in the signal. To do so, it requires an estimate of the RTgo to 

statistically model the late reverberation, which for the purposes of this test was assumed 

to be known. As the reverberation time increases, and hence the impact late reverberation 

has on the SRMR, the SS block should offer greater improvement.
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■ Bilateral YM

■ Binaural Modifed YM

■ SS

■ SS +W

■ Bilateral YM

■ Binaural Modifed YM

■ SS

■ SS +W

\

c)
Figure 5-1: Improvement in SRMR score in the a) AIR rooms, b) AIR stairwell, c) NCA anechoic and

reverberation chamber.
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Figure 5-2: A SRMR for the tested dereverberation algorithms by average RT60 in a) AIR rooms and b)

NCA reverberation chamber.

The BMYM method begins showing decreased performance after a RT6o of 0.55 s. As 

shown in Figure 4-7, the entropy function of reverberant speech is smoothed with 

increasing reverberation. Since the BMYM method relies on the difference between the 

entropy function and its moving average, a smoother entropy function results in less 

profound changes in the gross weighting function. Thus, a decrease in SRMR 

improvement is expected as the RT60 is increased.
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5.1.2 Subjective evaluation

5.1.2.1 Participants

A total o f 16 normal hearing participants partook in a sound quality evaluation of the 

chosen dereverberation algorithms. Participants were recruited from students attending 

the University of Western Ontario and those living in the nearby area. Pure-tone air 

conduction thresholds were measured at each octave frequency from 500 Hz to 8  kHz, as 

well as at 6  kHz, using a Grason-Stadler 61 audiometer with Telephonies TDH-50P 

audiometric headphones. Subjects with less than 25 dB hearing loss (HL) at all 

frequencies in both ears are deemed to be of normal hearing. Screening was done in a 

double-walled sound booth. All participants were ages 18 or above and had little to no 

prior experience in sound quality evaluation.

5.1.2.2 Method

Subjects evaluated the five conditions using the Multiple Stimuli with Hidden Reference 

and Anchor (MUSHRA) [59] method. In the MUSHRA method, subjects rate speech 

samples from 1 - 1 0 0  on a continuous scale based on the characteristic to be evaluated. 

Unlike in MOS testing, subjects may listen to all conditions of a particular sample in any 

order and as many times as they choose before making an evaluation. In the test 

procedure, subjects were asked to rank each of the five conditions based on how similar 

they judged them to be to a reference sample recorded in an anechoic chamber. Subjects 

performed this evaluation for eight sentences (4 male, 4 female) from the TIMIT database 

[58] generated using the NCA R2 room condition. The R2 condition was selected to get a 

reverberation time between the worst case scenario (R4) and more commonly 

experienced reverberation times (AIR stairwell and lecture hall). The ordering of the five 

conditions for each sentence is randomly generated. The order in which subjects rate each 

sentence is also randomized. The speech sentences were equalized to have equivalent 

power and presented to the subjects over Sennheiser HD A 200 headphones while in a 

double-walled sound booth.
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5.1.2.3 Results

First, the subjective results were tested for reliability. Cronbach’s alpha for the test data 

was found to be 0.959, indicating a high degree of inter-subject agreement. Figure 5-3 

displays the speech quality scores averaged across all talkers and all subjects for each 

condition, with error bars representing one standard deviation. It can be seen that the 

unprocessed reverberant speech received the highest rating and the bilateral YM 

algorithm the lowest. Statistical analyses were completed to further probe these results. 

Repeated measures ANOVA was performed on the subjective scores using SPSS 

statistical software package to investigate the effect of talker gender, algorithm, and their 

interaction. No statistical significance was found between the scores of male and female 

speech samples (F = 2.708, p  = 0.121). Statistically significant differences were found for 

all algorithmic conditions with respect to the unprocessed condition with the exception of 

SS (p =  0.064). Post-hoc tests of significance of contrasts between the algorithms were 

performed using the False Discovery Rate (FDR) control procedure [60]. Results 

revealed that all of the binaural algorithms were statistically better than the bilateral YM 

algorithm. Furthermore, the SS method was statistically better than both BMYM and 

SSW method, and there was no statistical difference between the BMYM and SSW 

scores (p = 0.451). These results agree with those reported in the literature. For example, 

in [18], 17 experienced listeners judged the speech quality of bilateral and binaural 

dereverberation algorithms in comparison to that of the unprocessed sample. They 

reported that on average 73.6% preferred the binaural implementation of the SS 

algorithm over a bilateral implementation.
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■ Unprocessed ■ YM ■ BMYM ■ SS ■ SS+W 

Figure 5-3: Overall scores across all subjects and sentences for each condition.

Another notable feature of Figure 5.3 is the fact that subjects ranked the unprocessed 

speech more highly despite an expected decrease in reverberation with the 

dereverberation algorithms. It is thought that normal hearing listeners, as used in this 

study, are more perceptive to unnaturalness caused by speech enhancement than the 

apparent reduction in reverberation. In the YM and BMYM methods, unnaturalness 

might stem from the changing amplitude of the waveform caused by the gross weighting 

function. The SS and SS+W methods introduce musical noise due to the spectral filtering. 

In [26], similar discrepancies between objective and subjective results were reported and 

thought to be due to processing distortions.

[18]Figure 5-4 shows the results of the subjective study compared against the SRMR 

predictor. The Pearson’s correlation coefficient for the entire data set is -0.16, indicating 

weak negative correlation. This result is counter-intuitive and implies that the SRMR is 

not a useful predictor of subjective results. The discrepancy in the objective and 

subjective scores for the unprocessed speech is an obvious contributor to this poor 

correlation. Recalculating the correlation coefficient after removing the unprocessed 

condition resulted in a r  value of 0.35. Here we see the correlation has improved 

significantly, but still not to the degree reported in [27],
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Figure 5-4: Average MUSHRA scores across listeners vs SRMR scores for each sentence in the subjective
study.

To mitigate these effects, the difference in subjective score from the reverberant 

condition is compared against the A SRMR in Figure 5-5. The correlation between the A 

SRMR and A MUSHRA is 0.46, an improvement over the correlation of the absolute 

scores. To explain the reduced correlation of the SRMR with respect to [27], the 

differences in testing must be recognized. Falk and Chan [27] determined the correlation 

using reverberant speech and dereverberated speech from a DSB at a variety of RT6 0S. 

Unprocessed speech clearly will have no processing distortions, and DSBs introduce little 

distortion [26]. This suggests that while the SRMR is a good predictor of undistorted 

reverberant speech, results indicate that it is not robust towards predicting the perception 

of processing distortions.
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Figure 5-5: Improvement in SRMR vs Improvement in MUSHRA score for each sentence in the subjective
study.

5.2 Localization evaluation
\

To assess the degree to which bilateral processing disturbs localization, an objective and 

subjective study is presented. Objectively, the ILD cue is calculated using the selective 

technique described by [18]. The ITD is not investigated as the dereverberation 

algorithms under investigation all preserve the ITD. Subjectively, a localization task is 

presented to accurately measure localization performance in subjects. The unprocessed, 

YM, BMYM, and SS+W methods are examined. The SS method is not evaluated 

independently because the SS+W method uses the same method of binaural 

synchronization in both stages.

5.2.1 Objective evaluation

The ILD was calculated for the same 16 sentences from the TIMIT database as used in 

the sound quality evaluation. For the AIR Stairwell conditions and the NCA 

reverberation conditions, the mean difference in ILD between the reverberant and



processed conditions (A ILD) is computed. As well, the variance of the differences (A 

ILDvar) is found. Results from -90 to 0 degrees in each condition are presented in 

Appendix D. Here, the results for R2, the condition used in both the subjective quality 

study and the localization study, will be provided for -90 to +90 degrees.

b)
Figure 5-6: a) Mean A ILD and b) A ILD variance in R2 by angle.

Figure 5-6 a) shows that binaural algorithms are effective at preserving the ILD while the 

bilateral YM method significantly changes the ILD from the reverberant condition. The 

changes in the mean ILD for the binaural algorithms are all less than 0.25 dB, below the
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minimum audible difference in ILD of 0.5 dB [14]. Since the ILD determined here is the 

difference of the right from the left channel, the YM Method is exaggerating the ILD 

beyond what would normally be heard in the reverberant environment. To illustrate this 

effect, Figure 5-7 shows the ILD measured in the anechoic chamber and R2, along with a 

composite ILD formed by adding the mean A ILD to the R2 ILD.

- ♦ - R 0  

- * - R 2  YM

--------------15—1----------------------------------- =»-----------------

Presentation Angle

Figure 5-7: HATS ILD in the anechoic chamber, R2, and R2 after YM processing.

Figure 5-6 b) demonstrates that the variance of the ILD differences is also increased 

significantly beyond the reverberant and binaural processing conditions, reaching 

maximums at ±67.5 degrees. A high variance in the ILD cue suggests that the listener is 

being presented with a wide range of competing ILDs, making it an unreliable estimate of 

source position. A comparison between measured ILD variance and subject accuracy is 

performed in 5.2.2.3.
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5.2.2 Subjective evaluation

5.2.2.1 Participants

Participant selection and screening was performed identically to that of the sound quality 

study (see section 5.1.2.1). Six participants took part in both studies.

5.2.2.2 Method

The localization task took place in a darkened double-walled sound booth. Subjects were 

seated in the center of the room on a swivel office chair. At the beginning of each trial, 

subjects were oriented towards the front of the room, indicated by a light-emitting diode. 

Subjects initiated each trial by simultaneously pressing two buttons on a hand held 

device. The stimuli were presented over Sennheiser DT990 Pro headphones. Subjects 

were instructed to remain in the forward facing position until the stimulus had ended. At 

this point, they were instructed to turn and face the perceived direction of the sound 

source and register their input by simultaneously pressing two buttons on the hand held 

clicker. The listener’s head direction was measured by a Polhemus FASTRAK system 

with the sensor mounted on top o f the headphones.

The stimuli presented consisted of eight sentences from the TIMIT database convolved 

with the R2 condition and processed with the YM, BMYM, and SS+W methods at angles 

from -90 to +90 degrees. Three second bursts of wideband white noise in the R0 

condition were used to determine anechoic accuracy. All stimuli were originally sampled 

at 16 kHz, and then up-sampled to 48828 Hz to work with the head-tracking system. To 

avoid front-back confusions, subjects were informed that the possible range of positions 

was from -90 to +90 degrees.

Subjects were first trained on the system, completing 45 trials with anechoic white noise 

presented in random order. Next, subjects began the actual localization task consisting of 

288 speech stimuli (8 sentences x 9 angles x 4 conditions) and 45 (9 angles x 5 

repetitions) wideband white noise stimuli. The order of presentation was randomized for 

each subject. Subjects completed the localization task in five sets, each consisting of 60- 

70 trials, and were allowed breaks in between sets to reduce listening fatigue.
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5.2.23 Results

Figure 5-8 plots the average response azimuth against the target azimuths for each 

condition. Table 5-1 includes the standard deviation of each condition at each target 

azimuth. The range of response azimuth is condensed, with the average response azimuth 

being ±70 degrees when the target azimuth was ±90. Since this effect is seen in both the 

anechoic and reverberant conditions, the cause must not be external. A possible cause 

could be that during the instruction, participants were informed of the range of target 

azimuths, and not wanting to respond inaccurately, made conservative estimates when 

evaluating the outer angles. Since the error in azimuth estimation from the target azimuth 

would be greatly biased in the outer angles because of this trend, the error is instead 

computed from a linear fit of the anechoic white noise responses for each subject, seen in 

Figure 5-9.
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A ngle o f  Presentation W hite U nprocessed YM BM YM ss±w
-90 13.48 11.27 12.15 11.23 11.26

-67.5 11.83 11.04 12.62 12.39 11.70

-45 15.04 11.09 14.41 10.43 9.73

-22.5 13.27 10.56 13.85 10.95 11.00

0 8.83 9.61 11.06 9.73 8.90

22.5 7.89 11.12 14.88 11.80 13.69

45 19.18 13.29 14.65 12.26 11.92

67.5 16.52 14.82 15.79 13.53 13.90

90 15.22 15.69 15.39 15.52 15.20

Table 5-1: Standard deviation o f overall response azimuths from all 16 subjects.

Presentation Angle (degrees)

Figure 5-9: Mean azimuth estimation error from white noise linear fit.

The interaction of the algorithm and presentation angle is significant. The YM method 

experiences considerably greater error than the other conditions, and is most pronounced 

at ±22.5 and ±45 degrees. The error appears asymmetric. Stimuli presented from -22.5 

and -45 degrees exhibited greater error than from ±22.5 and ±45 degrees. This result is 

believed to have occurred due to asymmetry in the room setup. This result would seem to 

not agree with the measured A ILD means and variances, which show greatest error at 

±67.5 degrees. However, the error in localization is dependent on many factors other than 

the ILD. It is well known that it becomes more difficult to discriminate between locations
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as azimuth increases [61]. As well, the listener also uses the ITD to aid in azimuth 

localization. To mitigate these effects, the effect of modifying the ILD is isolated by 

looking at the difference between the processed and unprocessed errors. The result is 

shown in Figure 5-10. The error difference at the outer angles is now considerably less 

than the error difference between -45 and +67.5 degrees.

8

Figure 5-10: Difference in error between the processed conditions and the unprocessed condition.

This figure is in contrast with the objective ILD measures, which showed greatest error at 

±67.5 degrees. For the YM method, the listener is experiencing expected ITD cues and 

biased ILD cues at any given angle. Macpherson and Middlebrooks [11] showed that the 

ILD can be biased in opposition of the ITD to shift: a listener’s perception of the location 

and developed dimensionless weights to explain the relative effects of biasing the ILD 

and the ITD. As an example, if the natural ILD is 5 dB and was biased by 10 dB and the 

subject indicated that the location occurred at the natural position, the ILD weight was 

said to be zero. Likewise, if the subject had indicated that the location was at a position 

for which the ILD is 15 dB, the ILD weight was said to be 1. For wideband noise, it was 

shown that the ILD bias weight is approximately 0.5 [11]. In other words, biasing the 

ILD has moderate influence on a listener’s perceived sound source location for a
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wideband sound. The subjective results can be explained in this way. The error is high in 

regions where the ILD has been biased within normal ILD levels. However, Macpherson 

and Middlebrooks [11] did not investigate the effects o f biasing the ILD outside of 

naturally occurring values. It is suspected that when the ILD is raised outside the range of 

natural ILDs, there is no added bias for the subject in the corresponding direction of the 

ILD, and hence a decrease in error with respect to the reverberant case is experienced at 

the higher angles (±67.5, ±90).

Overall, the binaural algorithms have shown to be effective at preserving the localization 

cues. There is no significant difference between the subjective error of the unprocessed 

speech and the BMYM method.

5.3 Summary

In this chapter, a variety of dereverberation algorithms were objectively and subjectively 

evaluated in terms of sound quality and localization accuracy. It was found that the 

BMYM method provides significant increase in the SRMR over the YM method and was 

also preferred in a subjective study. Results also indicate that normal hearing listeners are 

susceptible to processing distortions and that the SRMR is not robust in predicting sound 

quality results when audible processing distortions are present.

The binaural algorithms preserve the ILD to within 0.25 dB, well within the minimum 

audible difference. The YM method exhibited significant increase in both objective 

measures of the ILD and in azimuth estimation accuracy from a subjective study. 

However, the ILD measures do not agree with the subjective error.
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Chapter 6

Conclusion

Recent advancements in wireless technology have created a new class of digital 

hearing aid. These binaural hearing aids communicate and share information over a 

wireless link, opening up possibilities for synchronization of processing for the devices 

on each ear. Classical dereverberation techniques are designed bilaterally and little work 

has been done on investigating how binaural dereverberation may offer improvements in 

speech quality and localization. Objective speech quality measures are an important tool 

for the creation and verification of speech enhancement algorithms. Objective and 

subjective measures are used to evaluate these effects. Objective measures allow for on- 

demand feedback, which can be especially useful for procedures that would otherwise 

require an infeasible number of trials for parameter optimization. Measures for predicting 

the quality of speech in reverberant environments are still relatively new and have not 

undergone extensive testing. As well, few objective measures exist that aim to predict the 

accuracy o f a localization task. This chapter summarizes the work done and provides 

direction for future work.

6.1 Contributions

The main contributions of this thesis are outlined as follows:

• Objective and subjective testing of speech processing algorithms require a wide 

variety of conditions for accurate assessment. Room simulation models suffer 

from large computational time and in some cases do not reproduce realistic
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reverberation conditions. Therefore, a binaural room impulse response database 

consisting of four reverberant conditions and one anechoic condition was 

developed. Each condition is accurately characterized by the RT6 0- Measurements 

were taken at 16 angles, allowing for use in generating stimuli for localization 

tasks or investigating the effects of azimuth on speech perception. Using this 

database, generation of real room sounds complete with head shadowing and 

inter-aural time delays becomes computationally insignificant. The flexibility that 

simulation methods provide can be achieved by combining BRIR databases.

• The YM method, a single-channel dereverberation algorithm was implemented 

and examined. It was demonstrated that when implemented bilaterally, the YM 

method disturbs the ILD cue used in azimuth estimation. Several ways of 

implementing the YM in a binaural sense were investigated. Using a delay-and- 

sum beamformer to generate a single reference channel from which weights are 

calculated proved to be the most effective binaural implementation.

• Investigation of the YM method led to the conclusion that the suggested 

parameters did not function well for a wide variety of conditions. To improve the 

robustness of the YM method, an adaptive weighting parameter was implemented 

based on the moving average of the smoothed entropy function. This parameter is 

shown to improve the effectiveness of the YM method for a much wider range of 

speech stimuli.

• Speech quality was objectively and subjectively evaluated using the SRMR metric 

and a speech quality study. All tested algorithms show significant increase in 

SRMR over the YM method. For a RT60 of less than 0.55 seconds, the BMYM 

method offers greater improvement in the SRMR than the Two-Stage method. 

The subjective study demonstrated that normal hearing listeners are influenced 

highly by processing distortions, ranking the unprocessed condition as the most 

similar to an anechoic sample. The A SRMR was found to have moderate 

correlation (r =  0.46) with the A MUSHRA score.

• Localization performance was objective and subjectively evaluated by calculating 

the mean A ILD and A ILD variance and a localization task. The subjective study 

showed no difference in localization accuracy between the unprocessed and
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binaural conditions, indicating that they effectively preserve the binaural cues 

used in azimuth estimation. The YM demonstrated significantly more error at 

angles around 0 degrees (±22.5° and ±45°). This is thought to be the result of 

conflicting location estimates from the disturbed ILD with those of the 

undisturbed ITD.

6.2 Future work

This thesis accomplished the development of a BRIR database, a binaural dereverberation 

algorithm and the objective and subjective evaluation of sound quality and localization in 

reverberation. The results yield insight into how evaluation of binaural speech 

enhancement systems can be improved in the future. As well, future improvements to the 

BRIR database and BMYM method are discussed.

The BRIR database developed in this thesis added RIRs at higher reverberation times 

(0.9s -  1.3s) to the available pool of impulse responses. However, reverberation cannot 

be completely characterized by the RTgo- Differently shaped and different wall materials 

can change the perceived nature of the reverberation while maintaining a constant RT60. 

It is therefore desirable to extend the NCA database into lower reverberation times 

comparable with the AIR database. This way, differences in the colouration, and its effect 

on sound quality, between two equally reverberant rooms can be analyzed. As well, the 

NCA database can be enhanced through greater angular discrimination.

The BMYM method shows significant improvement over the YM method in terms of 

sound quality and preservation of localization cues by modifying the gross weight 

function. However, the idea of having a gross/fine weight function can be extended easily 

using the variable mapping parameter. By increasing/decreasing the length of the moving 

average of the entropy function, multiple weighting functions can be implemented to 

form a composite function for overall improved performance. As well, the Two-Stage 

method demonstrates the effectiveness of using dereverberation blocks to target early and 

late reverberation. This idea also follows the natural extension of including additional 

blocks to target specific characteristics of the offending reverberation. Composite
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methods will likely prove popular and more effective at robust dereverberation in the 

near future.

Since the BMYM method is blind, it is theoretically possible to implement into a portable 

system. However, the binaural nature o f the BMYM method may be hindered by 

bandwidth limitations on portable devices. Further work is necessary to determine these 

limitations and how the binaural transfer can be implemented efficiently.

Sound quality was investigated for normal hearing listeners who were found to be largely 

influenced by processing distortions. A contributing factor to this is that normal hearing 

listeners likely do not have difficulty hearing in most reverberant conditions. However, 

hearing impaired subjects may be more robust to processing distortions in exchange for 

the improved intelligibility dereverberation should offer. Thus, this study could be 

extended to include hearing-impaired subjects and evaluate the differences between their 

scores and those of normal hearing listeners. As well, an extension to this study with 

speech processed in different reverberant conditions could provide insight as to the 

relationship between the SRMR and subjective scores based on processing distortions.

The localization task demonstrated that the ILD measures used are not good indicators of 

azimuth estimation for bilateral dereverberation. However, it may be possible to develop 

a more accurate measure using the change in ILD and ITD and the biasing weights 

reported in [11].
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Appendix A: Reverberation and Anechoic
Chamber Setup

Figure A -1: The HATS positioned on a stool in the centre o f the reverberation chamber, surrounded by the
speaker array.
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Figure A-2: The HATS in the anechoic chamber, shown with digital hearing aids.
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General Linear Model

Within-Subjects Factors
M easure:M EA SU R E 1
gender alg Dependent

Variable
1 1 rrw everb

2 m jD ilatLP
3 m _binaurLP
4 m__SS
5 m S S W

2 1 f_reverb
2 L b ila tL P
3 f_binaurLP
4 f_ S S

5 f S S W

Multivariate Testsb
Effect Value F Hypothesis d f s Error df Sig.
gender Pillai's Trace .153 2.708a 1.000 15.000 .121

Wilks' Lam bda .847 2.708a 1.000 15.000 .121
Hotelling's Trace .181 2.708a 1.000 15.000 .121
Roy's Largest Root .181 2.708a 1.000 15.000 .121

alg Pillai's Trace .914 31.835® 4.000 12.000 .000
Wilks' Lam bda .086 31.835a 4.000 12.000 .000
Hotelling's Trace 10.612 31.835a 4.000 12.000 .000
Roy's Largest Root 10.612 31.835a 4.000 12.000 .000

gender * alg Pillai's Trace .470 2.658a 4.000 12.000 .085
Wilks' Lam bda .530 2.658a 4.000 12.000 .085
Hotelling's Trace .886 2.658a 4.000 12.000 .085
Roy's Largest Root .886 2.658a 4.000 12.000 .085

a. Exact statistic
b. Design: Intercept
Within Subjects Design: gender + alg + gender * alg

Mauchly's Test of Sphericityb
M easure:M EA SU R E 1
Within Subjects Effect

Mauchly's W
Approx. Chi- 
Square df Sig.

gender 1.000 .000 0
alg .095 31.648 9 .000
gender * alg .255 18.342 9 .033



T e sts  the null hypothesis that the error covariance matrix of the orthonormalized 
transformed dependent variables is proportional to an identity matrix.

b. Design: Intercept
Within Subjects Design: gender + alg + gender * alg

Mauchly's Test of Sphericity0
M easure:M EA SU R E 1
Within Subjects Effect Epsilon3

Greenhouse-
G eisser Huynh-Feldt Lower-bound

gender 1.000 1.000 1.000
alg .499 .575 .250
gender * alg .577 .687 .250

Te sts the null hypothesis that the error covariance matrix of the 
orthonormalized transformed dependent variables is proportional to an 
identity matrix.
a. May be used to adjust the degrees of freedom for the averaged tests of 
significance. Corrected tests are displayed in the Tests of W ithin-Subjects 
Effects table.
b. Design: Intercept
Within Subjects Design: gender + alg + gender * alg

Tests of Within-Subjects Effects
M e asure:M EA SU R E 1
Source Type III Sum  of 

Squares df Mean Square
gender Sphericity Assum ed 81.796 1 81.796

G reenhouse-G eisser 81.796 1.000 81.796
Huynh-Feldt 81.796 1.000 81.796
Lower-bound 81.796 1.000 81.796

Error(gender) Sphericity Assum ed 453.135 15 30.209
G reenhouse-G eisser 453.135 15.000 30.209
Huynh-Feldt 453.135 15.000 30.209
Lower-bound 453.135 15.000 30.209

alg Sphericity Assum ed 25418.357 4 6354.589
G reenhouse-G eisser 25418.357 1.995 12739.428
Huynh-Feldt 25418.357 2.301 11046.624
Lower-bound 25418.357 1.000 25418.357

Error(alg) Sphericity Assum ed 14170.354 60 236.173
G reenhouse-G eisser 14170.354 29.929 473.469
Huynh-Feldt 14170.354 34.515 410.555
Lower-bound 14170.354 15.000 944.690

gender * alg Sphericity A ssum ed 144.131 4 36.033
G reenhouse-G eisser 144.131 2.306 62.492
Huynh-Feldt 144.131 2.750 52.419
Lower-bound 144.131 1.000 144.131

Error(gender*alg) Sphericity Assum ed 1058.506 60 17.642
G reenhouse-G eisser 1058.506 34.596 30.596
Huynh-Feldt 1058.506 41.244 25.665
Lower-bound 1058.506 15.000 70.567

Tests of Within-Subjects Effects
M easure:M EA SU R E 1___________

1 Source E
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gender Sphericity Assum ed 2.708 .121
G reenhouse-G eisser 2.708 .121
Huynh-Feldt 2.708 .121
Lower-bound 2.708 .121

alg Sphericity Assum ed 26.907 .000
G reenhouse-G eisser 26.907 .000
Huynh-Feldt 26.907 .000
Lower-bound 26.907 .000

gender* alg Sphericity Assum ed 2.042 .100
G reenhouse-G eisser 2.042 .139
Huynh-Feldt 2.042 .127
Lower-bound 2.042 .173

Tests of Within-Subjects Contrasts
M easure:M EA SU R E 1
Source alg Type III Sum  of 

Squares df
Mean
Square

gender Level 2 vs. Level 1 32.718 1 32.718

Error(gender) Level 2 vs. Level 1 181.254 15 12.084

alg Level 2 vs. Level 1 19701.631 1 19701.631

Level 3 vs. Level 1 9312.250 1 9312.250

Level 4 vs. Level 1 1557.782 1 1557.782

Level 5 vs. Level 1 11718.063 1 11718.063

Error(alg) Level 2 vs. Level 1 4486.977 15 299.132

Level 3 vs. Level 1 3759.719 15 250.648

Level 4 vs. Level 1 5864.452 15 390.963

Level 5 vs. Level 1 8561.094 15 570.740

gender * alg Level 2 vs. Level 1 Level 2 vs. Level 1 44.223 1 44.223

Level 3 vs. Level 1 121.000 1 121.000

Level 4 vs. Level 1 114.223 1 114.223

Level 5 vs. Level 1 11.391 1 11.391

Error(gender*alg) Level 2 vs. Level 1 Level 2 vs. Level 1 286.012 15 19.067

Level 3 vs. Level 1 479.125 15 31.942

Level 4 vs. Level 1 615.715 15 41.048

Level 5 vs. Level 1 1919.734 15 127.982

Tests of Within-Subjects Contrasts
M easure:M EA SU R E 1
Source alg F Sig.
gender Level 2 vs. Level 1 2.708 .121

alg Level 2 vs. Level 1 65.863 .000

Level 3 vs. Level 1 37.153 .000

Level 4 vs. Level 1 3.984 .064

Level 5 vs. Level 1 20.531 .000

gender * alg Level 2 vs. Level 1 Level 2 vs. Level 1 2.319 .149

Level 3 vs. Level 1 3.788 .071



Level 4 vs. Level 1 I 2.783 .116

Level 5 vs. Level 1 | .089 .770

Tests of Between-Subjects Effects
M easure:M EASU RE_1  
Transform ed Variable:Average
Source Type III Sum  of 

Squares df Mean Square F Sig.
Intercept 54956.253 1 54956.253 1217.790 .000
Error 676.918 15 45.128
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Appendix C: Adjusted Azimuth Estimation 
Error Statistical Report

General Linear Model

Multivariate Tests6
Effect Value F Hypothesis df Error df Sig.
angle Pillai's Trace .792 3.817a 8.000 8.000 .038

Wilks' Lam bda .208 3.81 T 8.000 8.000 .038
Hotelling's Trace 3.817 3.817a 8.000 8.000 .038
Roy's Largest Root 3.817 3.81 T 8.000 8.000 .038

alg Pillai's Trace .849 24.385a 3.000 13.000 .000
Wilks' Lam bda .151 24.385a 3.000 13.000 .000
Hotelling's Trace 5.627 24.385a 3.000 13.000 .000
Roy's Largest Root 5.627 24.385a 3.000 13.000 .000

angle * alg Pillai's Trace D

Wilks' Lam bda D

Hotelling's Trace D

Roy's Largest Root 0

a. Exact statistic
b. Cannot produce multivariate test statistics because of insufficient residual degrees of freedom.
c. Design: Intercept
Within Subjects Design: angle + alg + angle * alg

Mauchly’s Test of Sphericity*
M e asure:M EA SU R E 1
Within Subjects Effect

Mauchly's W
Approx. Chi- 

Square df Sig.
angle .011 54.377 35 .027

-  alg .706 4.777 5 .445
angle * alg .000 299

Te sts the null hypothesis that the error covariance matrix of the orthonormalized 
transformed dependent variables is proportional to an identity matrix.

b. Design: Intercept
Within Subjects Design: angle + alg + angle * alg

Mauchly's Test of Sphericity*
M easure:M EA SU R E 1
Within Subjects Effect Epsilon3

Greenhouse-
G eisser Huynh-Feldt Lower-bound

angle .557 .821 .125
-  alg .822 .996 .333

angle * alg .281 .534 .042
Te sts the null hypothesis that the error covariance matrix of the 
orthonormalized transformed dependent variables is proportional to an 
identity matrix.
a. May be used to adjust the degrees of freedom for the averaged tests of 
significance. Corrected tests are displayed in the T e sts  of W ithin-Subjects 
Effects table.



Mauchly's Test of Sphericity0
Measure:MEASURE 1
Within Subjects Effect Epsilon3

Greenhouse-
G eisser Huynh-Feldt Lower-bound

angle .557 .821 .125
-  alg .822 .996 .333

angle * alg .281 .534 .042
T e sts  the null hypothesis that the error covariance matrix of the 
orthonormalized transformed dependent variables is proportional to an 
identity matrix.
a. May be used to adjust the degrees of freedom for the averaged tests of 
significance. Corrected tests are displayed in the Tests of W ithin-Subjects 
Effects table.
b. Design: Intercept
Within Subjects Design: angle + alg + angle * alg

Tests of Within-Subjects Effects
M e asure:M EA SU R E 1
Source Type III Sum  of Mean

Sgu are s df Square
angle Sphericity Assum ed 1477.808 8 184.72

6
G reenhouse-Geisser 1477.808 4.454 331.79

n

Huynh-Feldt 1477.808 6.568 225.00
*

Lower-bound 1477.808 1.000 1477.8
08

Error(angle) Sphericity Assum ed 8686.468 120 72.387
G reenhouse-Geisser 8686.468 66.811 130.01

e

Huynh-Feldt 8686.468 98.518
o

88.171
Lower-bound 8686.468 15.000 579.09

8
alg Sphericity Assum ed 1529.339 3 509.78

n

G reenhouse-G eisser 1529.339 2.467 620.03
9

Huynh-Feldt 1529.339 2.989 511.62
A

Lower-bound 1529.339 1.000 1529.3
39

Error(alg) Sphericity Assum ed 545.055 45 12.112
G reenhouse-G eisser 545.055 36.998 14.732
Huynh-Feldt 545.055 44.838 12.156
Lower-bound 545.055 15.000 36.337

angle * alg Sphericity Assum ed 919.039 24 38.293
G reenhouse-G eisser 919.039 6.741 136.34

1
71.710Huynh-Feldt 919.039 12.816

Lower-bound 919.039 1.000 919.03
9

Error(angle*alg) Sphericity Assum ed 3329.516 360 9.249
G reenhouse-G eisser 3329.516 101.111 32.929
Huynh-Feldt 3329.516 192.242 17.319



Tests of Within-Subjects Effects
Measure.MEASURE 1
Source Type III Sum  of Mean

Squares df Square
angle Sphericity Assum ed 1477.808 8 184.72

ft
G reenhouse-G eisser 1477.808 4.454 331.79

n

Huynh-Feldt 1477.808 6.568
u

225.00

Lower-bound 1477.808 1.000 1477.8
08

Error(angle) Sphericity Assum ed 8686.468 120 72.387
G reenhouse-G eisser 8686.468 66.811 130.01

6
88.171Huynh-Feldt 8686.468 98.518

Lower-bound 8686.468 15.000 579.09
8

alg Sphericity Assum ed 1529.339 3 509.78
r\

G reenhouse-Geisser 1529.339 2.467
u

620.03

Huynh-Feldt 1529.339 2.989 511.62
A

Lower-bound 1529.339 1.000
*r

1529.3
39

Error(alg) Sphericity Assum ed 545.055 45 12.112
G reenhouse-Geisser 545.055 36.998 14.732
Huynh-Feldt 545.055 44.838 12.156
Lower-bound 545.055 15.000 36.337

angle * alg Sphericity Assum ed 919.039 24 38.293
G reenhouse-Geisser 919.039 6.741 136.34

1
71.710Huynh-Feldt 919.039 12.816

Lower-bound 919.039 1.000 919.03
9

Error(angle*alg) Sphericity Assum ed 3329.516 360 9.249
G reenhouse-G eisser 3329.516 101.111 32.929
Huynh-Feldt 3329.516 192.242 17.319
Lower-bound 3329.516 15.000 221.96

8

Tests of Within-Subjects Effects
M easure.M EA SU R E 1
Source F Sig.
angle Sphericity Assum ed 2.552 .013

G reenhouse-G eisser 2.552 .041
Huynh-Feldt 2.552 .021
Lower-bound 2.552 .131

alg Sphericity Assum ed 42.088 .000
G reenhouse-G eisser 42.088 .000
Huynh-Feldt 42.088 .000
Lower-bound 42.088 .000

angle * alg Sphericity Assum ed 4.140 .000
G reenhouse-G eisser 4.140 .001
Huynh-Feldt 4.140 .000
Lower-bound 4.140 .060
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Tests of Within-Subjects Contrasts
Measure:MEASURE 1
Source alg Type III Sum  of

Squares df Mean Square F Sig.
angle Linear 13.144 1 13.144 .882 .362

Quadratic 8.590 1 8.590 .353 .561

Cubic 6.731 1 6.731 .187 .672

Order 4 46.845 1 46.845 1.549 .232

Order 5 70.796 1 70.796 5.837 .029

Order 6 142.486 1 142.486 11.378 .004

Order 7 .377 1 .377 .062 .807

Order 8 80.484 1 80.484 9.516 .008

Error(angle) Linear 223.490 15 14.899

Quadratic 365.203 15 24.347

Cubic 541.359 15 36.091

Order 4 453.519 15 30.235

Order 5 181.941 15 12.129

Order 6 187.838 15 12.523

Order 7 91.400 15 6.093

Order 8 126.867 15 8.458

alg Level 1 vs. 
Level 4

104.968 1 104.968 4.664 .047

Level 2 vs. 
Level 4

2602.268 1 2602.268 76.174 .000

Level 3 vs. 
Level 4

111.458 1 111.458 7.314 .016

Error(alg) Level t vs. 
Level 4

337.606 15 22.507

Level 2 vs. 
Level 4

512.435 15 34.162

Level 3 vs. 
Level 4

228.575 15 15.238

angle * alg Linear Level 1 vs. 
Level 4

8.754 1 8.754 .447 .514

Level 2 vs. 
Level 4

55.290 1 55.290 1.713 .210

Level 3 vs. 
Level 4

11.007 1 11.007 .741 .403

Quadratic Level 1 vs. 
Level 4

83.391 1 83.391 6.412 .023

Level 2 vs. 
Level 4

777.442 1 777.442 27.935 .000

Level 3 vs. 
Level 4

24.154 1 24.154 1.220 .287

Cubic Level 1 vs. 
Level 4

29.091 1 29.091 1.594 .226

Level 2 vs. 
Level 4

127.336 1 127.336 4.237 .057

Level 3 vs. 
Level 4

3.699 1 3.699 .295 .595
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Order 4 Level 1 vs. 
Level 4

4.912 1 4.912 .331 .574

Level 2 vs. 
Level 4

.308 1 .308 .007 .935

Level 3 vs. 
Level 4

16.244 1 16.244 1.877 .191

Order 5 Level 1 vs. 
Level 4

15.810 1 15.810 1.066 .318

Level 2 vs. 
Level 4

131.100 1 131.100 9.931 .007

Level 3 vs. 
Level 4

.093 1 .093 .006 .939

Order 6 Level 1 vs. 
Level 4

88.502 1 88.502 6.553 .022

Level 2 vs. 
Level 4

358.362 1 358.362 27.491 .000

Level 3 vs. 
Level 4

16.871 1 16.871 3.438 .083

Order 7 Level 1 vs. 
Level 4

1.894 1 1.894 .120 .734

Level 2 vs. 
Level 4

28.845 1 28.845 1.140 .303

Level 3 vs. 
Level 4

3.076 1 3.076 .148 .706

Order 8 Level 1 vs. 
Level 4

56.590 1 56.590 2.459 .138

Level 2 vs. 
Level 4

.212 1 .212 .008 .929

Level 3 vs. 
Level 4

7.750 1 7.750 .306 .588

Error(angle*alg) Linear Level 1 vs. 
Level 4

293.602 15 19.573

Level 2 vs. 
Level 4

484.077 15 32.272

Level 3 vs. 
Level 4

222.907 15 14.860

Quadratic Level 1 vs. 
Level 4

195.092 15 13.006

Level 2 vs. 
Level 4

417.451 15 27.830

Level 3 vs. 
Level 4

296.968 15 19.798

Cubic Level 1 vs. 
Level 4

273.776 15 18.252

Level 2 vs. 
Level 4

450.782 15 30.052

Level 3 vs. 
Level 4

188.218 15 12.548

Order 4 Level 1 vs. 
Level 4

222.852 15 14.857

Level 2 vs. 
Level 4

674.024 15 44.935

Level 3 vs. 
Level 4

129.832 15 8.655

Order 5 Level 1 vs. 
Level 4

222.487 15 14.832

Level 2 vs. 
Level 4

198.012 15 13.201
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Level 3 vs. 
Level 4

232.163 15 15.478

Order 6 Level 1 vs. 
Level 4

202.576 15 13.505

Level 2 vs. 
Level 4

195.537 15 13.036

Level 3 vs. 
Level 4

73.615 15 4.908

Order 7 Level 1 vs. 
Level 4

236.715 15 15.781

Level 2 vs. 
Level 4

379.545 15 25.303

Level 3 vs. 
Level 4

312.107 15 20.807

Order 8 Level 1 vs. 
Level 4

345.132 15 23.009

Level 2 vs. 
Level 4

387.873 15 25.858

Level 3 vs. 
Level 4

379.483 15 25.299

T e s ts  of B e tw e e n -Su b je cts  E ffe cts
M easure:M EASU RE_1  
Transform ed Variable:Average
Source Type III Sum  of 

Squares df Mean Square F Sig.
Intercept 20161.417 1 20161.417 248.248 .000
Error 1218.223 15 81.215
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Appendix D: Objective Localization Results

Figure D - l: Mean o f AILD in AIR Stairwell a) 1, b) 2, and c) 3 and variance o f AILD in AIR Stairwell d)
l , e ) 2 , f ) 3 .
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c) g )
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d) h)
Figure D-2: Mean o f AILD in NCA a) RI, b) R2, c) R3, and d) R4 and variance o f AILD in NCA e) R l, f)

R2, g) R3, and h) R4.

\
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