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Abstract

New Approaches for Speech Enhancement in the Short-Time Fourier Transform

Domain

Mahdi Parchami, Ph.D.

Concordia University, 2016

Speech enhancement aims at the improvement of speech quality by using various algorithms. A

speech enhancement technique can be implemented as either a time domain or a transform domain

method. In the transform domain speech enhancement, the spectrum of clean speech signal is

estimated through the modification of noisy speech spectrum and then it is used to obtain the

enhanced speech signal in the time domain. Among the existing transform domain methods in the

literature, the short-time Fourier transform (STFT) processing has particularly served as the basis

to implement most of the frequency domain methods. In general, speech enhancement methods

in the STFT domain can be categorized into the estimators of complex discrete Fourier transform

(DFT) coefficients and the estimators of real-valued short-time spectral amplitude (STSA). Due

to the computational efficiency of the STSA estimation method and also its superior performance

in most cases, as compared to the estimators of complex DFT coefficients, we focus mostly on

the estimation of speech STSA throughout this work and aim at developing algorithms for noise

reduction and reverberation suppression.

First, we tackle the problem of additive noise reduction using the single-channel Bayesian

STSA estimation method. In this respect, we present new schemes for the selection of Bayesian

cost function parameters for a parametric STSA estimator, namely the Wβ-SA estimator, based

on an initial estimate of the speech and also the properties of human auditory system. We further

use the latter information to design an efficient flooring scheme for the gain function of the STSA

estimator. Next, we apply the generalized Gaussian distribution (GGD) to the Wβ-SA estimator as

the speech STSA prior and propose to choose its parameters according to noise spectral variance

and a priori signal to noise ratio (SNR). The suggested STSA estimation schemes are able to

provide further noise reduction as well as less speech distortion, as compared to the previous
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methods. Quality and noise reduction performance evaluations indicated the superiority of the

proposed speech STSA estimation with respect to the previous estimators.

Regarding the multi-channel counterpart of the STSA estimation method, first we generalize

the proposed single-channel Wβ-SA estimator to the multi-channel case for spatially uncorrelated

noise. It is shown that under the Bayesian framework, a straightforward extension from the

single-channel to the multi-channel case can be performed by generalizing the STSA estimator

parameters, i.e. α and β. Next, we develop Bayesian STSA estimators by taking advantage

of speech spectral phase rather than only relying on the spectral amplitude of observations, in

contrast to conventional methods. This contribution is presented for the multi-channel scenario

with single-channel as a special case. Next, we aim at developing multi-channel STSA estimation

under spatially correlated noise and derive a generic structure for the extension of a single-channel

estimator to its multi-channel counterpart. It is shown that the derived multi-channel extension

requires a proper estimate of the spatial correlation matrix of noise. Subsequently, we focus on

the estimation of noise correlation matrix, that is not only important in the multi-channel STSA

estimation scheme but also highly useful in different beamforming methods.

Next, we aim at speech reverberation suppression in the STFT domain using the weighted pre-

diction error (WPE) method. The original WPE method requires an estimate of the desired speech

spectral variance along with reverberation prediction weights, leading to a sub-optimal strategy

that alternatively estimates each of these two quantities. Also, similar to most other STFT based

speech enhancement methods, the desired speech coefficients are assumed to be temporally inde-

pendent, while this assumption is inaccurate. Taking these into account, first, we employ a suitable

estimator for the speech spectral variance and integrate it into the estimation of the reverberation

prediction weights. In addition to the performance advantage with respect to the previous versions

of the WPE method, the presented approach provides a good reduction in implementation com-

plexity. Next, we take into account the temporal correlation present in the STFT of the desired

speech, namely the inter-frame correlation (IFC), and consider an approximate model where only

the frames within each segment of speech are considered as correlated. Furthermore, an efficient

method for the estimation of the underlying IFC matrix is developed based on the extension of

the speech variance estimator proposed previously. The performance results reveal lower residual

reverberation and higher overall quality provided by the proposed method.

Finally, we focus on the problem of late reverberation suppression using the classic speech
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spectral enhancement method originally developed for additive noise reduction. As our main con-

tribution, we propose a novel late reverberant spectral variance (LRSV) estimator which replaces

the noise spectral variance in order to modify the gain function for reverberation suppression. The

suggested approach employs a modified version of the WPE method in a model based smoothing

scheme used for the estimation of the LRSV. According to the experiments, the proposed LRSV

estimator outperforms the previous major methods considerably and scores the closest results to

the theoretically true LRSV estimator. Particularly, in case of changing room impulse responses

(RIRs) where other methods cannot follow the true LRSV estimator accurately, the suggested

estimator is able to track true LRSV values and results in a smaller tracking error. We also target

a few other aspects of the spectral enhancement method for reverberation suppression, which were

explored before only for the purpose of noise reduction. These contributions include the estimation

of signal to reverberant ratio (SRR) and the development of new schemes for the speech presence

probability (SPP) and spectral gain flooring in the context of late reverberation suppression.

v



I dedicate this work to my loving parents.

vi



Acknowledgments

First and foremost, I would like to express my sincerest gratitude and appreciation to my super-

visor, Prof. Wei-Ping Zhu, for providing me with the opportunity to work in the area of speech

enhancement, for his invaluable guidance and mentorship, and for his encouragement and support

throughout all levels of my research. I am also grateful to him for including me in the NSERC

CRD research project sponsored by Microsemi of Ottawa.

I would like to give special thanks to Prof. Benoit Champagne, McGill University, Canada

for his consistent support, valuable comments and suggestions for my publications and the CRD

project research. His advices and critiques have indeed helped me to develop and improve my

ideas through this thesis as well as the publications we completed together, and ultimately, led to

timely accomplishment of this work.

I would also like to give special thanks to the Microsemi technical staff for all their inputs and

feedbacks on my research during the regular project progress meetings.

I am also grateful to my research teammates, Mr. Sujan Kumar Roy, Mr. Xinrui Pu, and all

the signal processing laboratory members for their assistance, friendship, and cooperation. Their

smile and support motivated me during this research and gave me the taste of a family in Canada.

I am very grateful to Concordia University and NSERC, Canada for providing me with financial

support through my supervisors’ research grants. Without such a support, this thesis would not

have been possible.

Finally, I would like to express my love and appreciation to my parents and thank them for

their consistent encouragement and care during my doctoral study in Canada.

vii



Contents

List of Figures xiii

List of Tables xix

List of Abbreviations xxi

1 Introduction 1

1.1 Speech Enhancement and Its Applications . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Speech Enhancement in the Frequency Domain . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Importance of the Frequency Domain Technique . . . . . . . . . . . . . . . . 3

1.2.2 Application of Short-Time Fourier Transform (STFT) . . . . . . . . . . . . . 3

1.3 Overview of Noise Reduction in the STFT Domain . . . . . . . . . . . . . . . . . . 4

1.3.1 Classification of STFT-Based Techniques . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Advantage of Spectral Amplitude Estimators over Estimators of Complex

DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Estimation of Spectral Amplitude versus Spectral Phase . . . . . . . . . . . 7

1.3.4 Bayesian (MMSE-Based) Speech Spectral Amplitude Estimation . . . . . . . 8

1.3.4.1 Development of Cost Functions . . . . . . . . . . . . . . . . . . . . 8

1.3.4.2 Speech Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4.3 Multi-Channel Extension . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Overview of Reverberation Reduction Techniques . . . . . . . . . . . . . . . . . . . 11

1.4.1 Speech Reverberation in Acoustic Environments . . . . . . . . . . . . . . . . 11

1.4.2 Classification of Reverberation Reduction Techniques . . . . . . . . . . . . . 12

1.4.3 Blind Dereverberation in the STFT Domain . . . . . . . . . . . . . . . . . . 13

1.5 Motivation and Objectives of the Research . . . . . . . . . . . . . . . . . . . . . . . 14

viii



1.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Organization and Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Background: Speech Enhancement in the STFT Domain 19

2.1 Estimation of Speech STSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Spectral Subtractive Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Wiener Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Maximum Likelihood (ML) Estimators . . . . . . . . . . . . . . . . . . . . . 24

2.1.5 Maximum a Posteriori (MAP) Estimators . . . . . . . . . . . . . . . . . . . 25

2.1.6 MMSE-Based (Bayesian) Estimators . . . . . . . . . . . . . . . . . . . . . . 26

2.1.6.1 Ephraim and Malah’s MMSE and Log-MMSE Estimators . . . . . 27

2.1.6.2 Perceptually Motivated Bayesian Estimators . . . . . . . . . . . . . 29

2.1.7 Use of Speech Presence Probability (SPP) . . . . . . . . . . . . . . . . . . . 32

2.2 Speech STSA Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Multi-Channel STSA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Multi-Channel Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.2 Multi-channel Extension of the Bayesian STSA Estimation . . . . . . . . . . 41

2.4 Reverberation Suppression in the STFT Domain . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Reverberation in Enclosed Spaces . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Shortcomings of the State-of-the-Art STSA Estimation Methods . . . . . . . . . . . 47

3 Single-Channel Noise Reduction Using Bayesian STSA Estimation 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Proposed Speech STSA Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Brief Description of the Proposed Method . . . . . . . . . . . . . . . . . . . 53

3.3.2 Parameter Selection of the New Wβ-SA Estimator . . . . . . . . . . . . . . 53

3.3.3 Gain Flooring Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Extension of Wβ-SA Estimator Using GGD Prior . . . . . . . . . . . . . . . . . . . 58

ix



3.4.1 Wβ-SA Estimator with GGD Prior . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Estimation of GGD Prior Parameters . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Performance Measures for Noise Reduction . . . . . . . . . . . . . . . . . . . 61

3.5.2 Evaluation of the Proposed Method . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Multi-Channel Bayesian STSA Estimation for Noise Suppression 80

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Brief Description of the Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Multi-Channel STSA Estimation in Spatially Uncorrelated Noise . . . . . . . . . . . 82

4.3.1 Extension of the Proposed Wβ-SA Estimator to Multi-Channel . . . . . . . 83

4.3.2 STSA Estimators Using Spectral Phase . . . . . . . . . . . . . . . . . . . . . 86

4.3.2.1 MMSE-Based STSA Estimator Using Spectral Phase . . . . . . . . 86

4.3.2.2 Extension to the Wβ-SA Estimator . . . . . . . . . . . . . . . . . . 88

4.3.2.3 Estimation of the Spectral Phase . . . . . . . . . . . . . . . . . . . 89

4.3.3 Performance Evaluation in Spatially Uncorrelated Noise . . . . . . . . . . . . 90

4.4 Multi-Channel STSA Estimation in Spatially Correlated Noise . . . . . . . . . . . . 96

4.4.1 Extension of STSA Estimation to the Multi-Channel Case Under Known

DOA and Noise PSD Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.2 Estimation of Noise PSD Matrix . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.2.1 Incorporation of Subsequent Speech Frames . . . . . . . . . . . . . 100

4.4.2.2 Iterative Method for the Selection of the Forgetting Factor . . . . . 101

4.4.2.3 Minimum Tracking and Bias Compensation . . . . . . . . . . . . . 103

4.4.3 Performance Evaluation in Spatially Correlated Noise . . . . . . . . . . . . . 104

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Speech Dereverberation Using the Weighted Prediction Error Method 114

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Brief Description of the Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Review on the WPE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 WPE Method with the Estimation of Early Speech Variance . . . . . . . . . . . . . 119

x



5.5 WPE Method Using the Inter-Frame Correlations . . . . . . . . . . . . . . . . . . . 122

5.5.1 Proposed ML Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5.2 Estimation of the IFC Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6.2 Evaluation of the Proposed Method in Section 5.4 . . . . . . . . . . . . . . . 130

5.6.3 Evaluation of the Proposed Method in Section 5.5 . . . . . . . . . . . . . . . 132

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Speech Dereverberation Using the Spectral Enhancement Method 138

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Brief Description of the Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 Background: Late Reverberation Suppression Using Spectral Enhancement . . . . . 141

6.4 Proposed LRSV Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4.1 Suggested Scheme for the Shape Parameter . . . . . . . . . . . . . . . . . . 144

6.4.2 Estimation of the Reverberant Component . . . . . . . . . . . . . . . . . . . 147

6.4.3 Incremental Implementation of the WPE Method . . . . . . . . . . . . . . . 148

6.5 Other Developments on Classic Spectral Enhancement Methods . . . . . . . . . . . 150

6.5.1 Estimation of SRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5.2 Application of SPP to Gain function . . . . . . . . . . . . . . . . . . . . . . 153

6.5.3 Spectral Gain Flooring for Dereverberation . . . . . . . . . . . . . . . . . . . 154

6.5.4 Beamforming for Late Reverberation Suppression . . . . . . . . . . . . . . . 155

6.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.6.1 Evaluation of the Proposed LRSV Estimator . . . . . . . . . . . . . . . . . . 157

6.6.1.1 Performance in Time-Invariant RIRs . . . . . . . . . . . . . . . . . 158

6.6.1.2 Performance in Time-Varying RIRs . . . . . . . . . . . . . . . . . . 165

6.6.2 Evaluation of the Proposed Schemes in Section 6.5 . . . . . . . . . . . . . . 170

6.6.3 Joint Noise Reduction and Dereverberation . . . . . . . . . . . . . . . . . . . 173

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7 Conclusions and Future Work 179

7.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

xi



7.2 Scope for the Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

References 185

Appendix A Derivation of Eq. (3.15) 200

Appendix B Proof of Equation (4.23) 202

xii



List of Figures

1.1 Block diagram of the analysis-synthesis technique using STFT. . . . . . . . . . . . . 4

1.2 Speech spectral estimation methods in the STFT domain. . . . . . . . . . . . . . . 6

1.3 Illustration of a speech source (user), noise sources and their reflections captured by

a microphone set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Block diagram of the basic spectral subtraction algorithm. . . . . . . . . . . . . . . 22

2.2 One-sided GGD function for different values of the scale parameters and b = 2. . . . 36

2.3 An N equispaced linear microphone array capturing the speech source s(t) located

in the far field impinging at the incident angle θ. . . . . . . . . . . . . . . . . . . . . 41

2.4 Illustration of the direct path and a single reflection from the speech source to the

microphone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Modeling of the observed microphone signal(s) in a reverberant environment. . . . . 45

2.6 Plot of a typical acoustic impulse response with illustrated early and late parts of

the RIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 STSA gain function curves in (3.4) versus β for different values of α ( ζ=0 dB and

γ=0 dB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Block diagram of the proposed speech STSA estimation algorithm. . . . . . . . . . . 54

3.3 Variation of the proposed choice of α versus frequency bins, compared to that of

the initial speech STSA estimate for a frame of noisy speech. . . . . . . . . . . . . . 55

3.4 Gain function of the modified Wβ-SA estimator in (3.17) versus the GGD shape

parameter c for different values of γ (ζ=-5dB). . . . . . . . . . . . . . . . . . . . . 60

3.5 Spectrograms of (a): input noisy speech, (b): clean speech, (c): enhanced speech by

the original Wβ-SA estimator and (d): enhanced speech by the proposed Wβ-SA

estimator, in case of babble noise (Input SNR=5 dB). . . . . . . . . . . . . . . . . . 67

xiii



3.6 LLR versus global SNR for different Wβ-SA estimators, (a): white noise, (b): babble

noise and (c): car noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 PESQ versus global SNR for different Wβ-SA estimators, (a): white noise, (b):

babble noise and (c): car noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8 SNRseg versus global SNR for different Wβ-SA estimators, (a): white noise, (b):

babble noise and (c): car noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.9 PESQ versus global SNR for Wβ-SA estimator with the proposed parameters in

Section 3.3 using different gain flooring schemes, (a): white noise, (b): babble noise

and (c): car noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.10 PESQ versus global SNR for the Rayleigh-based estimator in Section 3.3, the GGD-

based estimator in Section 3.4 with c = 1.5, 2.5 and the proposed choice of c in

Section 3.4, (a): white noise, (b): babble noise and (c): car noise. . . . . . . . . . . 72

3.11 Spectrograms of (a): input noisy speech, (b): clean speech, (c): enhanced speech by

WE estimator with Chi prior in [34], (d): enhanced speech by WCOSH estimator

with Chi prior in [34], (e): enhanced speech by Log-MMSE estimator with GGD

prior in [85] and (f): enhanced speech by the proposed Wβ-SA estimator with GGD

prior in Section 3.4, in case of babble noise (Input SNR=5 dB). . . . . . . . . . . . 73

3.12 LLR versus global SNR for the STSA estimators in [34, 85] and the proposed STSA

estimator in Section 3.4, (a): white noise, (b): babble noise and (c): car noise. . . . 74

3.13 PESQ versus global SNR for the STSA estimators in [34, 85] and the proposed

STSA estimator in Section 3.4, (a): white noise, (b): babble noise and (c): car noise. 75

3.14 SNRseg versus global SNR for the STSA estimators in [34, 85] and the proposed

STSA estimator in Section 3.4, (a): white noise, (b): babble noise and (c): car noise. 76

4.1 Scenario of capturing a far field source of speech in spatially uncorrelated noise by

a linear microphone array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 LLR versus input global SNR for the multi-channel STSA estimators with N = 2

microphones in spatially uncorrelated noise, (a): white noise, (b): babble noise and

(c): car noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 PESQ versus input global SNR for the multi-channel STSA estimators with N = 2

microphones in spatially uncorrelated noise, (a): white noise, (b): babble noise and

(c): car noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiv



4.4 SNRSeg versus input global SNR for the multi-channel STSA estimators with N = 2

microphones in spatially uncorrelated noise, (a): white noise, (b): babble noise and

(c): car noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Performance scores of the proposed GGD-based Wβ-SA estimator in (4.10) for

different microphone numbers in babble noise. . . . . . . . . . . . . . . . . . . . . . 93

4.6 LLR for the conventional and spectral phase-based STSA estimators in babble noise

with (a): N = 1 and (b): N = 2 microphones. . . . . . . . . . . . . . . . . . . . . . 94

4.7 PESQ for the conventional and spectral phase-based STSA estimators in babble

noise with (a): N = 1 and (b): N = 2 microphones. . . . . . . . . . . . . . . . . . . 95

4.8 Segmental SNR for the conventional and spectral phase-based STSA estimators in

babble noise with (a): N = 1 and (b): N = 2 microphones. . . . . . . . . . . . . . . 95

4.9 Performance of the spectral phase-based Wβ-SA estimator in (4.19) in babble noise

with N = 4, using the noisy phase, using the MMSE estimate of phase in (4.20),

and using the phase of the clean speech. . . . . . . . . . . . . . . . . . . . . . . . . 96

4.10 Block diagram of the proposed general scheme for multi-channel Bayesian STSA

estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.11 Scenario of capturing a speech source in spatially correlated noise with two micro-

phones, generated by the ISM method. . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.12 LLR versus input global SNR for multi-channel STSA estimators and MVDR beam-

former with N = 2 microphones in spatially correlated noise, (a): white noise, (b):

babble noise and (c): car noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.13 PESQ versus input global SNR for multi-channel STSA estimators and MVDR

beamformer with N = 2 microphones in spatially correlated noise, (a): white noise,

(b): babble noise and (c): car noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.14 Segmental SNR versus input global SNR for multi-channel STSA estimators and

MVDR beamformer with N = 2 microphones in spatially correlated noise, (a):

white noise, (b): babble noise and (c): car noise. . . . . . . . . . . . . . . . . . . . . 107

4.15 LLR versus input global SNR for the enhanced speech using the MVDR beamformer

with different noise PSD matrix estimation methods in spatially correlated noise,

(a): white noise, (b): babble noise and (c): car noise. . . . . . . . . . . . . . . . . . 108

xv



4.16 PESQ versus input global SNR for the enhanced speech using the MVDR beam-

former with different noise PSD matrix estimation methods in spatially correlated

noise, (a): white noise, (b): babble noise and (c): car noise. . . . . . . . . . . . . . . 109

4.17 Segmental SNR versus input global SNR for the enhanced speech using the MVDR

beamformer with different noise PSD matrix estimation methods in spatially corre-

lated noise, (a): white noise, (b): babble noise and (c): car noise. . . . . . . . . . . 110

4.18 MVDR beamformer response error versus input global SNR using different noise

PSD matrix estimation methods, (a): white noise, (b): babble noise and (c): car

noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.19 Performance measures of the MVDR beamformer for different microphone numbers

using the proposed method of noise PSD matrix estimation in babble noise. . . . . . 112

4.20 Performance measures of the MVDR beamformer using the proposed method of

noise PSD matrix estimation with a different number of involved subsequent frames,

d, in babble noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Normalized IFC of the early speech dn,k averaged over frequency bins versus STFT

frame number for a selected speech utterance. . . . . . . . . . . . . . . . . . . . . . 122

5.2 A two-dimensional illustration for the geometry of the synthesized scenario of a

noisy reverberant environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Improvements in PESQ and CD scores versus the number of iterations for different

dereverberation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Improvements in FW-SNR and SRMR scores versus the number of iterations for

different dereverberation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 PESQ and CD scores versus T60dB for the reverberant speech and the enhanced

one using the WPE method with different estimators of the desired speech spectral

variance, σ2dn,k
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6 Processing time required for the estimation of gk with lengths of Lk=15 and Lk=30

using a 10-second speech segment for different methods. An i5-2400 CPU @ 3.10GHz

with RAM of 4.00GB was used for the implementation in Matlab. . . . . . . . . . . 132

5.7 Normalized IFC averaged over frequency bins and frames versus the frame lag for

speech samples with different amounts of reverberation. . . . . . . . . . . . . . . . . 133

xvi



5.8 Performance of the proposed WPE method versus the assumed IFC length, τ , for

different D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.9 Improvement in PESQ and CD scores versus T60dB for different WPE-based dere-

verberation methods using synthetic RIRs. . . . . . . . . . . . . . . . . . . . . . . . 136

5.10 Improvement in FW-SNR and SRMR scores versus T60dB for different WPE-based

dereverberation methods using synthetic RIRs. . . . . . . . . . . . . . . . . . . . . . 136

6.1 An illustration of the STFT frames and the processing blocks over speech time

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Block diagram of the proposed algorithm for LRSV estimation. . . . . . . . . . . . . 150

6.3 A two-dimensional schematic of the geometric setup used to synthesize the time-

invariant RIR by the ISM method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4 Normalized error in the estimation of the LRSV w.r.t. to the case of using the entire

speech utterance, versus the processing block length for different reverberation times.160

6.5 Mean spectral variances using the recorded RIR from the REVERB Challenge [134]

for: (a) the true LRSV, the LRSV estimated using RIR variances and the pro-

posed LRSV (b) the true LRSV, the LRSV estimated by the improved model-based

method [144] and the one estimated by the Lebart’s method [142]. . . . . . . . . . . 161

6.6 Mean segmental error for different LRSV estimators using the synthesized RIRs by

the ISM method [119] with source-to-microphone distances of (a): 1 m (b): 2 m. . . 162

6.7 A two-dimensional schematic of the geometric setup used to synthesize the time-

variant RIR (moving talker) by the ISM method. . . . . . . . . . . . . . . . . . . . 166

6.8 Mean spectral variances for: (a) the true LRSV, the LRSV estimated using RIR

variances and the proposed LRSV (b) the true LRSV, the LRSV estimated by the

improved model-based method [144] and the one estimated by the Lebart’s method

[142]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.9 Mean segmental error for different LRSV estimators using the configuration in Fig-

ure 6.7 with H as (a): 1 m (b): 2 m. . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.10 PESQ and CD measures versus the reverberation time for the MVDR beamformer

with different numbers of microphones using the proposed LRSV matrix estimation. 173

6.11 Modified spectral enhancement method used for jointly suppressing the noise and

late reverberation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

xvii



6.12 Suggested algorithm to use the MVDR beamformer for the purpose of joint noise

and late reverberation suppression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.13 4 different combinations of the WPE method, the MVDR beamformer and the

spectral enhancement for joint noise and reverberation suppression. . . . . . . . . . 175

6.14 PESQ and CD scores versus the reverberation time for different single-channel com-

binations of the WPE and the modified SE methods. . . . . . . . . . . . . . . . . . 176

6.15 FW-SNR and SRMR scores versus the reverberation time for different single-channel

combinations of the WPE and the modified SE methods. . . . . . . . . . . . . . . . 176

6.16 PESQ and CD scores versus the reverberation time for different multi-channel sys-

tems in Figure 6.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.17 FW-SNR and SRMR scores versus the reverberation time for different multi-channel

systems in Figure 6.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xviii



List of Tables

2.1 Major Bayesian estimators of the speech STSA . . . . . . . . . . . . . . . . . . . . 32

2.2 Parameter sets of the GGD leading to Rayleigh, Gamma, Chi, or exponential speech

STSA models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Speech STSA estimators for particular parameter choices of the GGD speech and

noise priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 PESQ values for the Wβ-SA estimator with different schemes of parameter α, case

of white noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 PESQ values for the Wβ-SA estimator with different schemes of parameter α, case

of babble noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 PESQ values for the Wβ-SA estimator with different schemes of parameter α, case

of car noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 PESQ values for the Wβ-SA estimator with different schemes of parameter β, case

of white noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 PESQ values for the Wβ-SA estimator with different schemes of parameter β, case

of babble noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 PESQ values for the Wβ-SA estimator with different schemes of parameter β, case

of car noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Outline of the steps in the conventional WPE method. . . . . . . . . . . . . . . . . 118

5.2 Performance comparison of different WPE-based dereverberation methods using

recorded RIRs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.1 Performance measures using the recorded RIR from the REVERB Challenge. . . . . 163

6.2 Performance measures using the ISM method for source-to-microphone distance of

1 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xix



6.3 Performance measures using the ISM method for a source-to-microphone distance

of 2 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4 Performance measures for time-variant RIR with H=1 m in Figure 6.7. . . . . . . . 169

6.5 Performance measures for time-variant RIR with H=2 m in Figure 6.7. . . . . . . . 170

6.6 Performance measures using the recorded RIRs from the REVERB Challenge. . . . 171

6.7 Performance measures using the ISM method for source-to-microphone distance of

1 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xx



List of Acronyms

AR : Auto Regressive

ARMA : Auto Regressive Moving Average

ATF : Acoustic Transfer Function

CD : Cepstral Distance

CGG : Complex Generalized Gaussian

DCT : Discrete Cosine Transform

DD : Decision-Directed

DFT : Discrete Fourier Transform

DOA : Direction of Arrival

DDR : Direct to Reverberant Ratio

EM : Expectation Maximization

FFT : Fast Fourier Transform

FW-SNR : Frequency-Weighted SNR

GGD : Generalized Gamma Distribution

GWSA : Generalized Weighted Spectral Amplitude

IFC : Inter-Frame Correlation

IFFT : Inverse Fast Fourier Transform

IID : Independent and Identically Distributed

IMCRA : Improved Minima Controlled Recursive Averaging

IS : Itakura-Saito Distance

ISM : Image Source Method

ITU : International Telecommunications Union

KLT : Karhunen-Loeve Transform

xxi



LLR : Log-Likelihood Ratio

LP : Linear Prediction

LPC : Linear Prediction Coefficients

LSA : Log-Spectral Amplitude

LRSV : Late Reverberant Spectral Variance

MA : Moving Average

MAP : Maximum a posteriori

MLCP : Multi-Channel Linear Prediction

ML : Maximum Likelihood

MMSE : Minimum Mean Square Error

MOS : Mean Opinion Scores

MS : Minimum Statistics

MVDR : Minimum Variance Distortionless Response

OM-LSA : Optimally Modified Log-Spectral Amplitude

PDF : Probability Distribution Function

PSD : Power Spectral Density

PESQ : Perceptual Evaluation of Speech Quality

RIR : Room Impulse Response

SE : Spectral Enhancement

SNR : Signal to Noise Ratio

SNRseg : Segmental SNR

SPP : Speech Presence Probability

SRMR : Signal to Reverberant Modulation Ratio

SRR : Signal to Reverberant Ratio

STFT : Short Time Fourier Transform

STSA : Short Time Spectral Amplitude

ULA : Uniform Linear Array

VAD : Voice Activity Detector

VoIP : Voice over Internet Protocol

W-β-SA : Weighted β Spectral Amplitude

WCOSH : Weighted Cosine Hyperbolic

xxii



WE : Weighted Euclidean

WPE : Weighted Prediction Error

WSS : Weighted-Slope Spectral Distance

xxiii



Chapter 1

Introduction

In this chapter, we first present a brief introduction to the problem of speech enhancement, its

practical applications and the speech enhancement in the short-time Fourier transform (STFT)

domain. Next, a general literature review on the existing methods of STFT estimation for speech

signals is presented and the advantages of speech spectral amplitude estimators are stated in

comparison with other estimators. The motivation and objectives of this research are discussed in

the subsequent section and the requirement for further development of speech spectral amplitude

estimation methods is explained. At the end, a chapter-by-chapter organization of this thesis and

the major contributions are described.

1.1 Speech Enhancement and Its Applications

Speech enhancement aims at the improvement of speech quality by using various algorithms. The

term speech quality can be interpreted as clarity, intelligibility, pleasantness or compatibility with

some other method in speech processing such as speech recognition and speech coding. Major goals

of speech enhancement can be classified into the removal of background noise, echo cancellation,

reverberation suppression and the process of artificially bringing certain frequencies into the speech

signal [1].

In general, speech enhancement is a difficult task to accomplish for certain reasons. First,

the nature and characteristics of corrupting disturbances in speech can be changed dramatically

in different environments or from one application to the other. It is thereby challenging to find

promising algorithms that work for various practical scenarios. Second, the performance criteria
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under which the fidelity of the speech enhancement algorithms is judged are defined differently

for each application. Moreover, it is often too difficult to satisfy all of the major performance

criteria using a specific speech enhancement algorithm. As a common example, in the single-

channel (one-microphone) case and when the speech degradation is due to uncorrelated additive

noise, noise reduction can be achieved at the expense of introducing speech distortion. In this case,

even though noise reduction measures demonstrate quality improvement in the enhanced speech,

distortion measures for the output speech are likely to be even worse than those of the noisy speech.

Consequently, whereas less noise is heard in the enhanced speech, the resulting intelligibility will

not be better than that of the noisy speech. Generally, there exists some compromise between

the amount of noise reduction achieved by conventional speech enhancement algorithms and the

degree of distortion implied on the clean speech component [2, 3].

The majority of speech enhancement applications include mobile phones, VoIP (voice over in-

ternet protocol), teleconferencing systems, speech recognition, and hearing aids [4]. Many voice

communication systems as well as all telecommunication systems in noisy environments require

speech restoration blocks in order to function properly. Ambient noise prevents the speech coding

blocks from estimating the required spectral parameters accurately. Therefore, the resulting coded

speech sounds distorted and it still contains corrupting noise. As a result, to improve the perfor-

mance of speech coding systems, a speech enhancement system has to be placed as a front-end to

reduce the noise energy. Speech enhancement is also vital to hearing aid devices. These devices

can help the hearing impaired by amplifying ambient audio signals [5, 6]. Thus, with the fast

development of the aforementioned speech and audio systems, there is a growing need for further

development of speech enhancement algorithms in the future.

1.2 Speech Enhancement in the Frequency Domain

In this section, we explain the important role of frequency domain techniques in speech enhance-

ment and briefly discuss the general scheme used for their implementation.
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1.2.1 Importance of the Frequency Domain Technique

From a general point of view, the major algorithms of speech enhancement can be categorized

into several fundamental categories including adaptive filtering methods, spectral subtractive al-

gorithms, Wiener filtering and its variations, statistical model-based methods and subspace algo-

rithms. Whereas performance comparisons in terms of speech quality, intelligibility and recognition

can be accomplished amongst different categories of speech enhancement algorithms, factors such

as computational burden, need for training data and restrictive assumptions about noise and

speech environment have to be taken into account in order to consider a certain group of speech

enhancement methods [7].

A speech enhancement technique can be implemented as either a time domain or a trans-

form domain method. Famous transform domains in the field of speech processing include dis-

crete Fourier transform (DFT), discrete wavelet transform, discrete cosine transform (DCT) and

Karhunen-Loeve transform (KLT). Yet, among the existing transform domain methods for speech

enhancement in the literature, those based on discrete Fourier transform processing are usually

favored in practical applications. This is due to several reasons such as lower computational com-

plexity, the use of fast Fourier transform (FFT), ease of implementation, providing a trade-off

between noise reduction and speech distortion at different frequencies, natural resemblance to the

auditory processes taking place within human ear and existence of efficient windowing techniques

for the time-domain synthesis of the frequency domain modified speech. These techniques are also

known as spectral processing methods and have received much interest in the literature [8, 9].

1.2.2 Application of Short-Time Fourier Transform (STFT)

In the frequency domain speech enhancement, the spectrum of a clean speech signal is estimated

through the modification of its noisy speech spectrum and then it is used to obtain the enhanced

speech signal in the time domain. However, in many applications such as mobile communication

systems, the maximum algorithmic delay and the computational complexity are strictly limited.

Moreover, the discrete time Fourier transform is appropriate only for stationary signals, i.e., those

with constant statistics over time. Yet, speech is known to be a quasi-stationary signal, i.e.,

one with approximately constant statistics over short periods of time. For these reasons, in the

frequency processing of speech signals, it is required to consider time segments of about 10-40 ms
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during which the statistics of speech signal do not alter a lot. This is implemented by short-time

segmentation of the entire speech and then processing the Fourier coefficients of each segment

individually. The processed coefficients across segments are later concatenated via overlap-add

or overlap-save methods to produce the entire enhanced speech. This technique is referred to

as short-time Fourier transform (STFT) processing and has served as the basis to implement all

frequency domain methods of speech enhancement [8]. In Figure 1.1, a schematic of the STFT

processing technique has been shown. As indicated, the input speech is segmented and multiplied

by proper windows and then DFT coefficients are taken from each segment. Next, the processing

(enhancement) method is applied to modify frequency bins of each segment and then the processed

segments are transformed back into the time domain by the inverse FFT (IFFT). The overlap-add

technique is then used to synthesize the speech signal in the output.� � � � � � � � � � � �	 
 � � � � � � � � � � � � � � �  � � �� � � � � � � � � � � � � 
 � � 
 � � �� � � � � �	 � � � � � � �  � ! " # � �
Figure 1.1: Block diagram of the analysis-synthesis technique using STFT.

1.3 Overview of Noise Reduction in the STFT Domain

In this section, an overview of various approaches for speech spectral estimation in the presence of

noise in the STFT domain is presented first. Next, as the most important category, estimators of

short-time spectral amplitude (STSA) are further elaborated and their advantages over the other

STFT estimators are described. Next, a brief literature review is given on the most widely applied

STSA estimation methods, namely the Bayesian STSA estimators.

1.3.1 Classification of STFT-Based Techniques

Assuming that the noise process is additive and that noise and speech processes are independent,

many conventional methods and their variations exist in the literature that tend to estimate the

speech DFT coefficients in an optimal sense [10, 11, 12]. Due to the complex nature of speech DFT

coefficients, however, they can be expressed in terms of either the real-imaginary or the amplitude-

phase (polar) components. Therefore, speech enhancement techniques in the spectral domain aim
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at estimating these components and combining them to produce the complex DFT coefficients

of the speech estimate [8]. In this regard, two types of methods can be recognized in the STFT

domain: those attempting to separately estimate real-imaginary components and those aiming at

the estimation of amplitude-phase of speech DFT coefficients. Whereas the former is based on the

assumption that the real and imaginary components of speech coefficients are independent, the

latter assumes the amplitude and phase are independent components. Under a complex Gaussian

model for speech DFT coefficients, it can be proved that these two assumptions are equivalent [13],

yet, there is no proof that such a model is accurately true for speech coefficients.

The most well-known techniques for the estimation of speech spectral amplitude, known as

STSA estimators, can be categorized as spectral subtraction algorithms [14], frequency domain

Wiener filtering [10] and statistical model-based methods [15]. In spectral subtraction algorithms,

the STSA of noise is estimated as the square root of the maximum likelihood estimate of spectral

variance, and then it is subtracted from the amplitude spectrum of the noisy signal. In the

Wiener filtering algorithm, the spectrum estimator is obtained by finding the optimal minimum

mean square error (MMSE) estimate of complex Fourier transform coefficients. However, due to

inaccuracies in the estimation of speech and noise statistics, both Wiener filtering and spectral

subtraction techniques suffer from residual noise which has an annoying noticeable effect on the

enhanced speech signal. This processing artifact is referred to in the literature as musical noise

and it often results from large spectral peaks randomly distributed over time and frequency in

observed speech [7]. Moreover, none of these two approaches is optimal in the sense of speech

spectral amplitude estimation, whereas spectral amplitudes are perceptually more relevant to the

hearing processing within human ear [16]. This provided the main motivation for Ephraim and

Malah [17] to formulate an optimal spectral amplitude estimator which, specifically, estimates the

modulus (amplitude) of complex DFT coefficients through the minimization of the mean squared

error between clean and estimated speech STSAs. This approach and its later developments were

proved to work fairly better than the aforementioned methods in most practical scenarios [17, 18].

In Figure 1.2, a classification of various speech spectral estimators in the STFT domain has been

illustrated. As indicated, the MMSE-based method of STSA estimation as well as some simpler

alternatives such as maximum likelihood (ML) and maximum a posteriori (MAP) estimators

[19, 20, 21] are categorized as statistical model-based enhancement methods.
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Figure 1.2: Speech spectral estimation methods in the STFT domain.

1.3.2 Advantage of Spectral Amplitude Estimators over Estimators of

Complex DFT

A comprehensive study on different estimators of complex DFT coefficients as well as those of real-

valued STSA for speech signals has been presented in [22, 23]. The presented estimators therein

are based on various statistical models for noise and speech spectral components and generalize all

previously proposed estimators within this area. Whereas the former group, i.e., the complex DFT

estimators, tend to estimate the real and imaginary parts of speech DFT coefficients independently,

the latter group, i.e., the STSA estimators, tend to estimate only the amplitude of speech DFT

coefficients regardless of the phase component. Based on the extensive investigations in [22, 23],

it is concluded that for almost all experimental scenarios, the STSA estimators perform better

than the estimators of complex speech STFT. In addition, since in the former only one real-valued

6



estimate needs to be computed, magnitude estimation is computationally more efficient. It is

interesting to note that amplitude estimators perform better than the complex DFT estimators,

even through comparisons under complex DFT distortion measures. This is because the modeling

assumptions in the complex domain are less accurate than those in the polar domain. In other

words, the assumption that real and imaginary parts of speech DFT coefficients are independent

introduces more modeling error than assuming independent phase and magnitudes for speech

signals. Thereby, among the speech estimation techniques in the STFT domain, STSA estimation

methods are often preferred over complex DFT coefficient estimators. For this reason, there have

been numerous developments and modifications of these estimators in the relevant literature, which

will be discussed in more details in the next chapter.

1.3.3 Estimation of Spectral Amplitude versus Spectral Phase

Considering the polar representation of complex spectral coefficients of speech signals, both the

phase and the amplitude components are generally unknown and have to be estimated. In this

sense, since the joint estimation of speech amplitude and phase is not mathematically tractable,

the possible solution is to estimate each component separately and then combine them to produce

the complex coefficients of enhanced speech. However, the spectral amplitude has been found to

be perceptually much more relevant than spectral phase in the speech enhancement literature.

According to the various experiments in [24, 25], more accurate estimates of speech phase than the

degraded phase (that of the noisy speech) cannot significantly improve the performance of speech

spectral enhancement techniques. It is known, however, that for almost all finite-duration signals,

a signal can be reconstructed up to a scale factor using only the phase of its DFT coefficients.

Therefore, in the context of speech enhancement, it may seem possible to first estimate the spectral

phase more accurately and then attempt to reconstruct the signal from the phase information. But

unfortunately, the accuracy in the reconstructed speech signal appears to be too sensitive to the

accuracy of the phase estimate, and such a technique for speech enhancement would require the

ability to estimate the spectral phase very accurately [26]. Yet, accurate estimation of speech

spectral phase is not a possible task under heavily noisy conditions and very few works with

limited performance exist up to date [27]. On the other hand, in the original proposition of the

STSA estimation technique [17], it was proved that an MMSE-optimal estimator of spectral phase

is actually the phase of noisy speech and that an attempt to provide a better estimate for the
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spectral phase adversely affects the estimate for the spectral amplitude.

In summary, we conclude that the most efficient technique for speech enhancement among the

conventional frequency domain methods is to use all the available information by the complex

STFT coefficients of noisy observations in order to provide an estimate for the STSA of a speech

signal. The estimated spectral amplitude is then combined with the noisy spectral phase to

generate STFT coefficients of the enhanced speech signal.

1.3.4 Bayesian (MMSE-Based) Speech Spectral Amplitude Estimation

In this section, we present a brief literature review on Bayesian estimators of speech spectral

amplitude and their development based on different cost functions. Next, the most common

probability distribution functions (PDFs) used to model speech STSA priors are introduced, and

finally, the existing literature work on the extension of Bayesian STSA estimators to the multi-

channel case is discussed.

1.3.4.1 Development of Cost Functions

Within the framework of Bayesian STSA estimators, the general goal is to provide an estimate of

the STSA of clean speech using statistical models for the noise and speech spectral components.

In [17], Ephraim and Malah proposed to estimate the speech signal amplitude through the min-

imization of a Bayesian cost function which measures the mean square error between the clean

and estimated STSA. Accordingly, the resulting estimator was called the minimum mean square

error (MMSE) spectral amplitude estimator. Later in [18], a logarithmic version of the proposed

estimator, i.e., the Log-MMSE, was introduced by considering that the logarithm of the STSA is

perceptually more relevant to the human auditory system. Even though some alternatives to the

Bayesian STSA estimators were proposed, e.g., [28], due to the satisfying performance of these

estimators, they are still found to be appealing in the literature. In this regard, more recently,

further modifications on STSA Bayesian cost functions were suggested by Loizou in [29] by taking

advantage of the psycho-acoustical models initially employed for speech enhancement purposes in

[30]. Along the same line of thought, You et al. [31] proposed to use the β power of the STSA

term in the Bayesian cost function, in order to obtain further flexibility in the corresponding STSA

gain function. The authors investigated the performance of the so-called β-order MMSE estimator
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for different values of β and found that it is moderately better than the MMSE and Log-MMSE

estimators proposed earlier.

Plourde and Champagne in [32] suggested to take advantage of STSA power weightings in the

β-order MMSE cost function and introduced the parameter α as the power of their new weighting

term. They further proposed to select the two estimator parameters as functions of frequency,

according to the psycho-acoustical properties of the human auditory system and showed a better

quality in the enhanced speech in most of the input signal-to-noise ratio (SNR) range. Yet, at

high input SNRs, the performance of the developed estimator may not be appealing due to the

undesired distortion in the enhanced speech. Further in [33], the same authors introduced a

generalized version of the Wβ-SA estimator by including a new weighting term in the Bayesian

cost function which provides additional flexibility in the estimator’s gain. However, apart from

the mathematically tedious solution for the gain function, the corresponding estimator does not

provide further improvement in the enhanced speech quality.

Overall, the parametric Bayesian cost functions as those in [29, 31, 32] can provide further

noise reduction as compared to the previous estimators, thanks to the additional gain control

obtained by the appropriate choice of the cost function parameters. In [29], fixed values were

used for the STSA weighting parameter, whereas in [31], an experimental scheme was proposed

in order to adapt β to the estimated frame SNR. In the latter, the adaptive selection of the cost

function parameters has been proved to be advantageous over fixed parameter settings. In [32],

rather than an adaptive scheme, the values of the estimator parameters are chosen only based on

the perceptual properties of the human auditory system. Whereas this scheme is in accordance

with the spectral psycho-acoustical models of the hearing system, it does not take into account

the noisy speech features in updating the parameters.

1.3.4.2 Speech Priors

In the aforementioned works, since the complex Gaussian PDF has been considered for speech

STFT coefficients, the speech STSA is actually modeled by the Rayleigh PDF. However, as it was

indicated in [22], parametric non-Gaussian (super-Gaussian) PDFs are able to model the speech

STSA prior more accurately. In [34], Chi PDF with a fixed parameter setting was used as the

speech STSA prior for a group of perceptually motivated STSA estimators. Use of Chi and Gamma

speech priors was further studied in [35] and training-based procedures using the histograms of
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clean speech data were proposed for the estimation of the prior PDF parameters. Yet, apart

from being computationally tedious, training-based methods depend largely on the test data, and

unless a very lengthy set of training data is used, their performance may not be reliable. Within the

same line of work, generalized Gamma distribution (GGD) has also been taken into account, which

includes some other non-Gaussian PDFs as a special case. In [36], it was confirmed that the most

suitable PDF for the modeling of speech STSA priors is the GGD, given that the corresponding

parameters are estimated properly. Two mathematical approaches, i.e., the maximum likelihood

and the method-of-moments, have been used in [36] for the estimation of the GGD parameters.

Other major studies within this field such as those in [23, 37], use either fixed or experimentally set

values for the GGD model parameters, lacking the adaptation with the noisy speech data. Hence,

an adaptive scheme to estimate the STSA prior parameters with moderate computational burden

and fast adaptability with the noisy speech samples is further in need.

1.3.4.3 Multi-Channel Extension

Whereas single microphone approaches are found to provide limited performance improvement,

their multiple microphone counterparts have gained increasing popularity, due to their capability

in providing higher levels of noise reduction while maintaining small speech distortion. In the

context of speech STSA estimation, a few extensions of the conventional single microphone methods

have been introduced over the last decade. Cohen et al. [38] developed a multi-microphone

generalization of the Log-MMSE estimator of the speech STSA by inclusion of the soft-decision

estimation of speech presence probabilities. In [19], a general scope for the MAP and MMSE

estimation of the spectral amplitude of speech signals was proposed, which considers multiple

microphone observations in the case of spatially (across the microphones) uncorrelated noise. Also,

it was proved that the optimal MAP estimation of the spectral phase is simply equivalent to the

noisy phase of the received signal. Furthermore, a straightforward extension of the speech STSA

estimation using the MMSE Bayesian cost function was suggested therein, which assumes spatially

uncorrelated noise components and the existence of the same speech component across the noisy

observations from different microphones. Later in [39], the MMSE estimation of speech STSA

was extended to the microphone array case under the availability of proper estimates for the noise

correlation matrix and the steering vector of speech source, given that the speech STSA is Gamma

distributed. However, no further improvements were reported in comparison with the spectral
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amplitude estimation approaches with Rayleigh speech STSA priors. Within the same line, the

problem of speech STSA estimation in the presence of spatially uncorrelated noise was further

investigated in [40, 41] by making use of various Bayesian cost functions. In a practical point of

view, however, the assumption of having uncorrelated noise across different microphones or the

perfect knowledge of the steering vector in the frequency domain are too simplistic and not valid

in practice. Therefore, more realistic methods in this direction are yet to be developed.

1.4 Overview of Reverberation Reduction Techniques

Another major area of speech enhancement is reverberation reduction. In this section, we present

an introduction on the reverberation in acoustic environments and briefly review the classifica-

tion of the most important techniques to suppress reverberation. In particular, we introduce the

problem of blind dereverberation in the STFT domain.

1.4.1 Speech Reverberation in Acoustic Environments

Figure 1.3: Illustration of a speech source (user), noise sources and their reflections captured by a
microphone set.

When speech signals are captured in an acoustic environment (enclosed space) by the microphones

positioned at a distance from the speech source, the received signal consists of the superposition

11



of many delayed and attenuated replicas of the original speech signal due to the reflections from

the surrounding walls and objects, as illustrated in Figure 1.3. Often, the direct path is defined as

the acoustic propagation path from the speech source to the microphone without the reflections.

It should be noted that a delay of the superimposed speech replicas always rises since all other

propagation paths are longer than the direct path [42].

If low-to-moderate reverberation effects are carefully controlled, the reverberation can be tol-

erable in voice communication systems. However, when the reverberation effects are severe, the

quality and intelligibility of speech are degraded and the performance of speech enhancement algo-

rithms developed without taking reverberation into account is highly degraded. This is due to the

fact that reverberation deteriorates the characteristics of the speech signal, which is problematic to

speech processing applications including speech recognition, source localization and speaker veri-

fication. For this reason, development of efficient techniques to suppress reverberation in acoustic

environments is of high demand for speech communication systems.

1.4.2 Classification of Reverberation Reduction Techniques

Since reverberation reduction (or namely, dereverberation) techniques have been around for many

years, they can be divided into many categories. One useful way of categorizing these techniques

is based on the fact whether or not the acoustic impulse response needs to be estimated. This has

been considered in [43] wherein two major categories of dereverberation techniques are recognized:

reverberation suppression and reverberation cancellation. The former group refers to the methods

that do not require an estimate of the acoustic impulse response whereas the methods within the

latter group do require/exploit an estimate of the acoustic impulse response. Also, methods within

each of these categories can be further divided into smaller sub-categories depending on the amount

of knowledge they require about the source of speech and the acoustic channel. According to [43],

main reverberation suppression methods include explicit speech modeling, linear prediction-based

methods, spectral enhancement, temporal envelope filtering and spatial processing. Also, the

most important reverberation cancellation methods include blind deconvolution, homomorphic

deconvolution and harmonicity-based dereverberation. The methods in each of the two main

categories can be also divided based on being applicable to single channel, multi-channel or both.
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1.4.3 Blind Dereverberation in the STFT Domain

In a practical point of view, there exists no knowledge of the acoustic impulse response in a rever-

berant environment. Also, the estimation of a typical room impulse response (RIR), which involves

hundreds of samples, by using the observed speech utterance seems impractical, especially for real-

time systems where no long-term training data is available. For this reason, blind dereverberation

techniques, i.e. those which do not require any prior knowledge of the RIR or characteristics of

the channel or speech source, are of high importance in real world scenarios. In this sense, a few

major techniques for blind dereverberation in the STFT domain exist in the literature, including

spectral enhancement, spatial processing and linear prediction-based techniques.

Primarily in [44], Lebart et al. proposed a single-microphone spectral enhancement technique

for speech dereverberation. This method follows the same structure as the spectral enhancement

for noise reduction except that the noise variance estimate is replaced by an estimate of the

reverberation variance. The latter is obtained blindly from the reverberant speech using statistical

modeling of room reverberation and dereverberation is achieved by spectral subtraction. This work

was modified and extended using different variants of the spectral enhancement method and also

estimators of the reverberation variance.

In addition to noise reduction purposes, spatial processing (beamforming) techniques can also

be employed for multi-microphone speech dereverberation. In these techniques, the spatial obser-

vations can be manipulated to enhance or attenuate signals arriving from particular directions.

Therefore, by using spatial processing, under the a priori knowledge of the position of the source,

the reverberant part of speech can be spatially separated from the desired part. As one major

example, in [45], a two-stage beamforming approach for dereverberation is presented where in the

first stage, a delay-and-sum beamformer is exploited to generate a reference signal containing a

spatially filtered version of the desired speech and reverberation. It is shown that the desired

speech component at the output of the beamformer contains less reverberation compared to input

reverberant speech. In the second stage, the filtered microphone signals and the reference signal

are used to estimate the desired speech component.

It is well known that using the time-varying nature of speech signals allows one to achieve

high quality speech dereverberation based on multi-channel linear prediction [42]. However, such

approaches have a heavy computational cost in order to calculate large covariance matrices in the
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time domain. To overcome this problem and to make it possible to combine the speech dereverber-

ation efficiently with other useful speech enhancement techniques in the STFT domain, in [45], an

approach for linear prediction-based dereverberation in the STFT domain was proposed. It was

revealed that the proposed approach in the STFT domain, in addition to being computationally

less complex, performs even better than the linear prediction-based approaches in the time domain.

The implementation of this method in the STFT domain, known as the weighted prediction error

method, has received considerable attention in the relevant literature and a few improvements and

modifications of that have been presented so far.

1.5 Motivation and Objectives of the Research

1.5.1 Motivation

This research is motivated by the rapidly growing market of speech and audio processing applica-

tions. Even though spectral modification techniques for speech enhancement have received much

interest over the past three decades, there is still room for further development in this area. In

this section, we summarize the motivation behind this research as the following:

• As discussed in Section 1.3.4, various MMSE-based cost functions and also speech priors have

been exploited in order to derive Bayesian STSA estimators. Although various expressions

have been obtained for these estimators, there has been no unified assessment of their per-

formance or an investigation showing the most efficient Bayesian STSA estimator given the

different cost functions and available STSA prior distributions. In this regard, a study on

the most generalized Bayesian STSA estimator, i.e., one that includes most state-of-the-art

estimators as special cases, as well as the most efficient schemes to select the corresponding

parameters is required. This is one of the primary motivations of this research.

• In the field of speech spectral enhancement, as discussed in Section 1.3, numerous single

microphone (single-channel) techniques already exist. However, the performance of single

channel methods deteriorates considerably in adverse noise conditions. Furthermore, one

main problem with all single-channel methods is that they introduce considerable distortion

in the clean speech component. This has motivated researchers to employ multi-microphone

(dual, array and distributed) systems to exploit all available spatial information of the speech
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and noise/interference sources [46]. Whereas conventional wideband beamforming techniques

for speech enhancement have been studied thoroughly in the literature, the multi-microphone

counterparts of speech spectrum estimation methods can be investigated further. Therefore,

development of novel multi-channel spectral estimation approaches is of high interest and

serves as another major motivation of this research.

• To date, several major categories of methods have been proposed for reverberation suppres-

sion in the spectral domain, e.g., [47, 48, 49]. Such methods often aim at estimation of

the complex spectral coefficients of speech in the STFT domain. However, development of

STSA estimators for the purpose of reverberation suppression has to be explored further.

This brings about the motivation to investigate further the capability of STSA estimators

for speech enhancement in reverberant environments as part of this research.

• Concerning multi-channel dereverberation methods, many existing methods such as channel

equalization and inverse filtering approaches are in need of estimates of the acoustic chan-

nel, and therefore, they are not practically useful, necessitating the need for totally blind

dereverberation methods [42]. As discussed in Section 1.4.3, one of the most important

multi-channel enhancement methods in the STFT domain is the spatial processing (beam-

forming). Even though beamforming for noise reduction has been explored extensively in

the existing literature, taking advantage of beamformers for reverberation suppression in

an unknown reverberant environment has to be explored further. As the most basic beam-

forming technique, the delay-and-sum beamformer has been widely employed for reverberant

environments [43]. However, the capability of more advanced beamformers such as the min-

imum variance distortionless response (MVDR) or multi-channel Wiener filtering, which are

in need of reverberation statistics, has not been investigated enough. In many cases, these

beamformers are applied under the assumption that a perfect estimate of RIR in the STFT

domain is available, e.g., [50]. Therefore, blind development of beamforming methods such

as the MVDR for highly reverberant environments under practical assumptions is of interest

as part of this work.

• As a more recent dereverberation technique in the STFT domain, the linear prediction-

based method first proposed in [51] has also received considerable attention due to its blind

nature and reasonable complexity. The original version of this method is, however, based
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on simplistic assumptions such as using a simple instantaneous estimator for the speech

spectral variance and independence of the desired speech components across time/frequency.

While the original proposition of this method has proved to achieve good reverberation

suppression performance, it is believed that by developing and incorporating more accurate

speech spectral variance estimators into this method, as well as taking into account the

correlation across the speech components, further dereverberation and better speech quality

can be achieved.

1.5.2 Objectives

The main objectives of this research are summarized as follows:

• With regards to the single-channel Bayesian STSA estimators, the objective is to obtain a

generalized formulation for the gain function using the most efficient Bayesian cost function

and speech STSA prior available in the literature. Also, based on the characteristics of

speech/noise such as the SNR, noise masking threshold and properties of human auditory

system, efficient schemes for the selection of the corresponding parameters of the STSA

estimator are to be proposed.

• Regarding the multi-channel counter-part of the Bayesian STSA estimators, we will investi-

gate the extension of the proposed single-channel method to the multi-channel in two different

scenarios, namely, in spatially uncorrelated and spatially correlated noise fields. Whereas in

the former, only the noise parameters (i.e., noise variance and SNR) for each channel are

needed, in the latter, the noise cross-variances among all the channels are required to form

the estimator. Since the problem of noise cross-variance estimation is not as much developed

as the classic noise estimation, we also target this problem as part of our multi-channel STSA

estimation method.

• Considering blind speech dereverberation in the STFT domain using the spectral enhance-

ment approach, e.g., STSA estimation, our objective is to develop/modify the schemes used

in the noise reduction scenario, e.g., the noise variance, SNR and gain flooring, in order to

properly fit them into the reverberation suppression goal. Furthermore, blind development

of the classic beamforming methods (such as the MVDR beamformer) for the purpose of
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reverberation suppression, which has not been studied particularly in the literature, is in

order as part of this topic.

• Our objective in case of dereverberation based on a linear prediction model in the STFT do-

main is to develop an efficient estimator of the speech spectral variance that can be integrated

into the dereverberation method. As well, taking into account the existing correlations across

the STFT frames through a proper model, and development of the reverberation prediction

weights based on these correlations can be regarded as our other objective in this sense.

1.6 Organization and Main Contributions

In Chapter 2, a more detailed background on the introduced topics in this section is presented,

and Chapters 3-4 and 5-6 include our main contributions respectively in noise reduction and

reverberation suppression. Conclusions are presented in Chapter 7. A detailed structure of this

thesis is as below.

In Chapter 2, a background on the topic of speech enhancement in the STFT domain with a

focus on STSA estimators is presented. These estimators include the spectral subtraction method,

the Wiener filters, ML and MAP estimators, and as the most important category in our work,

the Bayesian estimators, which are discussed briefly in Section 2.1. In Section 2.2, an overview of

the various speech priors that have been used in the STSA estimation methods is presented and

Section 2.3 reviews the state-of-the-art multi-channel STSA estimators for spatially uncorrelated

noise. Section 2.4 is devoted to an introduction on the reverberation in acoustic environments

and the general problem formulation in the STFT domain. Finally in Section 2.5, some of the

shortcomings of the current STSA estimation methods, which will be worked on in the following

chapters, are explained.

In Chapter 3, we present the proposed single-channel STSA estimation algorithm, which in-

cludes novel schemes for the parameter selection of the Wβ-SA estimator as well as a new gain

flooring scheme which can be generally applied to STSA estimators. Next, we extend the original

Wβ-SA estimator using the GGD speech prior and suggest an efficient scheme for the estimation

of its parameters. This chapter is followed by a brief overview of the objective measures for the

evaluation of noise reduction methods, and finally the performance assessment of the proposed

schemes versus the most recent versions.
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In Chapter 4, first we extend the proposed single-channel STSA estimator in the previous

chapter to the case of multi-channel for spatially (across channels) uncorrelated noise. Next, we

take advantage of the speech spectral phase in the estimation of the spectral amplitude, i.e., STSA,

and derive a new family of STSA estimators for different Bayesian cost functions. The problem

of multi-channel STSA estimation in the general case (spatially correlated noise) is tackled in the

next section, where a generic framework for the extension of a single-channel STSA estimator to

its corresponding multi-channel variant is induced. Since under this framework, the estimation

of the noise spatial correlation matrix is of high importance, we propose an efficient algorithm

for the estimation of the aforementioned matrix in the next section. Performance evaluations are

performed in this chapter separately for the case of spatially correlated/uncorrelated noise fields.

Chapter 5 is devoted to the problem of reverberation suppression in the STFT domain using

a popular linear prediction-based method. In this respect, we consider the so-called weighted

prediction error (WPE) method and present two main contributions on this method. Our con-

tributions include the proposition of an efficient estimator for the speech spectral variance, which

can be integrated into the original WPE method to substitute the instantaneous estimator of this

parameter used in this method. Further, we take into account the temporal correlation across the

STFT frames, and through an approach to estimate this correlation, we propose an extension of

our primary method. Finally, we evaluate the performance of the proposed methods in terms of

the achieved dereverberation and overall speech quality.

In Chapter 6, we target the problem of reverberation suppression from the viewpoint of spectral

enhancement methods, i.e., those that were conventionally used for noise reduction. We first

propose a new algorithm for the most important parameter involved in these estimators, i.e., the

late reverberant spectral variance (LRSV). Next, we suggest a few simple yet efficient schemes

for the modification of the conventional STSA estimators to fit the reverberation problem, which

include the estimation of signal-to-reverberant ratio (SRR), gain flooring and the application of

SPP in case of reverberation. This chapter is followed by performance evaluations in comparison

with the recent major contributions in the field.

In Chapter 7, we draw some concluding remarks highlighting the main contributions of this

thesis, and based on this, we suggest some open problems for the future research in this direction.
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Chapter 2

Background: Speech Enhancement in

the STFT Domain

In this chapter, we present a literature review on the existing techniques for the enhancement of

speech spectrum in the STFT domain. First, a background on the estimation of speech STSA in the

presence of noise and some relevant problems including their extension to the multi-channel case

and reverberant environments are explained. Next, the problem of blind reverberation suppression

in the STFT domain is discussed shortly. This is followed by the most important shortcomings of

the current STSA estimators that motivated us to develop further solutions in this area.

The presented content in this chapter along with further literature review has been published

in [52].

2.1 Estimation of Speech STSA

As discussed in the last chapter, the spectral amplitude has been found to be more perceptually

relevant than the spectral phase in the field of speech enhancement. For this reason, various

estimators of speech short-time spectral amplitude (STSA) have been widely used to perform single-

channel noise reduction. In this section, we present a brief overview of the different types of STSA

estimators including spectral subtractive estimation, Wiener filtering for speech STSA, maximum-

likelihood estimators, maximum a posteriori estimators and finally the category of Bayesian STSA

estimators.
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2.1.1 Problem Statement

An enhancement algorithm in the STFT domain transforms short segments of a noisy speech

signal into STFT coefficients and synthesizes the enhanced signal by means of an inverse STFT

and overlap adding. Between the STFT and inverse STFT calculations, the magnitude of the

STFT coefficients corresponding to the enhanced speech signal is estimated using the underlying

spectral enhancement algorithm. In this sense, we consider the following model for noisy speech

observations

y(t) = x(t) + v(t) (2.1)

where y(t), x(t) and v(t) respectively denote the noisy observation, clean speech and noise at time

t. After sampling into discrete time, segmentation (framing), windowing and applying FFT, we

have in the STFT domain the following complex-valued model

Y (k, l) = X(k, l) + V (k, l) (2.2)

with k and l as frequency bin and time frame indices. Applying the standard assumption that

speech and noise are statistically independent from each other and also independence across time

and frequency, we will obtain estimators that are independent in the time frame and frequency.

This allows us to drop the time/frequency indices henceforth.

2.1.2 Spectral Subtractive Estimators

Spectral subtraction is one of the first category of algorithms proposed for noise reduction in the

frequency domain [7]. It is based on the simple principle that, given an estimate of the noise

spectrum, an estimate of the clean speech spectrum can be obtained by subtracting the noise

estimate from the noisy speech spectrum. More specifically, assuming the similarity between the

phase of the noisy speech and that of the clean speech, it follows that [14]

X̂(k, l) =
[
|Y (k, l)| − |V̂ (k, l)|

]
ejΘY (k,l) (2.3)

where |.| denotes the amplitude and ΘY (k, l) is the phase of Y (k, l). Note that the effect of

noise on the clean speech phase is assumed negligible in (2.3), whereas in practice, availability of
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the clean speech phase or a better estimate of it to replace ΘY (k, l) can provide further quality

improvements [53]. Due to the inaccuracy in the underlying noise estimation, the subtractive term,

|Y (k, l)|− |V̂ (k, l)|, can take on negative values and a half-wave rectification is conventionally used
to mitigate this effect. This rectification causes a phenomenon known as musical noise, which can

significantly degrade the speech quality up to a high degree [7]. This issue has been one of the

main motives to develop more advanced spectral subtractive methods in the past, e.g., [54, 55, 56].

In practice, since the majority of noise estimation methods seek to estimate the noise spectral

variance, σ2v(k, l), defined as E {|V (k, l)|2}, spectral subtractive methods are often formulated in
the power domain rather than in the amplitude domain. In this regard, an estimate of the clean

speech amplitude, |X̂(k, l)|, can be obtained as

|X̂(k, l)|2 = |Y (k, l)|2 − σ̂2v(k, l) (2.4)

where σ̂2v(k, l) is an estimate of the noise spectral variance or the so-called PSD [7]. It is evident

that the performance of spectral subtractive methods is highly controlled by the precision in the

estimation of the noise PSD, σ2v(k, l). Since the estimated speech amplitude can be written as a

linear function of the noisy speech amplitude, it is often preferred to express spectrum estimation

techniques in terms of a gain function. In this sense, the gain function for the estimator in (2.4)

can be written as

G(k, l) ,
|X̂(k, l)|
|Y (k, l)| =

√
1− σ̂2v(k, l)

|Y (k, l)|2 (2.5)

For a better understanding of the concept of spectral subtraction, a block diagram of this method

in its basic form is shown in Figure 2.1. It is observed that, within this framework, only the

spectrum amplitude is enhanced and the spectral phase is left unchanged.

One of the most important advances in the area of spectral subtractive methods is the use of

masking properties of the human auditory system first introduced in [57]. The masking properties

are essentially modeled by a noise masking threshold below which a human listener tolerates

additive noise in the presence of speech [58]. In the generalized spectral subtractive methods, e.g.,

[59, 60], there exist parameters that control the trade-off between the amount of noise reduction,

the speech distortion and the residual musical noise. In [57], a few schemes are proposed based on

the noise masking threshold in order to adjust the subtractive parameters in a perceptual sense.

Therein, through the study of speech spectrograms as well as subjective listening tests, it is proved
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that the resulting enhanced speech is more pleasant to a human listener than without adaptive

adjustment of the subtractive parameters.
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Figure 2.1: Block diagram of the basic spectral subtraction algorithm.

The spectral subtraction algorithms are computationally simple to implement and fast enough

for real-time applications. Nevertheless, the subtractive rules are based on the incorrect assumption

that the cross terms between the clean speech and the noise are zero. In other words, considering

(2.4) and the fact that σ̂2v(k, l) is used for |V (k, l)|2, the speech squared amplitude |X(k, l)|2 is
not accurately equal to |Y (k, l)|2 − |V (k, l)|2, and the cross terms between the speech and noise

have to be considered in the subtraction rule. In [61], a geometric approach (as opposed to the

statistical approaches) to spectral subtraction is proposed that addresses this shortcoming of the

spectral subtraction method. In that work, the phase difference between the clean speech and

noise is exploited in order to obtain the spectral subtraction rule as a gain function. The resulting

gain function depends on two key parameters, that is the a priori SNR and the noise PSD, and

it possesses similar properties to those of the MMSE STSA estimator in [17]. It is further shown

through objective evaluations that the geometric algorithm performs significantly better than the

traditional spectral subtraction algorithm under various conditions.

Other main contributions to the spectral subtraction method in the literature include spectral
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subtraction using oversubtraction [62], nonlinear spectral subtraction [63], multi-band spectral

subtraction [64], MMSE-based spectral subtraction [59], extended spectral subtraction [65], use

of adaptive gain averaging [55] and selective spectral subtraction [66]. Even though spectral

subtraction is one of the oldest methods of noise reduction in the STFT domain, there still exists

ongoing research on this topic.

2.1.3 Wiener Estimators

The spectral subtractive methods discussed in the previous section are based on the heuristic as-

sumption that one can obtain an estimate of clean speech spectrum by subtracting the estimated

noise spectrum from the observations spectrum. Despite being intuitively pleasing and computa-

tionally simple, this method cannot make any claim of optimality. In this part, we briefly review

the concept of Wiener filtering in the STFT domain. In this approach, the estimated speech

spectrum is obtained as X̂(k, l) = W (k, l)Y (k, l) where W(k,l) denotes the corresponding gain

function. The latter is derived by minimizing the mean square error (MSE) between the clean and

estimated speech spectra, which is mathematically expressed as

Ŵ (k, l) = argmin
W

E
{∣∣X(k, l)−WY (k, l)

∣∣2
}

(2.6)

with E{.} denoting the statistical expectation. Solving the above, we obtain the general form of

the complex-valued Wiener filter gain as

Ŵ (k, l) =
σxy(k, l)

σ2y(k, l)
(2.7)

where σxy(k, l) denotes the cross-PSD between the clean and noisy speech defined as E {X(k, l)Y ∗(k, l)}
and σ2y(k, l) denotes the noisy speech PSD [67]. In practice, both σxy and σ

2
y in (2.7) are unknown

and have to be estimated. Henceforth, we may drop the time frame and frequency indices for no-

tational convenience. Even though the estimation of σ2y can be done in a straightforward way, such

as recursive smoothing of the observations, Y (k, l), estimation of the cross-term σxy is generally

challenging and depends on the application [68]. Assuming uncorrelated clean speech and noise

signals, σxy and σ
2
y respectively simplify to the clean speech PSD, σ

2
x, and the sum σ2x + σ2v . Now,

by defining the a priori SNR as ζ = σ2x/σ
2
v , the Wiener filtering gain can be expressed as ζ/(1+ζ).
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The a priori SNR, which is a critical parameter in the context of noise reduction, can be estimated

through the conventional decision-directed approach [17] and its more advanced variations found

in [69, 70, 71]. The aforementioned method in (2.7) is the most conventional way for computing the

Wiener filter gain function from the available noisy speech. Several more advanced methods have

been proposed in the relevant literature in order to implement the Wiener filter more efficiently

and overcome some of its shortcomings, e.g. in [72, 73, 74].

2.1.4 Maximum Likelihood (ML) Estimators

Firstly proposed in [10], the ML estimation is the most conventional and simple method to estimate

speech STSAs. Therein, by using a two-state model for the presence or absence of the speech and

the ML estimation rule for the STSA, a class of noise suppression functions was developed, allowing

a trade-off of noise suppression against speech distortion. In the ML estimator of [10], the speech

is characterized by a deterministic waveform with unknown amplitude and phase while the noise

is assumed complex Gaussian. In this case, denoting the clean speech STFT by X = X ejω with

X and ω as the speech STSA and phase respectively, the distribution of noisy observations given

the speech signal is

p (Y |X , ω) = 1

πσ2v
exp

(
−|Y |

2 − 2X<{e−jωY }+ X 2

σ2v

)
(2.8)

where <{.} denotes the real value. Note that for ease of readability the time and frequency indices
have been dropped. Taking the statistical mean of p (Y |X , ω) over the nuisance parameter ω and

then maximizing it with respect to X , the ML estimator of the speech amplitude X is obtained as

the solution to the following

X̂ML = max
X

∫ 2π

0

p (Y |X , ω) p(ω)dω (2.9)

Using a uniform distribution for the speech phase ω and applying an exponential approximation

to the Bessel function appearing from the integration in (2.9), the following ML estimator was

derived [10]

X̂ML =
|Y |+

√
|Y |2 − σ2v
2

(2.10)
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More recently in [37], a phase equivalence between speech and noise spectral components was

assumed, resulting that Y = X + V with Y and V as the amplitude of observations and noise,

respectively. In that work, the following GGD model was considered for the distribution of the

noise amplitude

p(V) = abc

Γ(c)
Vac−1 exp(−bVa), V > 0; a, b, c > 0 (2.11)

with Γ(.) as the Gamma function and (a, b, c) as the distribution parameters. Taking into account

the phase equivalence between the speech and noise, the likelihood function p(Y|X ) is actually
p(V) in (2.11) with V replaced by Y − X . Maximizing the logarithm of this likelihood function

with respect to X results in the following generalized ML estimator

GML =
X̂
Y = 1− 1√

γ

(
ac− 1

a
√
c(c+ 2− a)

)1/a

, a ∈ {1, 2}, ac > 1 (2.12)

with γ denoting the a posteriori SNR defined as Y2/σ2v , and that the solution to the maximization

exists only for the given constraints in (2.12).

2.1.5 Maximum a Posteriori (MAP) Estimators

Apart from having limited noise reduction performance, an ML estimator does not take into

account the distribution of speech STSA (the so-called speech prior), whereas a proper model for

the speech prior can be used in a MAP estimator. In [75], under a complex Gaussian assumption for

the speech prior and a Bayesian framework, MAP estimators of the speech STSA were derived as

simpler alternatives to the Ephraim and Malah’s MMSE-based approach. Therein, three different

estimators were proposed, namely, the joint MAP estimator of speech spectral amplitude and

phase, the MAP estimator of the speech spectral amplitude and the MMSE estimator of speech

PSD. The joint MAP spectral amplitude and phase estimator can be expressed as [75]

(
X̂ (MAP), ω̂(MAP)

)
= argmax

X ,ω
p(X , ω|Y ) (2.13)

and closed-form solutions for the speech spectral amplitude and phase are derived from (2.13).

The interesting result, however, is that the estimator of the speech spectral phase obtained by

(2.13) is just the noisy phase of speech observations. The same result was deduced in [17] with
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the MMSE estimate of speech spectral phase. Next, the spectral amplitude-only estimator can be

given by solving the following [75]

X̂ (MAP) = argmax
X

Eω {p(X , ω|Y )} (2.14)

where using an exponential approximation to the Rician distribution, obtained from Eω {p(X , ω|X)},
leads to a closed-form solution. It is shown that this solution is a generalized form of the approx-

imate solution to the ML estimator proposed in [10]. Next, by deriving an expression for the

second moment of the Rician posterior, i.e., E{X 2|Y }, which is actually the MMSE estimate

of the speech spectral variance, σ2x, and taking its square root, an estimate of speech spectral

amplitude is obtained and combined with the noisy phase. Analysis of the behavior of the cor-

responding gain functions for all three estimators shows that they have a similar performance to

the Ephraim and Malah’s solution, whilst they permit a more straightforward implementation and

simpler expressions by avoiding Bessel and confluent hypergeometric functions.

More recently in [19], it was indicated through extensive experimentations that the class of

super-Gaussian distributions fits speech STSA priors more properly than the conventional Rayleigh

deduced from the complex Gaussian assumption for speech STFT coefficients. Therein, within the

framework of MAP spectral amplitude estimators, the distribution of the speech spectral amplitude

is modeled by a simple parametric function, which allows a high approximation accuracy for

Laplace- or Gamma-distributed real and imaginary parts of the speech STFT coefficients. Also, the

statistical model can be adapted using the noisy observations to optimally fit the distribution of the

speech spectral amplitudes. Based on the super-Gaussian statistical model, two computationally

efficient MAP spectral amplitude estimators are derived, which outperform the previously proposed

ones in [75] while owning the same simplicity as the estimators in [75]. The two estimators in

[19] include a joint amplitude-phase estimator and an amplitude-only estimator and can be both

expressed as extensions of the MAP estimators proposed in [75].

2.1.6 MMSE-Based (Bayesian) Estimators

Within the frequency domain class of methods, the Bayesian approach is particularly attractive

due to its superior performance. In this approach, an estimator of the clean speech is derived by

minimizing the statistical expectation of a cost function that penalizes errors in the clean speech
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estimate. Various Bayesian estimators of the STSA have been proposed on the basis of different

cost functions to model the error between the clean and estimated spectral amplitude. In this part,

we review briefly the most important Bayesian estimators of the speech STSA and their properties.

2.1.6.1 Ephraim and Malah’s MMSE and Log-MMSE Estimators

Since the spectral subtraction STSA estimation method is resulted from an optimal variance esti-

mator in the maximum likelihood sense, and also, the Wiener speech spectral estimator is derived

from the optimal MMSE signal spectral estimator, both of these conventional methods are not

optimal in the sense of spectral amplitude. This observation served as the primary motivation for

Ephraim and Malah to seek an optimal STSA estimation scheme. In [17], Ephraim and Malah

proposed a class of speech enhancement algorithms which capitalize the importance of the STSA

of speech signals. A speech denoising system using the MMSE criterion was proposed and its

performance was compared against the other widely used methods at the moment, i.e., the basic

Wiener filtering and spectral subtraction. The speech spectral component X(k, l) can be written

as X(k, l) = X (k, l)ejω(k,l) with X (k, l) being the spectral amplitude and ω(k, l) ∈ [−π, π] the
spectral phase. The STSA estimation algorithm aims at the estimation of the speech spectral am-

plitude, X (k, l), given the noisy spectral observation Y (k, l). To derive this estimator, the a priori

distribution of the speech and noise STFT coefficients should be known. Since in practice they

are unknown, a reasonable statistical model for the underlying distributions is required. In [17], it

is assumed that the STFT coefficients of each process can be modeled as statistically independent

complex Gaussian random variables with zero mean. However, the variance of both the speech

and noise STFT coefficients is, due to speech non-stationarity, time varying and therefore, it must

be estimated continuously. Therefore, the amplitude of the speech STFT coefficients, X (k, l),
has a Rayleigh distribution, whereas the phase component, ω(k, l), is considered to be uniformly

distributed over [0, 2π] and independent of the amplitude [76]. Hence, the following holds

p(Y |X , ω) = 1

πσ2v
exp

(
− 1

σ2v
|Y −X ejω|2

)
(2.15)

p(X , ω) = p(X )p(ω) = X
πσ2X

exp

(
−X

2

σ2X

)
(2.16)

where p(Yk|X , ω) is the distribution of noisy observations conditioned on the signal component,

p(X , ω) is the joint distribution of speech magnitude and phase. These parameters are generally
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unknown and have to be estimated beforehand. Now, the MMSE estimator of the speech STSA is

given as

X̂ (MMSE) = Argmin
X̂

E
{
(X − X̂ )2

}
(2.17)

It can be proved that the MMSE estimator above is equivalent to the conditional expectation

E {X |Y }. This statistical expectation can be solved using Bayes’ rule to express the a posteriori

distribution, p(X|Y ), leading to

E {X |Y } =
∫∞
0

∫ 2π
0
Xp(Y |X , ω)p(X , ω)dωdX∫∞

0

∫ 2π
0
p(Y |X , ω)p(X , ω)dωdX

(2.18)

By substitution of (2.15) and (2.16) into (2.18), the final solution to the Bayesian STSA estimation

problem can be obtained as [77]

X̂ (MMSE) = Γ(1.5)

√
ν

γ
M(−0.5, 1;−ν).|Y | (2.19)

where Γ(x) and M(a, b; z) denote the Gamma and confluent hypergeometric functions, respectively.

Also, the gain parameters γ and ν are defined as

ζ =
σ2X
σ2v

, γ =
|Y |2
σ2v

, ν =
ζ

1 + ζ
γ (2.20)

where ζ and γ are the so-called a priori and a posteriori SNR, respectively. Whereas ζ can be

interpreted as the instantaneous SNR, γ − 1 acts as a long-term estimator of the SNR. Note that

the STSA estimation solution can be always expressed as a gain function G multiplied by the

STSA of the noisy observations |Y |, hence, it can be interpreted as a linear filter in the frequency
domain.

In [17], the STSA estimation problem was formulated using the most basic cost function mod-

eling the error, i.e., the mean square error function. Although this led to an analytically tractable

solution with considerable improvements, it is not necessarily the most subjectively meaningful

cost function. This has led to the development of more recent cost functions and their correspond-

ing STSA estimation solutions in the relevant literature. In this direction, Ephraim and Malah

suggested a logarithmic MMSE version of their method in [18], which gained further improvements

in most of the evaluations. Therein, instead of the classical MMSE cost function in (2.17), they
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managed to optimize E
{
(logX − log X̂ )2

}
and used the theory of moments to come up with an

analytical solution.

2.1.6.2 Perceptually Motivated Bayesian Estimators

The MMSE cost function is most commonly used in estimation theory because it is mathematically

tractable and easy to evaluate. However, it might not be the most subjectively meaningful cost

function, as small and large MMSE estimation errors might not respectively correspond to good

and poor speech quality. To overcome the shortcomings of the MMSE cost function, in [29], a few

Bayesian estimators of the speech STSA based on perceptually motivated distortion measures were

proposed for the first time. In general, the Bayesian STSA estimation problem can be formulated as

the minimization of the expectation of a cost function representing a measure of distance between

the true and the estimated clean speech STSAs, denoted respectively by X (k, l) and X̂ (k, l). This
problem can be expressed as

X̂ (o) = argmin
X̂

E
{
C(X , X̂ )

∣∣Y
}

(2.21)

where C(.) is a particular Bayesian cost function and X̂ (o) is the optimal STSA estimate. Similar

to the spectral subtractive methods discussed earlier, the STSA estimate is combined with the

noisy phase of speech to provide an estimate of speech STFT coefficients. Further proceeding with

(2.21) requires the knowledge of the distribution of speech STSA conditioned on observation, i.e.,

p(X|Y ), since

E
{
C(X , X̂ )

}
=

∫ ∫
C(X , X̂ ) p (X , Y ) dXdY (2.22)

=

∫ [∫
C(X , X̂ )p (X|Y ) dX

]
p (Y ) dY

where actually the term inside the brackets has to be minimized with respect to X̂ . This is doable
in a Bayesian framework for p (X|Y ) using the distributions in (2.25). Loizou in [29] introduced the
idea of perceptually (to human ear) motivated cost functions and derived STSA estimators that

emphasize the spectral peak (formants) information and STSA estimators that take into account

the auditory masking effects of the human audition system. Therein, he proposed three classes of

Bayesian estimators. The first class of the estimators emphasizes spectral peak information of the
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speech signal, the second class uses a weighted Euclidean cost function that takes into account the

aforementioned auditory masking effects and the third class of estimators is developed to account

for spectral attenuation. It was concluded that, out of the three classes of the suggested Bayesian

estimators, those based on the auditory masking effect perform best in terms of having less residual

noise in the enhanced speech and better speech quality.

Within the same line of work, another major class of the Bayesian STSA estimators was

proposed in [31], which is known as the β-order MMSE estimator. The corresponding cost function

involves a parameter named β and employs β powers of the amplitude spectra. Thanks to the

degree of freedom provided by this parameter, trade-offs between the amount of noise reduction

and speech distortion were achieved therein and a few schemes for the experimental or adaptive

selection of this parameter were contributed. The experimental results proved the advantage of

the namely β-SA estimator, as compared to the previous versions of STSA estimation. Along the

same direction, later in [32], it was proposed to exploit a spectrally weighted development of the

β-order MMSE cost function including a new weighting parameter called α. Therein, new psycho-

acoustical schemes were suggested for the selection of the two parameters, i.e., α and β, based on

the properties of the human auditory system. Performance evaluations revealed improvements in

the so-called Wβ-SA estimator with respect to using the previously suggested MMSE cost functions

in this field. Later in [33], a more generalized Bayesian cost function was introduced by involving

a new spectral weighting term and it was indicated that the resulting STSA estimator, named as

generalized weighted SA (GWSA), provides further flexibility in the adjustment of the STSA gain

function. All the aforementioned STSA estimators can actually be derived as a particular case of

the latter.

To facilitate the discussion of the conventional Bayesian STSA estimators with the underlying

cost functions, a summary of the major STSA estimators is indicated in Table 2.1. In this table,

γ is the a posteriori SNR defined as |Y |2/σ2v , the gain function parameter ν is ζγ/(1 + ζ) and

M(., .; .) denotes the confluent hypergeometric function. Note that p, β and α are parameters that

shape the STSA gain function, and as explained, a few efficient schemes for their determination

have been proposed in the references in Table 2.1.
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Method
Bayesian cost

function
Gain function Properties

MMSE [17]
(
X − X̂

)2 √
ν
γ
Γ(1.5)M(−0.5, 1;−ν)

Basic version of

Bayesian STSA

estimators, optimal

in the amplitude

MMSE sense

Log-MMSE

[18]
(logX − logX )2 ν

γ
exp

(
1
2

∫∞
ν

e−t

t
dt

)

Outperforms the

basic version

through the use of

the logarithmic

distortion measure

(cost function) for

speech

WCOSH

[29]
X p
(
X
X̂ + X̂

X − 1
) √

ν
γ

√
Γ( p+3

2
)M(− p+1

2
,1;−ν)

Γ( p+1
2
)M(− p−1

2
,1;−ν)

Weighted cosine

hyperbolic cost

function, a

symmetric distortion

measure exploiting

auditory masking

effects

WE [29] X p
(
X − X̂

)2
√
ν
γ

Γ( p+1
2
+1)

Γ( p
2
+1)

M(− p+1
2

,1;−ν)
M(− p

2
,1;−ν)

p > −2

Distortion measure

motivated by the

perceptual weighting

technique used in

low-rate

analysis-by-synthesis

speech coders
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β-SA [31]
(
X β − X̂ β

)2
√
ν
γ

[
Γ(β

2
+ 1)M(−β

2
, 1;−ν)

]1/β

β > −2

Motivated first by

the generalized

spectral subtraction

method, provides

gain function

adjustments by the

selection of

parameter β

Wβ-SA [32]
(
Xβ−X̂β

Xα

)2
√
ν
γ

(
Γ(β−2α

2
+1)M(−β−2α

2
,1;−ν)

Γ(−α+1)M(α,1;−ν)

)1/β

β > 2(α− 1) , α < 1

Further flexibility in

the gain function,

selection of

parameters α and β

based on

psycho-acoustical

properties of human

audition

Table 2.1: Major Bayesian estimators of the speech STSA

2.1.7 Use of Speech Presence Probability (SPP)

The structure of the estimators discussed in this chapter is based on the assumption that speech

is actually present in the noisy speech in all time-frequency units. This is obviously not true for

speech pauses, i.e., periods where only noise is present. Moreover, for voiced speech, at a certain

time frame, most of the speech energy is concentrated in the frequency bins corresponding to

multiples of the fundamental frequency while the noise energy can be distributed in a wide range

of the spectrum. Therefore, development of the speech spectral estimators which take into account

the presence/absence of speech spectrum has been considered in the past, e.g., in [78, 79]. The

basic idea is to modify the conditional expectation E {f(X )|Y } (with f(X ) denoting any function
of X ) encountered in the STSA estimators. In this sense, the two hypotheses H0 and H1 denoting
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respectively the absence and presence of speech are defined as

H0 : Y (k, l) = V (k, l)

H1 : Y (k, l) = X(k, l) + V (k, l) (2.23)

Now the conditional expectation E {f(X )|Y } can be expressed as

E {f(X )|Y } = E {f(X )|Y,H1}P(H1|Y ) + E {f(X )|Y,H0}P(H0|Y ) (2.24)

where P(.) denotes the probability. It is obvious that since the aforementioned expressions for

the STSA estimators are derived under the assumption of speech presence only, they are in fact

equivalent to the term E {f(X )|Y,H1} in (2.24). Also, it is concluded that E {f(X )|Y,H0} = 0

due to the absence of the speech component under the H0 hypothesis. In practice, however, for

perceptual reasons, a small nonzero value is used for this term in the implementation [79]. To

obtain an expression for P(H1|Y ), the common approach is to use Bayes’ rule which results in [22]

P(H1|Y ) =
Λ

1 + Λ
(2.25)

where Λ is called the likelihood ratio and is given by

Λ =
1− q

q

p (Y |H1)

p (Y |H0)
=
1− q

q

exp(ν)

1 + ζ
1−q

(2.26)

with q as the a priori probability of speech absence defined as P(H0). To derive the right side of

equation (2.26), complex Gaussian distributions are assumed for the noisy observations under H1

and H0. It should be noted that both fixed values and adaptively estimated values (as a function

of time-frequency unit) have been used for q = P(H0) in the literature. Whereas in [17, 18],

performance of the STSA estimators has been evaluated using constant experimental values of q,

Cohen in [80] suggests to estimate this parameter using a recursive algorithm in time and frequency.

The same author has also suggested an efficient modification of the log-MMSE estimator using the

concept of SPP in [81] and has called the resulting STSA estimator the optimally modified log-

spectral amplitude (OM-LSA). Therein, he proposes to incorporate the SPP into the log-MMSE
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estimator as the following

E{logX|Y } = E{logX|Y,H1}(1− q) + E{logX|Y,H0}q (2.27)

Using the expression for the log-MMSE estimator as in [18], the following is derived

X̂ = exp (E{logX|Y }) = (exp (E {logX|Y,H1}))1−q × (exp (E {logX|Y,H0}))q (2.28)

And expressing the above STSA estimator in terms of gain functions results in the following

expression for the OM-LSA estimator

GOM-LSA = (GH1)
1−q (GH0)

q (2.29)

with GH1 as the gain function of the log-MMSE estimator in Table 2.1 and GH0 chosen as a fixed

minimum gain function, Gmin, which is set experimentally. The a priori probability of speech

absence, q, is estimated in [81] in a recursive manner for each time-frequency unit as part of the

IMCRA noise PSD estimation method. Combining the IMCRA method for noise estimation and

the suggested OM-LSA method in [81], it is shown that excellent noise suppression is achieved

while retaining weak speech spectral components and avoiding the musical noise phenomena.

2.2 Speech STSA Priors

The speech STSA estimators discussed in the previous section and the STSA estimators represented

in Table 2.1 are all based on using the Rayleigh distribution to model the speech STSA. The

latter arises from the fact that speech STFT coefficients are generally assumed to have a complex

Gaussian distribution. Recently, however, there have been numerous works directed towards the

estimation of speech STSA using super-Gaussian statistical models, especially for the speech STSA.

In [82] and references therein, various non-Gaussian distribution models for the speech STSA are

discussed, which include exponential, Laplacian, Chi, Gamma (one-sided) and generalized Gamma

distributions. These distributions each have unknown parameters and different speech data-based

(adaptive) schemes have been proposed for the estimation of their corresponding parameters.

According to the experiments in [83, 84], the generalized Gamma distribution (GGD) has the
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potential to fit the empirical (e.g., histogram-based) distribution of speech STSAs best; however,

closed-form solutions for an STSA estimator are available only for specific choices of the parameters

of the GGD. In fact, the GGD is a very flexible parametric distribution which covers many super-

Gaussian distributions as particular cases. The one-sided GGD family with the shape parameters

a and c and the scaling parameter b is given by [37]

p
GGD

(X ; a, b, c) = abc

Γ(c)
X ac−1 exp(−bX a); X ≥ 0, a, b, c > 0 (2.30)

Note that since this part deals with spectral amplitude estimation, only right-sided distributions

are discussed. In fact, the GGD model is a very generalized form of different super-Gaussian

distributions and a few useful super-Gaussian distributions in the context of STSA estimation can

be derived by considering particular choices of the GGD model, which are summarized in Table 2.2.

Table 2.2: Parameter sets of the GGD leading to Rayleigh, Gamma, Chi, or exponential speech
STSA models.

Parameters of the GGD STSA Prior

a = 2, c = 1 Rayleigh

a = 1 Gamma

a = 2, b = 1/2 Chi

a = 1, c = 1 Exponential

Figure 2.2 shows GGD values for a few choices of its shaping parameters and b = 2. This

indicates that by a dynamic selection of these parameters at each STFT frequency bin and time

frame, one can gain control over the statistical model of the speech STSA and thus the corre-

sponding gain function of STSA estimators. In a theoretical viewpoint, the estimation of GGD

parameters can be done through an ML procedure using the available noisy speech data. However,

the exact determination of the GGD parameters independently by solving likelihood equations is

cumbersome [84]. In the context of speech STSA estimation, however, closed-form solutions (for

ML, MAP or MMSE-based) estimators are available only for the choices of a = 1 and a = 2. Note

that for the choice of a = 2, the GGD prior is actually simplified into a generalized form of the

Chi distribution with 2c degrees of freedom and 1/
√
2b as the scale parameter.
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Figure 2.2: One-sided GGD function for different values of the scale parameters and b = 2.

Also, the second moment of the GGD prior in (2.30), i.e., the speech STSA variance, is given

as the following [37]

σ2X =





c(c+1)
b2

, if a = 1

c
b
, if a = 2

(2.31)

Therefore, having an estimation of the speech STSA spectral variance, σ2X , the scale parameter b

will be obtained based on the choice of the shaping parameters. Various combinations of the GGD

shape parameters that lead to specific closed-form solutions for speech STSA estimators have been

presented in [37]. Therein, solutions have been presented for the case of MMSE-based estimators

using Gaussian and exponential speech priors, and MAP estimators using GGD speech priors with

a = 1, 2. It is concluded that in the case of MMSE-based estimation, higher order shape parameters

generally result in numerical analysis since such expressions rely on integrations with no closed-

form solution. Also, in the case of MAP estimators, certain combinations of lower order shape

parameters can result in monotonic cost functions for which a MAP solution does not actually

exist. STSA estimation solutions using special cases of the GGD for noise distribution have also

been discussed in [37]; yet, in accordance with the results reported in [22], no improvements have

been obtained as compared to using the Gaussian distribution for noise. Table 2.3 summarizes the

major solutions of STSA estimation using the GGD prior presented in [37]. Note that in this table,

(as, cs) and (av, cv) respectively denote the GGD shape parameters for the clean speech and noise

priors. In [85], a group of log-spectral amplitude (LSA) estimators has been proposed, using GGD

priors with a = 1, 2. Therein, due to providing mathematical flexibility in the statistical STSA
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modeling, objective improvements with respect to several older STSA estimators including the

LSA estimator in [18] have been achieved. Although closed-form solutions are not obtainable for

the general case of a = 1, 2, estimators were expressed in [85] as limits, and were mathematically

approximated. In [86], MMSE-based and MAP estimators of speech STSA have been proposed

based on Gamma and Chi priors for speech STSA, and data-driven schemes for the selection of

the shape parameter of the priors have been suggested. In that work, rather than relying on a

priori estimated values of the shape parameter, the focus is on seeking those values that maximize

the quality of the enhanced speech, in an a posteriori fashion. To this end, the performance of

the parameter selection schemes is first evaluated as a function of the shape parameter and then

optimal values are found by means of a formal subjective listening test. The main conclusion

was that the shape parameters control a trade-off between the level of the residual noise and its

musical character. Also, it was found that the optimal parameter values maximizing the subjective

performance are different from those maximizing the scores in objective performance measures. It is

believed that this discrepancy is mainly due to the poor ability of objective measures to penalize the

musical noise artifacts. Another finding of the research in [86] is that very close performance results

can be obtained using the same estimator, i.e., MMSE-based or MAP, but with different STSA

priors. This can be attributed to the flexibility provided by the shape parameters of the STSA

prior, allowing the listener to closely match the performance of two estimators with different speech

priors. As further conclusions of this work, the type of the estimators, i.e., MMSE-based or MAP,

has significant impact on the quality of the enhanced speech. Whereas MAP estimators result

in lower residual noise levels, the MMSE-based estimators are more successful in the restoration

of the speech spectral components and are able to achieve higher scores in the objective speech

quality measures. Both types of STSA estimators, however, can produce an enhanced speech free

of musical noise artifacts, given the correct setting of their parameters.

In [87], a generalized MAP estimator using the Gamma STSA prior along with a data-driven

scheme to estimate its shape parameter has been proposed. The shape parameter scheme is based

on the fact that a higher estimated SNR corresponds to stronger presence of speech components

with respect to noise, and thus, a higher gain value is required for speech segments with higher

SNRs. Therefore, since the derived gain function is monotonically decreasing with the Gamma

shape parameter, the proposed parameter scheme suggests lower shape parameters for higher

SNRs and vice versa. Performance comparisons with other conventional STSA estimators, i.e.,
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The STSA estimators discussed so far incorporated improved statistical models with the original

MMSE or log-MMSE cost functions. In [88], the authors make use of the Chi STSA prior to derive

estimators using perceptually motivated spectral amplitude cost functions, namely the WE and

WCOSH primarily developed in [29]. The major purpose in [88] is to determine the advantage

of incorporating improved cost functions with more accurate (i.e., super-Gaussian) STSA priors.

Therein, it was shown that whereas the perceptually-motivated cost functions emphasize spectral

valleys rather than spectral peaks (formants) and indirectly account for auditory masking effects,

the incorporation of the Chi STSA prior demonstrates considerable improvement over the Rayleigh

model for the speech prior. Yet, no systematic parameter choice has been proposed for the two

WE and WCOSH estimators and the shape parameter of the corresponding Chi STSA prior is

selected empirically. Along the same line of work, in [89], the authors take advantage of the β-

order MMSE cost function first adopted in [31] with Laplacian priors for the real and imaginary

parts of speech STFT coefficients. Even though using a Laplacian model as speech prior primarily

results in a highly non-linear estimator with no closed-form solution and high computation costs,

by using approximations for the distribution of speech STFT and also for the involved Bessel

functions, an improved closed-form version of the estimator has been derived and evaluated in [89].

The comparative evaluations reported therein confirm the superiority of the suggested estimator

relative to the state-of-the-art estimators that assume either Gaussian or Laplacian STSA priors

such as [90].

Based on the aforementioned works, it can be concluded that even though statistical methods

for the estimation of the parameters of super-Gaussian priors exist, e.g., [91], subjectively driven

schemes based on speech observations or solid theoretical methods to maximize objective measures

such as [86, 87] have been proved to be more efficient in the speech enhancement literature.

2.3 Multi-Channel STSA Estimation

Whereas the single channel speech enhancement methods work reasonably well for most appli-

cations, their performance quickly deteriorates under adverse noisy conditions. Moreover, such

methods are incapable of providing improvements in the noise reduction without introducing dis-

tortion on the clean speech component. In order to achieve higher reduction in the background

noise while keeping the speech distortion in the minimum possible level, researchers have developed
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multi-microphone (multi-channel) methods to exploit all available temporal and spatial informa-

tion of the speech and noise sources [46]. In general, it can be assumed that in many of the large

area noisy environments (e.g., offices, cafeterias and airport terminals), noise propagates simulta-

neously in all directions and has negligible spatial correlation across the different sensors [92]. In

this section, we first state the multi-channel speech enhancement problem in the spatially uncorre-

lated case and then briefly overview the multi-channel extension of the STSA estimation method

by assuming the direction of arrival (DOA) of the captured speech source known.

2.3.1 Multi-Channel Problem Statement

Suppose that we have a uniform linear array (ULA) consisting of N omni-directional sensors each

spaced d meters apart capturing a far-field speech source at a known incident angle (DOA) equal

to θ, as illustrated in Figure 2.3. This assumption implies no relative attenuation across the

microphone signal amplitudes and also a constant time delay due to the planar shaped waveforms

[46]. Note that the problem can be simply extended to any arbitrary-shaped microphone array.

The set of N microphones captures the noisy observation waveforms yn(t), consisting of the time

delayed clean speech signals x(t− τn) contaminated by additive spatially uncorrelated noises vn(t),
where n is the microphone index and τn is the relative time delay of the speech signal in the nth

microphone with respect to the reference (first) microphone. In a ULA set of microphones, this

time delay is (n− 1)d cos(θ)/T with θ as the DOA in radian and T is the velocity of sound in the

air in meters per second. Based on this notation, we have

yn(t) = x(t− τn) + vn(t), n = 1, 2, ..., N (2.32)

where x(t) is the coherent speech signal under estimation. After sampling, framing and STFT

analysis, the noisy speech signal can be represented as

Yn(k, l) = X(k, l)e−jφn,k + Vn(k, l), n = 1, 2, ..., N (2.33)

Note that the complex exponential e−jφn,k is multiplied by the source speech signal component

X(k, l) to account for the time delay across different microphone signal observations in the STFT

domain.
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Figure 2.3: An N equispaced linear microphone array capturing the speech source s(t) located in
the far field impinging at the incident angle θ.

It is easy to show that the phase difference φn,k is obtained as 2πfsτnk/K with fs as the

sampling frequency and K the number of total frequency bins. Henceforth, we will drop the

frequency bin k and frame index l for sake of brevity. We assume the speech and noise components

to be uncorrelated, as it is often implied in a free field (non-reverberant) noisy environment without

echoes. Also we consider spatially uncorrelated noise signals across the microphone observations,

that is

E{VnVm} = E{Vn}E{Vm} = 0, ∀ n,m ∈ {1, 2, ..., N}, n 6= m (2.34)

The speech spectral component X can be written as X ejω with X ≥ 0 as the spectral amplitude

and ω ∈ [−π, π] the spectral phase. Given the time delay of arrival τn (or equivalently e−jφn), the

STSA estimation aims at the estimation of X using the set of noisy spectral observations Yn.

2.3.2 Multi-channel Extension of the Bayesian STSA Estimation

Multi-channel extensions of the STSA estimation method for spatially uncorrelated noise have

been reported in the recent literature such as in [40]. In the single channel case, Bayesian STSA

estimators are derived based on the conditional expectation, E{f(X )|Y } with f(.) some function
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depending on the underlying Bayesian cost function. In the multi-channel case, however, this

statistical expectation should be replaced by E{f(X )|Y} with Y = [Y1, Y2, · · · , YN ]T as the vector
of microphone array observations, and this leads to

E {f(X )|Y} =
∫∞
0

∫ 2π
0
f(X )p(Y|X , ω)p(X , ω)dωdX∫∞

0

∫ 2π
0
p(Y|X , ω)p(X , ω)dωdX

(2.35)

To obtain a solution for (2.35), joint distribution of the observations conditioned on the speech

signal, i.e. p(Y|X , ω), is needed. In general, by considering the spatial correlation across the

channels, a multi-variate joint distribution is to be used for p(Y|X , ω). Yet, inserting such a

distribution in (2.35) may not result in mathematically tractable solutions for the corresponding

integrals. In the spatially independent (uncorrelated) noise field, however, due to the independence

of the observations conditioned on the speech signal, this joint distribution can be obtained as the

product of the individual distributions of the observations for each channel, namely,

p(Y|X , ω) =
N∏

n=1

p(Y |X , ω) =
(

N∏

n=1

1

πσ2vn

)
exp

(
−

N∑

n=1

|Yn −X ejωe−jφn |2
σ2vn

)
(2.36)

where the complex Gaussian distribution is considered for the individual distributions of the ob-

servations in (2.33). Note that the noise variances σ2vn need to be estimated for all channels

independently. Using Rayleigh distribution for the speech STSA, i.e., the same model as that in

(2.16), and substituting (2.36) into (2.35), closed-form solutions can be achieved for the estimate

of X based on the choice of the underlying Bayesian cost function. In the case of an MMSE STSA

estimator, observing that f(X ) = X and using Appendix A in [40], we can obtain

X̂ (MMSE) = Γ(1.5)

(
σ2X

1 +
∑N

n=1 ζn

)1/2

M(−0.5, 1;−ν) (2.37)

where σ2X is the speech signal variance, ζn =
σ2
X

σ2
vn

is the a priori SNR for channel n and ν is given

as

ν = λ

∣∣∣∣∣

N∑

n=1

Yne
jφn

σ2vn

∣∣∣∣∣

2

with
1

λ
=

1

σ2X
+

N∑

n=1

1

σ2vn
(2.38)
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This is the same result as that obtained in [40] but with taking into account the phase difference

parameter, φn, to compensate for the relative time delay across the spatial microphone observa-

tions. In the special case of N = 1, the single channel MMSE estimator in [17] can be degenerated

from (2.37). Other multi-channel extensions of the STSA estimation method using more recent

Bayesian cost functions, e.g., log-MMSE, β-SA and perceptually motivated ones, have also been

reported in [40, 41, 93].

2.4 Reverberation Suppression in the STFT Domain

2.4.1 Reverberation in Enclosed Spaces

As discussed in chapter 1, as part of this research, we focus on the problem of reverberation sup-

pression in the STFT domain. One of the major challenges in speech enhancement stems from

the degradation of the speech by an acoustic channel within an enclosed space, e.g., an office,

meeting or living room. In the case that the microphones are not located near the desired source,

the received microphone signals are degraded by the reverberation introduced by the multi-path

propagation of the clean speech to the microphones. While numerous state-of-the-art acoustic

signal processing algorithms are available for noise reduction, the development of practical algo-

rithms that can mitigate the degradations caused by reverberation under robust assumptions has

been an ongoing challenge in the literature. One major concern about speech enhancement in the

presence of reverberation is that the degrading component is correlated with the desired speech,

whereas in case of a noise-only environment, noise can be assumed to be independent of the desired

speech. For this reason, many existing acoustic signal processing techniques, e.g., noise reduction,

source localization, source separation and automatic speech recognition, completely fail or suffer

dramatical degradation when reverberation is present [42].
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Figure 2.4: Illustration of the direct path and a single reflection from the speech source to the
microphone.

Reverberation can be intuitively described by the concept of reflections. The desired source of

speech generates wavefronts propagating outward from the source and these wavefronts reflect off

the walls of a room or different objects and then superimpose at the microphone. This is illustrated

in Figure 2.4 with an example of a direct path and single reflection of the speech wavefront. Due to

the difference in the length of the propagation paths and also the amount of sound energy absorbed

or reflected by the wall, each wavefront arrives at the microphone with a different amplitude and

phase, and therefore, reverberation refers to the presence of delayed and attenuated replicas of the

speech source in the received signal. This received signal consists of a direct path signal, reflections

arriving shortly after the direct sound, i.e., the early reverberation, and reflections arriving after

the early reverberation, i.e., the late reverberation. The combination (sum) of the direct path

signal and early reverberation is referred to as the early component of speech and is often of

interest in reverberation suppression methods [43].

A simple schematic of the model we consider for the received microphone signals in the presence

of room reverberation is shown in Figure 2.5. In this figure, the block named as acoustic channel(s)

actually models the channel between the source of speech and the microphone(s). As seen in this

figure, the clean speech signal generated by the speech source passes through the acoustic channel(s)

and is contaminated by additive noise from the surrounding environment. The resulting speech

signal is captured next by the microphone(s). It should be noted that, given the aim is to perform

reverberation suppression blindly, the acoustic channels as well as the environment are considered

unknown and no prior information is assumed about them.
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Figure 2.5: Modeling of the observed microphone signal(s) in a reverberant environment.

2.4.2 Problem Formulation

Reverberation is basically the process of multi-path propagation of a speech signal x(m) from its

source to one or multiple microphones, with m denoting the discrete time index. Based on the

general model in Figure 2.5, the observed signal at the nth microphone, yn(m), is the sum of

noise, vn(m), and the convolution of the clean speech with the impulse response(s) of the acoustic

channel(s), as the following [42]

yn(m) = x(m) ∗ hn(m) + vn(m) =

Lh−1∑

`=0

hn(`)x(m− `) + vn(m) (2.39)

where hn(m) is the so-called room impulse response (RIR) for the nth channel with the length of

Lh, and ∗ denotes the convolution operation. The ultimate aim of dereverberation is to obtain

an estimate of the clean speech, x̂(m) using the set of observations yn(m), n ∈ {1, 2, · · · , N}.
We consider this to be a blind problem, as neither the speech signal x(m) nor the acoustic RIRs

hn(m) are available. It should be noted that typical acoustic impulse responses consist of several

thousand coefficients, making the estimation of the RIR too difficult in practice (furthermore, the

RIR can be time-varying in some scenarios). Therefore, in this work, we restrict our attention to

completely blind reverberation suppression techniques in which there exists no requirement for the

estimation of RIRs.
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Figure 2.6: Plot of a typical acoustic impulse response with illustrated early and late parts of the
RIR.

As the distance between the speech source and microphones increases, the direct-to-reverberant

ratio (DRR), i.e., the counterpart of the signal-to-noise ratio (SNR) in reverberant environments,

decreases. In this sense, the reverberation becomes dominant and the quality and intelligibility

of speech are deteriorated. Thus, reverberation suppression becomes necessary for a speech com-

munication system. However, it is well accepted that the first few reflections of the direct path

of the speech do not degrade the speech quality/intelligibility as perceived by human ear [42, 43].

In fact, these first reflections, since often being so similar to the direct path speech, may even

help improving the intelligibility (i.e., the human’s ability to perceive the speech) and also the

SNR in noisy reverberant fields. Thus, the focus of most reverberation suppression techniques is

to reduce the effect of the later reflections of speech, leaving the primary reflections as they are

[43]. In this work also, we do not intend to dereverberate the speech signal completely and aim

at the estimation of the primary reflections of the direct path speech. Based on this fact, the

entire reverberation, or equivalently the RIR, can be split into two parts: the early and the late
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components, as the following

hn(m) =





hnE
(m), 0 ≤ m < LE

hnL
(m), LE ≤ m < Lh

0, Otherwise

(2.40)

with hnE
(m) and hnL

(m) denoting the early and late component of the RIR for the nth microphone,

and LE is the length of the early component. In practice, the latter is often selected as fsTearly

with fs as the sampling frequency and Tearly ranging from 40 ms to 80 ms [42]. A measured typical

RIR with its early and late components have been shown in Figure 2.6.

Now, inserting the model in (2.40) into (2.39) results in

yn(m) =

LE−1∑

`=0

hnE
(`)x(m− `)

︸ ︷︷ ︸
ynE

(m)

+

Lh−1∑

`=LE

hnL
(`)x(m− `)

︸ ︷︷ ︸
ynL

(m)

+ vn(m) (2.41)

with ynE
(m) and ynL

(m) respectively as the early and late reverberant components of the obser-

vations yn(m). In the same fashion as the noise-only environments, by expressing (2.41) in the

STFT domain, it follows that

Yn(k, l) = YnE
(k, l) + YnL

(k, l) + Vn(k, l) (2.42)

In summary, our aim of reverberation suppression in the STFT domain is to obtain an estimate of

the early reverberant component, YnE
(k, l), by reducing the late reverberation, YnL

(k, l), and the

possibly existent noise Vn(k, l). In this regard, we tend to resort to techniques where no a priori

information of the RIR or environment or its estimates are needed.

2.5 Shortcomings of the State-of-the-Art STSA Estima-

tion Methods

Based on the content of this chapter, we herein summarize some of the shortcomings of the state-of-

the-art STSA estimators, which have motivated us to develop some of the contributions presented

in the following two chapters. These shortcomings can be categorized as the following:
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1. In Section 2.1.6, different Bayesian cost functions exploited to derive the MMSE-based es-

timators were discussed. Another major factor to derive such estimators is the type of

distribution used to model the speech STSA, i.e., the speech prior, which was discussed in

Section 2.2. Even though there has been considerable contribution on both of these topics in

the state-of-the-art literature, the best possible combination of the underlying Bayesian cost

function and speech prior is still not known. Also, despite the existence of a few empirical

and/or intuitive schemes for the parameter selection of these estimators, a widely accepted

parameter selection scheme resulting in the best experimental results for a general noise

scenario does not exist.

2. Considering the gain function of the state-of-the-art Bayesian STSA estimators, e.g., those

in Section 2.1.6, it is evident that only the information in the amplitude of the speech is

exploited in the estimator’s gain function, while the phase information is disregarded. In

fact, in the derivation of these estimators, it is assumed that speech phase is totally random

and is uniformly distributed over [0, 2π). Yet, the observed noisy phase or any estimate of

the speech phase can be employed in order to provide more information about the clean

speech signal in the derivation of the STSA estimators. This is in addition to the fact that,

contrary to the conventional speech literature, recently, the speech phase has been found to

be useful in reconstructing the clean speech signal from noisy observations, e.g., [27].

3. In the sense of multi-channel STSA estimation in spatially uncorrelated noise, as discussed in

Section 2.3, estimators based on a few Bayesian cost functions have been proposed, e.g., in [40,

41, 93]. However, similar to the single-channel, there is still need to develop a generalized form

of the multi-channel STSA estimator using a combination of the most efficient Bayesian cost

function and speech prior. Also, regarding the multi-channel STSA estimation in spatially

correlated noise, since following (2.35) directly does not lead to a closed-form solution for

the estimator’s gain function, development of a systematic way to obtain a general solution

for this multi-channel problem is required.

4. All considered STSA estimators in this chapter are based on the assumption of a free-field

(non-reverberant) environment. However, in practical scenarios, the speech source is located

in an acoustic room where the clean speech is convolved with the unknown impulse response

of the room prior to reception by microphones. The phenomenon, named as reverberation,
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not only distorts the quality of the captured speech but also deteriorates highly the noise

reduction performance of the STSA estimators designed for noise-only environments [42].

Even though modified spectral enhancement methods (those developed initially for noise

reduction) for reverberation suppression have received attention in the past, e.g. in [43], the

performance of such modified noise reduction methods is still far from being satisfactory.

Therefore, further research in this direction is required.
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Chapter 3

Single-Channel Noise Reduction Using

Bayesian STSA Estimation

3.1 Introduction

In this chapter, we develop a method for single-channel noise reduction using Bayesian STSA

estimation. This chapter is organized as follows. Section 3.2 gives a brief review of the considered

STSA estimator in this chapter, i.e., the Wβ-SA estimator. Section 3.3 describes the proposed

speech STSA estimator, including the proposed schemes for the parameter selection of the Bayesian

cost function as well as a new gain flooring scheme for STSA estimators. In Section 3.4, we exploit

the generalized Gamma distribution (GGD) to model the speech prior for the proposed STSA

estimator and suggest an efficient method for the estimation of its parameters. Performance of the

proposed STSA estimation method is evaluated in Section 3.5 in terms of objective performance

measures. Conclusions are drawn in Section 3.6.

3.2 Previous Work

In this section, a brief overview of a generic STSA estimation method, namely the Wβ-SA estima-

tor, is presented. This estimator will be used as a basis for further developments in this chapter.

As stated in Chapter 2, the STFT domain representation of the noisy speech can be expressed as

Y (k, l) = X(k, l) + V (k, l) (3.1)
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where Y (k, l), X(k, l) and V (k, l) are the STFTs of the noisy observation, clean speech and noise,

respectively, with k ∈ {0, 1, . . . , K − 1} and l ∈ N denoting the frequency bin and time frame

indices, respectively. Expressing the complex-valued speech coefficients, X(k, l), as X (k, l)ejΩ(k,l)

with X and Ω as the amplitude and phase in respect, the purpose of speech STSA estimation is

to estimate the speech amplitude, X (k, l), given the noisy observations, Y (k, l). The estimated

amplitude will then be combined with the noisy phase of Y (k, l) to provide an estimate of the

speech Fourier coefficients. For sake of brevity, we may discard the indices k and l in the following.

As discussed in Chapter 2, the weighted version of the β-SA, i.e., the Wβ-SA estimator, is

known to be advantageous with respect to the other Bayesian estimators. In fact, previously

proposed Bayesian cost functions can be expressed as a special case of the underlying Wβ-SA cost

function, which is defined as [32]

C(X , X̂ ) = X α
(
X β − X̂ β

)2
(3.2)

with α and β as the corresponding cost function parameters. Note that, for notational ease, we

have used α as the exponent of X rather than −2α as in [32]. Minimizing the expectation of the

cost function in (3.2) results in [32]

X̂ (Wβ-SA) =

(
E{X β+α|Y }
E{X α|Y }

)1/β
(3.3)

Now, solving for the moments in (3.3) in a Bayesian framework results in the following gain function

[32]

G(Wβ-SA) ,
X̂ (Wβ-SA)

|Y | =

√
ν

γ

(
Γ
(
α+β
2
+ 1
)
M
(
−α+β

2
, 1;−ν

)

Γ
(
α
2
+ 1
)
M
(
−α

2
, 1;−ν

)
)1/β

(3.4)

where Γ(.) and M(., .; .) denote the Gamma and confluent hypergeometric functions [77], respec-

tively, and the gain parameters γ and ν are defined as

γ =
|Y |2
σ2v

, ν =
ζ

1 + ζ
γ , ζ =

σ2X
σ2v

(3.5)

where ζ and γ are called the a priori and a posteriori SNRs, respectively. Figure 3.1 shows

theoretical gain curves of the estimator in (3.4) for different values of the parameters α and β.
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Herein, the fixed values ζ=0dB and γ=0dB are considered to account for a highly noisy scenario. It

is observed that the STSA gain function is mainly controlled by two parameters, and in particular,

an increment in either of the two, especially α, would result in an increment in the gain function

values. This realization will be used in the following sections to propose new schemes for the choice

of these parameters.

β
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Figure 3.1: STSA gain function curves in (3.4) versus β for different values of α ( ζ=0 dB and γ=
0 dB).

Plourde and Champagne in [32] suggested to select the two estimator parameters as functions of

frequency, according to the psycho-acoustical properties of the human auditory system and showed

a better quality in the enhanced speech in most of the input SNR range. Yet, at high input SNRs,

the performance of the developed estimator is not appealing due to the undesired distortion in

the enhanced speech. This motivates us to develop more appropriate schemes for the selection of

the parameters α and β. Furthermore, the Wβ-SA estimator in (3.4) has been derived under the

assumption of a Rayleigh distribution (i.e., the most basic distribution) for the speech STSA X
and has not taken advantage of the category of GGD priors for X , which were discussed in Chapter
2. Therefore, we will also explore the use of GGD speech priors for the Wβ-SA estimator as part

of this chapter.
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3.3 Proposed Speech STSA Estimator

In this section, we discuss the proposed schemes for the estimation of the Wβ-SA parameters

as well as the suggested gain flooring scheme for the gain function of an STSA estimator. The

presented contributions in this chapter have been published in [94].

3.3.1 Brief Description of the Proposed Method

Figure 3.2 shows a block diagram of the proposed STSA estimator. An initial estimate of the speech

STSA is first obtained to calculate the noise masking threshold and the estimator parameters. This

preliminary estimate can be obtained through a basic STSA estimator, e.g., the MMSE estimator

in [17], as only a rough estimate of the speech STSA is needed at this step. As the experiments

revealed, use of more accurate estimates of the speech STSA, either in the calculation of the noise

masking threshold or in the parameters of the STSA estimator, do not result in any considerable

improvements in the performance of the entire algorithm. Next, the STSA estimator parameters,

α and β, are estimated using both the noise masking threshold and the available initial estimate

of the speech STSA. These two parameters along with the noisy speech are fed into the STSA

gain calculation block. Note that noise-related parameters, i.e., the noise spectral variance and the

a priori SNR, should be estimated within this block in order to achieve the gain function value.

This gain function is further thresholded and modified by the proposed gain flooring scheme. This

modified gain is the ultimate gain function being applied on the STSA of the noisy speech and

leading to the enhanced STSA in the output. The enhanced STSA is to be combined with the

phase of the noisy speech to generate the STFT of the enhanced speech.

3.3.2 Parameter Selection of the New Wβ-SA Estimator

Selection of parameter α:

In the original Wβ-SA estimator [32], the parameter α was selected as an increasing piecewise-

linear function of frequency, in order to increase the contribution of high-frequency components

of the speech STSA in the Bayesian cost function. This is because these frequencies often include

small speech STSAs that can be easily masked by stronger noise components. However, increasing

the values of this parameter monotonically with the frequency without considering the estimated
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speech STSA values results in over-amplification of high-frequency components, and therefore, a

large amount of distortion may appear in the enhanced speech. We here employ the available initial

estimate for the speech STSA, denoted by X̂0(k, l) (the one used to calculate the noise masking

threshold), to propose a new scheme for the selection of α.
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Figure 3.2: Block diagram of the proposed speech STSA estimation algorithm.

Specifically, we propose to select α according to the following scheme

α(k, l) =





cα
X̂0(k,l)
X̂0,max(l)

, if X̂0(k, l) ≥ X̂0,max(l)
4

0 , otherwise

(3.6)

where X̂0,max(l) is the maximum value of the initial STSA estimate over the frequency bins at frame

l and cα, which determines the maximum value taken by α, is experimentally fixed at 0.55 to avoid

excessively large α values. The major reasoning for the proposed frequency-based selection of the

parameter α is to emphasize the weighting term X α in (3.6) for larger speech spectral components,

while avoiding the use of such weighting for smaller components within each frame. This further

helps to distinguish the speech STSA components from the noise components of the same frequency

at each frame. In fact, if the speech STSA, X̂0(k, l), falls above the threshold X̂0,max(l)/4, increasing

α results in the magnification of the weight X α in (3.2), provided that the speech STSA, X , is
greater than unity. In contrast, for the speech STSA values smaller than the threshold, α is

simply set to zero implying no further emphasis on the speech STSA component. In this case,
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the Wβ-SA estimator actually turns into the β-SA estimator in [31]. It should be noted that the

threshold X̂0,max(l)/4 was selected as a means to compare the relative intensity of the speech STSA

components within the same frame. Also, the normalization with respect to X̂0,max ensures that the

resulting value of α will not be increased excessively in frames where X̂0(k, l) takes on large values.

Note that the magnification of strong speech components through the suggested selection of α can

also be justified by considering Figure 3.1, where an increment in α results in the increment of the

gain function value, and in turn, amplifying the speech components. In Figure 3.3, the choice of

the parameter α versus lower frequency bins for a noisy speech frame along with the corresponding

initial estimate of the speech STSA have been illustrated. In Section 3.5, it will be shown that

the undesirable distortion resulting from the original selection of α as in [32] is compensated for

by using the proposed scheme.

Selection of parameter β:

The adaptive selection of parameter β was primarily suggested in [31] as a linear function of frame

SNR. Later in [95], it was suggested to choose this parameter as a linear function of both the frame

SNR and noise masking threshold. This masking threshold is often used to model the masking

properties of the human auditory system and is defined as the threshold value below which the

noise is not sensible to the human ear due to the presence of speech signals [57]. The following

expression is used to estimate the parameter β in [95]

d e f g h f i j k l m in o p o q o r o s o t o
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χ � � � � � �
α � � � � �χ � � � � �

� � e f � � � � � � � � h f
Figure 3.3: Variation of the proposed choice of α versus frequency bins, compared to that of the
initial speech STSA estimate for a frame of noisy speech.
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β(1)(k, l) = d0 + d1SNR(l) + d2T (k, l) + d3 max{SNR(l)− d4, 0}T (k, l) (3.7)

where SNR(l) is the frame SNR in dB, T (k, l) is the normalized noise masking threshold [57]

and di’s are empirically fixed values. T (k, l) represents the threshold below which the human

auditory system cannot recognize the noise component and its calculation, which requires an

initial estimate of the speech STSA, say X̂0(k, l), involves a multiple-step algorithm, as detailed

in [95]. The motivation for the choice of β in (3.7) is to increase the gain function values in

frames/frequencies with higher frame SNRs or noise masking thresholds, given that the β-SA gain

function [31] is a monotonically increasing function of β. The corresponding observations Y (k, l)

are dominated by strong speech components and it is hence desirable to employ a larger gain

value in the enhancement process. In [32], however, from a psycho-acoustical point of view, it was

suggested to choose β based on the compression rate between the sound intensity and perceptual

loudness in the human ear. The suggested β therein takes the following form

β(2)(k) =
log10 (g1k + g2)

log10
(
g1

K
2
+ g2

) (βmax − βmin) + βmin (3.8)

where K is the number of STFT frequency bins, g1 and g2 are two constants depending on the

physiology of the human ear [96] and βmax and βmin are set to 1 and 0.2, respectively. However,

since β is chosen only as a function of the frequency, it is not adapted to the noisy speech.

Furthermore, as experiments show, there may appear excessive distortion in the enhanced speech

using the STSA estimator with this parameter choice, especially at high SNRs. Hence, we propose

to use the adaptive approach in (3.7) as the basis for the selection of β, but to further apply the

scheme in (3.8) as a form of frequency weighting to take into account the psycho-acoustics of the

human auditory system within each frame. Specifically, the following approach is proposed for the

selection of β:

β(k, l) = Cβ β
(1)(k, l) β(2)(k) (3.9)

where the purpose of the constant Cβ=1/0.6 is to scale up to one the median value of the frequency

weighting parameter β(2)(k) in (3.8).

56



3.3.3 Gain Flooring Scheme

In frequency bins characterized by weak speech components, the gain function of STSA estimators

often approaches very small, near zero values, implying too much attenuation on the speech signal.

To avoid the resulting speech distortion, various flooring schemes have been applied on the gain

function values in these estimators. In [95], it is suggested to make use of the noise masking

threshold in the spectral flooring scheme by employing a modification of the generalized spectral

subtraction method in [57], namely,

GM(k, l) =





G(k, l), if γ(k, l) > ρ1(k, l)

√
ρ2(k,l)
γ(k,l) , otherwise

(3.10)

where G(k, l) and GM(k, l) are the original and modified (thresholded) gain functions, respectively,

and ρ1(k, l) and ρ2(k, l) are given by [95]

ρ1(k, l) = 5.28
T (k, l)− Tmin(l)

Tmax(l)− Tmin(l)
+ 1

ρ2(k, l) = 0.015
T (k, l)− Tmin(l)

Tmax(l)− Tmin(l)

(3.11)

with Tmin(l) and Tmax(l) denoting the minimum and maximum of T (k, l) at the lth frame. The

a posteriori SNR, γ(k, l), is used in the top branch of (3.10) as an indicator of the speech signal

intensity while the term

√
ρ2(k,l)
γ(k,l) in the bottom branch determines the thresholded value of the

gain function. Still, (3.10) is characterized by a number of limitations. As originally proposed

by Cohen in [97], the gain function itself is a more relevant indicator of speech signal intensity

and is therefore more appropriate for use in the thresholding test than γ(k, l). Another problem

with (3.10) is that the thresholded value may increase uncontrollably at very low values of γ(k, l).

Rather than relying on γ(k, l), it was suggested in [98] to make use of the estimated speech STSA

in the thresholded value, i.e.,

G′M(k, l) =





G(k, l), if G(k, l) > µ0

1
2
µ0|Y (k,l)|+X̂ (k,l−1)

|Y (k,l)| , otherwise

(3.12)
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where µ0 is a fixed threshold taken between 0.05 and 0.22. Our experimentations, however, pro-

vided different proper values for µ0 in various noise scenarios and input SNRs. Hence, considering

the wide range of values for the gain function and also the variations in speech STSA, it is appro-

priate for the threshold µ0 to be selected as a function of the frame and frequency bin. Herein,

by employing the adaptive threshold ρ1(k, l) in (3.11) and using a variable recursive smoothing for

the thresholded value, we propose the following alternative flooring scheme

G′′M(k, l) =





G(k, l), if G(k, l) > ρ1(k, l)

p(k,l)X̂0(k,l)+[1−p(k,l)]X̂ (k,l−1)
|Y (k,l)| , otherwise

(3.13)

where p(k, l) is the speech presence probability which can be estimated through a soft-decision

noise PSD estimation method. Using the popular improved minima controlled recursive averaging

(IMCRA) in [80] provides enough precision for the estimation of this parameter in the proposed

gain flooring scheme. According to (3.13), for higher speech presence probabilities or equivalently

in frames/frequencies with stronger speech components, the contribution of the current frame in

the recursive smoothing through the term X̂0(k, l) will be larger than that of the previous frame

X̂ (k, l − 1). Conversely, in case of a weak speech component in the current frame, the smoothing

gives more weight to the previous frame. Hence, this choice of the flooring value favors the speech

component over the noise component in heavily noisy conditions where the gain function is mainly

determined by the second branch in (3.13).

3.4 Extension of Wβ-SA Estimator Using GGD Prior

As discussed in Chapter 2, use of the parametric GGD model as the STSA prior, due to providing

further flexibility in the resulting gain function, is advantageous compared to the conventional

Rayleigh prior. In this section, we first derive an extended Wβ-SA estimator under the GGD

speech prior and then propose an efficient method to estimate its corresponding parameters.
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3.4.1 Wβ-SA Estimator with GGD Prior

The GGD model can be expressed as

p(X ) = abc

Γ(c)
X ac−1 exp(−bX a); X ≥ 0, a, b, c > 0 (3.14)

with a and c as the shape parameters and b as the scaling parameter [37]. To obtain a solution to

the Wβ-SA estimator as in (3.3), we consider the moment term E{Xm|Y } based on the above PDF
for the speech STSA. In view of the comprehensive experimental results in [22, 23] for different

values of a and in order to arrive at a closed-form solution in the Bayesian sense, we choose a=2 in

our work. Then, the GGD prior is simplified into a generalized form of the Chi distribution with

2c degrees of freedom and 1/
√
2b as the scale parameter [99]. Based on the second moment of the

derived Chi distribution, it can be deduced that the two parameters b and c satisfy the relation

c/b = σ2X [100]. Therefore, the scale parameter b has to be chosen as c/σ2X , given an estimate of the

speech STSA variance, σ2X , and the shape parameter c. Using an estimate of the noise variance,

σ2v , and the a priori SNR, ζ, we can obtain an estimate of the speech STSA variance as σ2X = ζσ2v .

The selection of the shape parameter c will be discussed in the next subsection. Taking this into

consideration, the following expression for the STSA moment can be derived (see Appendix A for

details):

E{Xm|Y } = Γ
(
m+2c
2

)
M

(
2−m−2c

2
, 1;−ν ′

)

Γ(c)λm/2M(1− c, 1;−ν ′) (3.15)

where

λ =
c

σ2X
+

1

σ2v
, ν ′ =

ζ

c+ ζ
γ (3.16)

Now, by using (3.15) into (3.3) we can derive

G(MWβ-SA) =

√
ν ′

γ

(
Γ
(
α+β+2c

2

)
M

(
2−α−β−2c

2
, 1;−ν ′

)

Γ
(
α
2
+ c

)
M

(
2−α−2c

2
, 1;−ν ′

)
)1/β

(3.17)

where the notation MWβ-SA is used to denote the modified Wβ-SA estimator. It is obvious that,

when c=1 which corresponds to the Rayleigh prior as a special case, (3.17) degenerates to the

original Wβ-SA. In the following, we present a simple approach for the selection of the GGD

parameter c for the proposed STSA estimator.
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3.4.2 Estimation of GGD Prior Parameters

In [22, 23], an experimentally fixed value in the range of [0,2] has been used for the GGD shape

parameter c in different noisy scenarios. Rather than using experimental values, we here take

advantage of the behavior of the proposed gain function in (3.17) with respect to the shape pa-

rameter c and propose an adaptive scheme for the determination of this parameter. Figure 3.4

depicts curves of the proposed gain function in (3.17) versus the shape parameter c for different a

posteriori SNRs. As observed, increasing the shape parameter leads to a monotonic increase of the

gain function for all considered values of SNR. Note that for stronger speech STSA components

(or equivalently weaker noise components) a larger gain function value is desirable in general.
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Figure 3.4: Gain function of the modified Wβ-SA estimator in (3.17) versus the GGD shape
parameter c for different values of γ (ζ=-5dB).

Therefore, we suggest to choose the shape parameter as a linear function of the SNR values at

each frame, namely,

c(l) = cmin + (cmax − cmin) ζnorm(l) (3.18)

where, based on the comprehensive experimentations in [37], cmin and cmax are chosen as 1 and 3,

respectively and 0 < ζnorm(l) < 1 is the normalized a priori SNR, i.e.,

ζnorm(l) =
ζav(l)− ζmin(l)

ζmax(l)− ζmin(l)
(3.19)
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with ζav(l) as the a priori SNR being averaged over the frequency bins of the lth frame, and ζmin(l)

and ζmax(l) as the minimum and maximum of the a priori SNR at the same frame, respectively.

According to (3.18), the shape parameter c takes on its values as a linearly increasing function of

the SNR in its possible range between cmin and cmax, leading to the appropriate adjustment of

the estimator gain function based on the average power of the speech STSA components at each

frame.

3.5 Performance Evaluation

In this section, we first introduce some of the most important objective measures used for the

assessment of speech quality in noise reduction methods. Next, we evaluate in detail the perfor-

mance of the proposed single-channel STSA estimation method using the described performance

measures.

3.5.1 Performance Measures for Noise Reduction

Even though subjective evaluation of speech enhancement algorithms, i.e., the evaluation through

listening tests, is often accurate and promising, it is often costly and time consuming. For this

reason, much effort has been made on the development of objective measures assessing speech

quality with high correlation to the subjective methods. In [101], a comprehensive study has

been performed to assess the correlation of the existing objective measures with the introduced

distortions in the speech by the underlying enhancement method and the overall quality of the

noise-suppressed speech. Furthermore, based on the accomplished analysis, accurate adjustment

and fine tuning of the parameters involved in the calculation of the objective measures were done

in [101] and MATLAB codes for the implementation of the most important performance measures

were provided in [7], including perceptual evaluation of speech quality (PESQ), segmental SNR

(SNRseg), log-likelihood ratio (LLR), weighted-slope spectral distance (WSS), Itakura-Saito dis-

tance(IS), and cepstrum distance measures (CEP). In [101], it was found that, of all the tested

objective measures, the PESQ measure yields the highest correlation with the overall quality and

signal distortion judged by subjective testing. Also, it was concluded that the SNRseg and LLR

measures perform almost as well as the PESQ but with lower computational costs, and therefore,

they can be thought of as simple alternatives to the PESQ measure. All in all, we found in our
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experiments that most of the important objective measures are often consistent but some like

SNRseg are more sensitive to the amount of noise reduction and some like LLR are more sensitive

to the signal distortion present in the enhanced speech. In the sequel, we discuss in brief the three

performance measures that we mainly used for the evaluation of our method, i.e., PESQ, SNRseg

and LLR.

PESQ: This measure is one of the most complex to compute yet very favorable performance mea-

sure, particularly in assessing noise suppression methods. It is basically the one recommended by

ITU-T (International Telecommunication Union, Telecommunication Standardization Sector) for

speech quality assessment of narrow-band handset telephony and also narrow-band speech codecs

[102]. Nowadays, PESQ is a widely accepted industrial standard for objective voice quality eval-

uation and is standardized as ITU-T recommendation P.862 [102]. Since PESQ measurements

principally model the Mean Opinion Scores (MOS), it has a close connection to subjective perfor-

mance tests performed by humans. In essence, the PESQ score is computed as a linear combination

of the average disturbance value Dind and the average asymmetrical disturbance value Aind as the

following [101]

PESQ = a0 + a1Dind + a2Aind (3.20)

where a0 = 4.5, a1 = −0.1, and a2 = −0.0309. Generally, this score takes a value between 1

and 4.5, with 4.5 rated as the highest and 1 rated as the lowest quality of speech. Multiple linear

regression analysis was used in [101] to optimize the parameters a0, a1 and a2 as the aforementioned

values for speech distortion, noise distortion, and overall quality.

SNRseg: The segmental SNR measure was originally proposed in [103] as

SNRseg =
1

L

L−1∑

`=0

10 log10

( ||x`(n)||2
||x`(n)− x̂`(n)||2

)
(3.21)

where y`(n) and ŷ`(n) denote vectors consisting of the clean and enhanced speech at frame `,

respectively, and L is the number of frames in the entire speech signal. As suggested in [101], only

frames with an SNR in the range of 10 to 35 dB were considered in the averaging in (3.21). LLR:

This performance measure is one of the mostly used linear prediction coefficient (LPC) -based
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scores in speech enhancement and is defined for each speech frame as [101]

LLR = log

(
apRca

T
p

acRcaT
c

)
(3.22)

where ap and ac are row vectors containing the LPC coefficients of the enhanced and clean speech

signals at each frame, respectively, and Rc is the auto-correlation matrix of the clean speech signal

at the frame. To discard unrealistically high values obtained by (3.22), the lower 95% of the frame

LLR values are used to calculate the average LLR. Also, the frame LLR values given by (3.22) are

restricted in the range of [0, 2] to further reduce the number of outliers [101]. Contrary to PESQ

and SNRseg, a lower LLR score indicates a higher speech quality.

3.5.2 Evaluation of the Proposed Method

In this section, we evaluate the performance of the proposed STSA estimation methods using ob-

jective speech quality measures. First, the performance of the proposed STSA parameter selection

and gain flooring schemes are compared to the previous methods. Next, the proposed GGD-based

estimator is compared to the estimators using the conventional Rayleigh prior. Due to the perfor-

mance advantage of the generic Wβ-SA estimator over the previous versions of STSA estimators,

it is used throughout the following simulations.

Various types of noise from the NOISEX-92 database [104] were considered for the evaluations,

out of which the results are presented for three types of noise, i.e., white, babble and car noises.

Speech utterances including 10 male and 10 female speakers are used from the TIMIT speech

database [105]. The sampling rate is set to 16 kHz and a Hamming window with length 20 ms and

overlap of 75% between consecutive frames is used for STFT analysis and overlap-add synthesis. In

all simulations, the noise variance is estimated by the soft-decision IMCRA method [80] eliminating

the need to use a hard-decision voice activity detector (VAD). Also, the decision-directed (DD)

approach [17] is used to estimate the a priori SNR.

To illustrate graphically the advantage achieved by the proposed parameter selection scheme,

first we plot the speech spectrograms for the noisy, clean and enhanced speech signals for the

case of babble noise in Figure 3.5. We considered the original frequency-based scheme in [32] and

compared it to the suggested scheme in Section 3.3 where for both schemes, the gain flooring in

(3.13) is used. It is observed that, particularly at low frequencies, the estimator with the original
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scheme cannot preserve the clean speech component satisfactorily, whereas it over-amplifies other

parts of the speech spectrum. The disappearance of the very low-frequency portion of the spectral

content is mainly due to the too small values of the parameter α given by this scheme. However,

the proposed parameter selection scheme is capable of retaining most of the strong components of

the clean speech spectrum, especially in the low frequencies. Further noise reduction can also be

observed through the use of the proposed selection schemes for α and β.

To evaluate the efficiency of the proposed parameter selection schemes as well as the proposed

gain flooring scheme, we herein present the performance measures for the Wβ-SA estimator with

the parameter scheme in [32], the Wβ-SA estimator using the proposed parameter selection in

Section 3.3 and also the same estimators with the proposed gain flooring in (3.13). We employed

the gain flooring scheme in [98] or (3.12) in cases where the proposed gain flooring is not used,

since the closest results to the proposed flooring were obtained under this scheme. The LLR

results for the three noise types in the range of input global SNR between -10 dB and 10 dB are

presented in Figure 3.6. As stated in Section 3.3, the original choice of the parameters of the Wβ-

SA estimator results in an excessive distortion in the enhanced speech, which is observable through

the LLR values in Figure 3.6. Yet, the suggested adaptive parameter selection completely resolves

this problem and is also able to yield further improvement. Moreover, the use of the recursive

smoothing based gain flooring in (3.13) is able to remove further speech distortion compared to

the gain flooring scheme in [98] as given by (3.12), especially at higher SNRs. This is due to the

incorporation of the estimated speech, which is strongly present at high SNRs, in the flooring value

instead of using the noise masking threshold-based method. The result is that the gain floor is kept

at more moderate levels in order not to distort the existing speech components. Similar trends

can be observed in Figure 3.7 and Figure 3.8 in terms of the speech quality determined by PESQ

and noise reduction evaluated by segmental SNR measurements, respectively. As it is observed, in

cases where the proposed parameter setting is able to provide only minor improvements over the

original method, the combination of the proposed parameters with the gain flooring improves the

performance to a considerable degree.

To have a more detailed evaluation of each of the suggested schemes, we present the results

obtained by individually applying each of them to the Wβ-SA estimator. In Tables 3.1-3.3, PESQ

results for the Wβ-SA estimator considering α=0 (corresponding to the β-SA estimator), α=0.22

(an empirically fixed choice of α), original scheme for α as in [32] and the proposed scheme for α in
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(3.6). In all cases, the proposed scheme for β and so for the gain flooring have been employed. It

is observed that, whereas the employment of the STSA weighting through the parameter α results

in a considerable improvement compared to the β-SA estimator, as seen in the last row of the

tables. Within the same line, Tables 3.4-3.6 are representative of the evaluations performed on the

Wβ-SA estimator by using β=1.82 (an empirically fixed value), β given by (3.7), β given by (3.8)

and the proposed choice of β as in (3.9). In all cases, we employed α as proposed in (3.6) and the

gain flooring proposed in (3.13). It can be deduced that, apart from the benefit obtained by the

frequency-dependent choices of β through (3.7) and (3.8) over the fixed choice of this parameter,

the suggested scheme in (3.9) is able to achieve notable improvements compared to the others.

To investigate the performance improvement attained by the proposed gain flooring scheme in

(3.13) individually, we implemented the Wβ-SA estimator in Section 3.3 using different gain floor-

ing schemes. In Figure 3.9, PESQ results have been shown for this estimator using the developed

gain flooring in (3.13), those given by (3.10) and (3.12), as well as a fixed gain thresholding with

µ0=0.08. It is observed that, whereas the gain flooring in (3.12) leads to improvements with respect

to the conventional fixed thresholding, the one in (3.10) only slightly outperforms the employed

fixed flooring. This shows that the gain function itself, as used in (3.12), is a better measure for

gain flooring compared to the a posteriori SNR used in (3.10). This is the reason we based our

gain flooring scheme on (3.12) but further employed the noise masking concept to threshold the

gain function values. As illustrated, the proposed gain flooring outperforms the scheme in (3.12)

considerably even in the higher range of the input SNR. This is due to the fact that, even at such

SNRs, there are frequencies in which the gain function decays abruptly below the threshold value,

requiring an appropriate flooring value to keep the speech components.

Next, we investigated the performance advantage obtained by the proposed GGD-based estima-

tor in Section 3.4 over the original Rayleigh-based estimator [32]. Also, to illustrate the superiority

of the proposed scheme for the selection of the GGD parameter c in Section 3.4 with respect to

the employed fixed values as in [37], we considered the same GGD-based estimator with different

choices of the parameter c. In Figure 3.10, PESQ results are plotted for the original and suggested

Wβ-SA estimators as well as two fixed choices of the parameter c in the range of [cmin, cmax] as in

Section 3.4. As observed, whereas the use of a GGD speech prior with fixed choices of c results in

improvements with respect to the Rayleigh speech prior in most of the cases, the suggested SNR-

based scheme for choosing c is capable of providing further enhancement compared to different
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fixed c choices. Other choices of the parameter c did not result in further improvements than those

considered herein.

To evaluate the performance of the proposed GGD-based Wβ-SA estimator in Section 3.4

with respect to the recent STSA estimators using super-Gaussian priors, we considered the STSA

estimation methods proposed in [34, 85]. In [85], the GGD model with a few choices of fixed

parameters is applied as the STSA prior using the Log-MMSE estimator, whereas in [34], WE

and WCOSH estimators (originally introduced in [29]) are developed exploiting a Chi PDF with

fixed parameters as the STSA prior. Figure 3.11 illustrates speech spectrograms for the afore-

mentioned STSA estimators in the case of babble noise. Through careful inspection of the speech

spectrograms, it is observed that the proposed estimator is capable of maintaining clean speech

components at least as much as the other estimators whereas further noise reduction, especially in

the lower frequency range, is clearly obtained by using the proposed estimator. In Figures 3.12-

3.14, performance comparisons for the same estimators are depicted in terms of LLR, PESQ and

segmental SNR respectively. We used the gain flooring scheme proposed in Section 3.3 for all of

the estimators. It is observed that, while the estimators suggested in [34] perform better than the

one in [85] in most of the cases, the proposed STSA estimator in Section 3.4 is able to achieve

superior performance especially at the lower SNR. This is mainly due to the further contribution

of the speech STSA in the Bayesian cost function parameters through (3.2) as well as properly

selecting the STSA prior shape parameter using (3.18) to adjust the gain function values. Whereas

the latter is assigned a fixed value in the two previous STSA estimation methods, careful selection

of this parameter based on the estimated a priori SNR leads to a more accurate model for the

speech STSA prior.
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Figure 3.5: Spectrograms of (a): input noisy speech, (b): clean speech, (c): enhanced speech by
the original Wβ-SA estimator and (d): enhanced speech by the proposed Wβ-SA estimator, in
case of babble noise (Input SNR=5 dB).
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Figure 3.6: LLR versus global SNR for different Wβ-SA estimators, (a): white noise, (b): babble
noise and (c): car noise.
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Figure 3.7: PESQ versus global SNR for different Wβ-SA estimators, (a): white noise, (b): babble
noise and (c): car noise.
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Figure 3.8: SNRseg versus global SNR for different Wβ-SA estimators, (a): white noise, (b):
babble noise and (c): car noise.
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Figure 3.9: PESQ versus global SNR for Wβ-SA estimator with the proposed parameters in
Section 3.3 using different gain flooring schemes, (a): white noise, (b): babble noise and (c): car
noise.
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Figure 3.10: PESQ versus global SNR for the Rayleigh-based estimator in Section 3.3, the GGD-
based estimator in Section 3.4 with c = 1.5, 2.5 and the proposed choice of c in Section 3.4, (a):
white noise, (b): babble noise and (c): car noise.
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Figure 3.11: Spectrograms of (a): input noisy speech, (b): clean speech, (c): enhanced speech by
WE estimator with Chi prior in [34], (d): enhanced speech by WCOSH estimator with Chi prior
in [34], (e): enhanced speech by Log-MMSE estimator with GGD prior in [85] and (f): enhanced
speech by the proposed Wβ-SA estimator with GGD prior in Section 3.4, in case of babble noise
(Input SNR=5 dB).
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Figure 3.12: LLR versus global SNR for the STSA estimators in [34, 85] and the proposed STSA
estimator in Section 3.4, (a): white noise, (b): babble noise and (c): car noise.
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Figure 3.13: PESQ versus global SNR for the STSA estimators in [34, 85] and the proposed STSA
estimator in Section 3.4, (a): white noise, (b): babble noise and (c): car noise.
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Figure 3.14: SNRseg versus global SNR for the STSA estimators in [34, 85] and the proposed
STSA estimator in Section 3.4, (a): white noise, (b): babble noise and (c): car noise.
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Table 3.1: PESQ values for the Wβ-SA estimator with different schemes of parameter α, case of
white noise.

Input SNR (dB) -10 -5 0 5 10

Input Noisy Speech 1.13 1.26 1.47 1.75 2.06

Choice of α=0 1.49 1.70 2.03 2.39 2.72

Choice of α=0.22 1.49 1.73 2.06 2.41 2.76

Original Choice of α 1.50 1.73 2.08 2.44 2.78

Proposed Choice of α 1.54 1.77 2.14 2.49 2.81

Table 3.2: PESQ values for the Wβ-SA estimator with different schemes of parameter α, case of
babble noise.

Input SNR (dB) -10 -5 0 5 10

Input Noisy Speech 1.31 1.56 1.83 2.14 2.43

Choice of α=0 1.48 1.71 2.03 2.40 2.73

Choice of α=0.22 1.51 1.82 2.14 2.42 2.77

Original Choice of α 1.54 1.86 2.16 2.45 2.79

Proposed Choice of α 1.58 1.91 2.23 2.51 2.82

Table 3.3: PESQ values for the Wβ-SA estimator with different schemes of parameter α, case of
car noise.

Input SNR (dB) -10 -5 0 5 10

Input Noisy Speech 1.41 1.54 1.71 2.01 2.32

Choice of α=0 1.57 1.76 2.06 2.40 2.75

Choice of α=0.22 1.58 1.78 2.11 2.46 2.77

Original Choice of α 1.60 1.81 2.15 2.50 2.79

Proposed Choice of α 1.66 1.88 2.20 2.54 2.84
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Table 3.4: PESQ values for the Wβ-SA estimator with different schemes of parameter β, case of
white noise.

Input SNR (dB) -10 -5 0 5 10

Input Noisy Speech 1.13 1.26 1.47 1.75 2.06

Choice of β=1.82 1.48 1.69 2.00 2.32 2.68

Choice of β in [57] 1.53 1.74 2.08 2.39 2.72

Choice of β in [98] 1.52 1.74 2.06 2.42 2.75

Proposed Choice of β 1.54 1.77 2.14 2.49 2.81

Table 3.5: PESQ values for the Wβ-SA estimator with different schemes of parameter β, case of
babble noise.

Input SNR (dB) -10 -5 0 5 10

Input Noisy Speech 1.31 1.56 1.83 2.14 2.43

Choice of β=1.82 1.49 1.73 2.04 2.42 2.73

Choice of β in [57] 1.55 1.88 2.18 2.46 2.76

Choice of β in [98] 1.55 1.88 2.17 2.47 2.79

Proposed Choice of β 1.58 1.91 2.23 2.51 2.82

Table 3.6: PESQ values for the Wβ-SA estimator with different schemes of parameter β, case of
car noise.

Input SNR (dB) -10 -5 0 5 10

Input Noisy Speech 1.13 1.26 1.47 1.75 2.06

Choice of β=1.82 1.60 1.81 2.09 2.43 2.76

Choice of β in [57] 1.63 1.84 2.14 2.49 2.78

Choice of β in [98] 1.62 1.83 2.14 2.51 2.80

Proposed Choice of β 1.66 1.88 2.20 2.54 2.84
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3.6 Conclusion

In this work, we presented new schemes for the selection of Bayesian cost function parameters

in parametric STSA estimators, based on an initial estimate of the speech and the properties of

human audition. We further used these quantities to design an efficient flooring scheme for the

estimator’s gain function, which employs recursive smoothing of the speech initial estimate. Next,

we applied the GGD model as the speech STSA prior to the Wβ-SA estimator and proposed

to choose its parameters according to the noise spectral variance and the a priori SNR. Due to

the more efficient adjustment of the estimator’s gain function by the suggested parameter choice

and also further keeping the speech strong components from being distorted through the gain

flooring scheme, our STSA estimation schemes are able to provide better noise reduction as well

as less speech distortion compared to the previous methods. Also, by taking into account a more

precise modeling of the speech STSA prior through using the GGD function with the suggested

adaptive parameter selection, improvements were achieved with respect to the recent speech STSA

estimators. Quality and noise reduction performance evaluations indicated the superiority of the

proposed speech STSA estimation with respect to the previous estimators. It is worth mentioning

that a wide range of subjective testing of the proposed method as opposed to previous methods

has also been conducted during this research. We have found that the proposed method is capable

of providing further noise reduction along with lower undesirable speech distortion, as compared

to the other methods.
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Chapter 4

Multi-Channel Bayesian STSA

Estimation for Noise Suppression

4.1 Introduction

Whereas single microphone approaches are found to provide limited performance improvement,

their multiple microphone counterparts have gained increasing popularity. This is mainly due to

their capability in maintaining the introduced speech distortion at a low level while providing

higher levels of noise reduction [46]. In this regard, considering multi-channel noise reduction

in the STFT domain, two groups of methods can be recognized: those treating the ambient

noise spatially (i.e., across microphones) uncorrelated and those taking into account the spatial

correlation in noise. In the category of Bayesian STSA estimators, based on different cost functions

and speech STSA priors, single channel methods have been widely developed and investigated in

the literature. However, their multiple channel counterparts have not been explored thoroughly,

particularly in the case of spatially correlated noisy environments.

In [28], it is assumed that the microphone array observations are spatially uncorrelated and

then a speech STSA estimator is used for each microphone observation separately. However, no

optimal solution is proposed on how to combine the outputs resulting from the processing of each

channel. Also, as discussed in Section 2.3, there have been a few multi-channel extensions of

Bayesian STSA estimators for spatially uncorrelated noise, which take into account MMSE, log-

MMSE and β-SA cost functions and also super Gaussian speech priors [40, 41, 93]. Yet, similar to

the single channel case, there has been no unified generalization of these estimators and selection
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of the corresponding parameters, considering the available cost functions and speech priors. In

fact, this problem can be thought of as the multi-channel extension of the same problem targeted

in Chapter 3 in the spatially uncorrelated noisy environment.

As discussed in Chapter 2 and is seen in Table 2.3, the gain function of all existing Bayesian

STSA estimators depends only on the spectral amplitude of the speech signal and is not decided

based on the spectral phase. However, like many other types of signals, the phase of the speech

signal carries useful information about its structure and can be incorporated in further improving

the quality of enhanced speech [27]. Therefore, incorporation of the speech spectral phase in

Bayesian STSA estimators can lead to more accurate and less distorting gain functions. This topic

is targeted in this chapter for the multi-channel speech enhancement in spatially uncorrelated noise

with single channel as a special case.

The assumption of spatially uncorrelated noise is approximately true for some applications,

e.g. when the spacing between microphones is large so that the incoming noise can be dealt as

spatially white. However, in real world applications, the incoming noise at a microphone array is

often correlated across the microphones and therefore the aforementioned assumption is inaccurate.

This is specifically true for closely placed microphones or in circumstances with speech-like noise

(interference) so that the impinging interference on the microphone array shows correlations across

different microphones [46]. Thus, it is necessary to explore and develop the multi-channel STSA

estimation method for the case of spatially correlated noise as part of this chapter. It will be

revealed that the extension of a single-channel Bayesian STSA estimation to the corresponding

spatially correlated multi-channel case can be done under a unified framework but it requires

the estimation of further information, i.e., the DOA of the impinging speech signal and the PSD

(spectral correlation) matrix of the background noise.

The rest of this chapter is organized as follows. In Section 4.2, a brief summary of the proposed

approaches is given. Section 4.3.1 discusses the extension of the proposed Wβ-SA estimator in

Chapter 3 to multi-channel in spatially uncorrelated noise. In Section 4.3.2, the proposed Bayesian

STSA estimator using the speech spectral phase is presented. Performance evaluation of the pro-

posed uncorrelated multi-channel STSA estimators is performed in Section 4.3.3. Section 4.4.1 is

devoted to the generic extension of the single-channel to the multi-channel STSA estimation under

known DOA and noise PSD matrix. In Section 4.4.2, the proposed approach for the estimation
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of the spatial noise PSD matrix is explained. This section is followed by the performance evalu-

ation of the proposed schemes for the correlated multi-channel STSA estimation in Section 4.4.3.

Conclusions are drawn in Section 4.5.

4.2 Brief Description of the Proposed Methods

In this chapter, first we generalize the proposed Wβ-SA estimator in Chapter 3 to the multi-

channel case with spatially uncorrelated noise. It will be seen that, under the Bayesian framework,

a straightforward extension from the single-channel to the multi-channel case exists by generalizing

the STSA estimator parameters, i.e., α and β. Next, we present the development of Bayesian

STSA estimators by taking advantage of speech spectral phase rather than relying only on the

spectral amplitude of observations, contrary to the conventional methods. We develop STSA

estimators with spectral phase by using the basic MMSE as well as the Wβ-SA cost functions.

This contribution is considered for the multi-channel scenario with single-channel as a special case.

Next, we tackle the problem of multi-channel STSA estimation under spatially correlated noise

and derive a generic structure for the extension of a single-channel estimator to its multi-channel

counterpart in the Bayesian framework. It is shown that the derived multi-channel extension

requires estimates of the DOA and the spatial PSD matrix of noise. Subsequently, we aim at

the estimation of the noise PSD matrix, that is not only important for the multi-channel STSA

estimation scheme but also highly useful in different beamforming methods.

The presented contributions in this chapter have been published in [106] and [107].

4.3 Multi-Channel STSA Estimation in Spatially Uncor-

related Noise

In this section, we first extend the proposed Wβ-SA estimator of the previous chapter to the case

of multi-channel with spatially uncorrelated noise. Next, we propose the Bayesian estimation of

speech STSA using spectral phase in the multi-channel case.
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4.3.1 Extension of the Proposed Wβ-SA Estimator to Multi-Channel

We consider the same problem formulation as that in Section 2.3.1, where a microphone array

consists of N omni-directional sensors each spaced d meters apart, that receives a far-field speech

source at a known DOA equal to θ. The microphone array captures the noisy observations yn(t)

which consists of the time delayed clean speech signals x(t − τn) corrupted by additive spatially

uncorrelated noises vn(t), with n as the microphone index and τn as the relative time delay of the

speech signal in the nth microphone with respect to the reference (first) microphone. Therefore,

it follows that

yn(t) = x(t− τn) + vn(t), n = 1, 2, ..., N (4.1)

where x(t) is the speech signal under estimation. After sampling, framing and STFT analysis, the

noisy speech signal can be represented as

Yn(k, l) = X(k, l)e−jφn,k + Vn(k, l), n = 1, 2, ..., N (4.2)

The phase differential term, φn,k, can be obtained as 2πfsτnk/K with fs as the sampling frequency

and K as the total number of frequency bins. By expressing (4.2) in the vector form, we have

Y(k, l) = X(k, l)Φ(k) +V(k, l) (4.3)

with Y = [Y1, Y2, · · · , YN ]T , V = [V1, V2, · · · , VN ]T , and Φ = [φ1, φ2, · · · , φN ]
T as the so-called

steering vector in the STFT domain. The latter is assumed to be known or estimated beforehand

in this section (This is actually equivalent to the estimation of the DOA, which has been explored

widely in the literature [46]). Note that the frequency bin k and frame index l are dropped for

notational convenience. In this section, we postulate spatially uncorrelated noise, i.e.,

E{VnVm} = E{Vn}E{Vm} = 0, ∀ n,m ∈ {1, 2, ..., N}, n 6= m (4.4)

The speech spectral componentX can be written as X ejω with X ≥ 0 as the spectral amplitude and

ω ∈ [−π, π] the spectral phase. Given the DOA parameter, or equivalently the arrival delay τn, the

multi-channel STSA estimation targets the estimation of X using the noisy spectral observations

Yn.
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Here, we generalize the single-channel MWβ-SA estimator (with GGD prior) in Section 3.4.1 to

the multi-channel case. In this regard, based on Section 2.3.2, the following expression is obtained

for the multi-channel counterpart of the MWβ-SA estimator

X̂ (MWβ-SA) =

(
E{X β+α|Y}
E{X α|Y}

)1/β
(4.5)

Note that the expression in (4.5) holds true regardless of the underlying distribution for the speech

prior. To obtain a closed-form solution for (4.5), it is required to calculate the moment term

E{X ρ|Y} with ρ as an arbitrary parameter. In the Bayesian framework, in a fashion similar to

(2.18) in Chapter 2, it follows that

E {X ρ|Y} =
∫∞
0

∫ 2π
0
X ρp(Y|X , ω)p(X , ω)dωdX∫∞

0

∫ 2π
0
p(Y|X , ω)p(X , ω)dωdX

(4.6)

This equation is similar to (3.15), and therefore, it can be solved in the same manner as Appendix

A, but by using (2.36) for p(Y|X , ω) and (A.2) for p(X , ω), as the following

p(Y|X , ω) =
(

N∏

n=1

1

πσ2vn

)
exp

(
−

N∑

n=1

|Yn −X ejωe−jφn |2
σ2vn

)

p(X , ω) = 1

2π

2bc

Γ(c)
X 2c−1 exp(−bX 2)

(4.7)

It should be noted that, using the second-order moment of X , i.e., σ2X , as discussed in Section 3.4,
the two STSA prior parameters b and c are related as σ2X = c/b. Consequently, we obtain

E {X ρ|Y} = Γ
(
ρ+2c
2

)

Γ(c)
(

c
σ2
X

+
∑N

n=1
1

σ2
vn

) ρ
2

M
(
2−ρ−2c

2
, 1;−ν ′′

)

M(1− c, 1;−ν ′′) (4.8)

with ν ′′ defined as

ν ′′ =

∣∣∣
∑

N

n=1
Yne

jφn

σ2
vn

∣∣∣
2

c

σ2

X

+
∑

N

n=1
1

σ2
vn

(4.9)
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where, similar to Section 2.3.2, σ2vn is the noise PSD at the nth channel. Now, by using (4.8) in

(4.5), the following solution can be derived for the multi-channel MWβ-SA estimator

X̂ (MWβ-SA) =




Γ

(
α + β + 2c

2

)

Γ
(
α
2
+ c
) (

c
σ2
X

+
∑N

n=1
1

σ2
vn

)β
2

M
(
2−α−β−2c

2
, 1;−ν ′′

)

M
(
2−α−2c

2
, 1;−ν ′′

)




1/β

(4.10)

The solution in (4.10) can be considered as the most general multi-channel Bayesian STSA esti-

mator among the existing ones, and therefore, by specific choices of its corresponding parameters,

other existing multi-channel estimators such as those in [40, 41, 93] can be deduced. Even though

defining a gain function similar to that in the single-channel case is not possible here, it can be

shown that for N = 1, i.e., considering only one microphone, the multi-channel estimator given by

(4.10) is degenerated to the single-channel MWβ-SA estimator as expressed by (3.17). Conversely,

it can be shown that by generalizing the parameters λ and ν ′ in (3.16) to their multi-channel

extension, any single-channel STSA estimator can be modified to its multi-channel counterpart in

the spatially uncorrelated noise case. In this sense, ν ′ should be modified to ν ′′ given by (4.9) and

λ is replaced by c/σ2X +
∑N

n=1 1/σ
2
vn .

Considering the parameter choice for the multi-channel STSA estimator in (4.10), due to the

importance of the accuracy in estimating the speech spectral variance σ2X , we estimate this param-

eter as the average of its values in all channels, i.e.,

σ̂2X =
1

N

N∑

n=1

ζ̂n σ̂
2
vn (4.11)

with ζ̂n as the a priori SNR in the nth channel. Obviously, it is required to implement the

underlying a priori SNR estimation (such as the DD approach) and also the noise PSD estimation

method for all N channels independently. Regarding the selection of estimator parameters α, β

and c in (4.10), we follow the same schemes as those proposed in Chapter 3. However, even though

it is possible to average over the parameter values obtained for each of the channels, we choose

to use the parameter values obtained from one of the channels, say the first one. In this sense,

averaging the parameter values over all channels did not make any considerable difference in the

overall performance of the estimator.
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4.3.2 STSA Estimators Using Spectral Phase

In the groundbreaking research presented in [24], based on a comprehensive study on the impor-

tance of spectral phase estimation in speech processing, the following is concluded: if an estimate

of the speech phase is used to reconstruct the speech signal through combining the speech phase

estimate by an independently estimated speech amplitude, the resulting speech estimation (en-

hancement) method will not provide a promising performance. However, if an estimate of the

phase is exploited to further improve the estimation of the speech amplitude, which is in turn

combined with the noisy phase of the observation, then a more accurate estimate of the speech

phase (than the noisy phase) will be useful. We make use of this fundamental conclusion in this sec-

tion in order to improve the performance of the conventional Bayesian STSA estimators discussed

so far, wherein only the spectral amplitude information is exploited to derive the estimator.

Conventionally, all STSA estimators are derived by assuming a uniformly distributed speech

spectral phase and then treating the problem by taking statistical expectation with respect to

the random spectral phase, as discussed in Section 2.1.6. Although being optimal in the sense of

MMSE of the amplitude, these methods lack the use of any prior information about the phase

component, and therefore, neglect the aforementioned potential to improve the performance of the

speech spectral amplitude estimation by employing the spectral phase. In this section, we propose

to treat the speech spectral phase as an unknown deterministic parameter and obtain a new class

of STSA estimators that exploits the phase component in its structure. This unknown phase

component can be estimated in the multi-channel case by a simple MMSE estimator of the phase

suggested in [40] or even replaced by the noisy phase. In the following sections, we first develop

the phase-aware STSA estimator using the basic MMSE cost function in the Bayesian framework

and next extend it by exploiting the Wβ-SA cost function. Finally, we address the problem of

spectral phase estimation for the proposed STSA estimator. Throughout the entire sections, we

formulate the problem in the multi-channel case with single-channel as a special case.

4.3.2.1 MMSE-Based STSA Estimator Using Spectral Phase

An MMSE-based STSA estimator in the multi-channel case aims at the minimization of the

MMSE cost function, E{(X − X̂ )2}, given the spectral observations from all channels, i.e., Y =

[Y1, Y2, · · · , YN ]T . Recall that the complex-valued speech STFT, X, is expressed as X ejω with
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ω ∈ [−π, π] as the spectral phase. As shown in [40], the MMSE estimate of the amplitude, X̂ , is
in fact the conditional expectation E{X |Y}. To obtain the latter, contrary to the conventional

approach taken in [40] and also seen in (4.6), where both the spectral amplitude and phase are

assumed to be stochastic and expectations over both are performed, we base our STSA estimation

method on treating the spectral phase, ω, as a deterministic unknown parameter, ω̂, that is to be

replaced by its estimate later. On this basis, using the conventional Bayesian framework for the

distribution p(X|Y), it follows that

X̂ (MMSE) = E{X |Y} =
∫∞
0
Xp(Y|X , ω̂)p(X )dX∫∞

0
p(Y|X , ω̂)p(X )dX

(4.12)

with ω̂ as a proper estimate for the spectral phase. It is observed that, as compared to the

conventional approach in (4.6), the integration over ω has been dropped, since the expectation

has to be performed only on X . In the same manner as that explained in Section 2.3.2, assuming
spatially uncorrelated noise and denoting Yn as |Yn|ejΩn , we have

p(Y|X , ω̂) =
N∏

n=1

p(Yn|X , ω̂) =
(

N∏

n=1

1

πσ2vn

)
exp

(
−

N∑

n=1

|Yn −X ejω̂e−jφn |2
σ2vn

)

=

(
N∏

n=1

1

πσ2vn

)
exp

(
N∑

n=1

2|Yn|X cos(ω̂ − φn − Ωn)−X 2 − |Yn|2
σ2vn

) (4.13)

Here, we use the conventional Rayleigh PDF for p(X ) as

p(X ) = 2X
σ2X

exp

(
−X

2

σ2X

)
, X ≥ 0 (4.14)

Substituting (4.13) and (4.14) into (4.12), and using Eq. (3.462.5) and Eq. (3.462.7) in [77] to

compute the resulting integrations, the following MMSE-based STSA estimator can be derived

X̂ (MMSE) =
−µλ2 +√π 2µ2λ+1

2
√
λ7

exp (µ2λ)
(
1− erf(µ

√
λ)
)

λ−√π µ√
λ3

exp (µ2λ)
(
1− erf(µ

√
λ)
) (4.15)

where erf(.) denotes the Gaussian error function [77] and the parameters λ and µ are defined as

1

λ
=

1

σ2X
+

N∑

n=1

1

σ2vn
, µ = −

N∑

n=1

|Yn|
σ2vn

cos(ω̂ − φn − Ωn) (4.16)
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It is observed that, unlike the state-of-the-art Bayesian STSA estimation methods, the proposed

STSA estimator in (4.15) does not employ confluent hypergeometric functions, and instead, exploits

one term of the error function, erf(.), which has less computational load and a faster convergence

rate by its implementation through the power series expansion [108]. This can be considered as

one advantage of the proposed estimator in (4.15).

4.3.2.2 Extension to the Wβ-SA Estimator

The modified STSA estimation method based on the spectral phase presented in the previous

section has been derived by using the MMSE cost function, which is the most basic Bayesian cost

function in the category of STSA estimation methods. We here extend this estimator to a more

general case by using the Wβ-SA cost function. It is known that the Wβ-SA estimator is derived

by solving the moment term E{X ρ|Y} and using it in (4.5). In this sense, in a similar fashion to
the previous section, it follows that

E{X ρ|Y} =
∫∞
0
X ρp(Y|X , ω̂)p(X )dX∫∞

0
p(Y|X , ω̂)p(X )dX

(4.17)

By using (4.13) and (4.14) in the above, the resulting integrations can be handled in a more general

case than that in (4.12) by using Eq. (3.462.1) in [77]. This results in

E{X ρ|Y} = Γ(2 + ρ)(λ
2
)ρ/2D−ρ−2

(√
2µλ

)

Γ(2)D−2
(√

2µλ
) (4.18)

with Di(.) as the parabolic cylinder function of ith order defined by Eq. (9.24) in [77], Γ(.) as the

Gamma function, and λ and µ given by (4.16). Now, by using (4.18) for the moments in (4.5), the

Wβ-SA estimator based on spectral phase is obtained as the following

X̂ (Wβ-SA) =



Γ(2 + α + β)(λ

2
)β/2D−2−α−β

(
µ
√
2λ
)

Γ(2 + α)D−2−α

(
µ
√
2λ
)



1/β

(4.19)

It can be shown that the Wβ-SA estimator in (4.19) is reduced to the MMSE estimator expressed

in (4.15) by choosing α and β respectively as zero and one. As compared to the MMSE estimator

proposed in the last section, the calculation of the parabolic cylinder functions, Di(.), is not

computationally less complex than the confluent hypergeometric functions encountered in the
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conventional methods, yet, the superiority in noise reduction performance of the spectral phase-

based STSA estimator in (4.19) makes it advantageous with respect to the conventional STSA

estimation method.

4.3.2.3 Estimation of the Spectral Phase

In the STSA estimators proposed in the previous two subsections, the spectral phase of the speech

signal, ω, is treated as an unknown deterministic parameter which has to be estimated. Tradition-

ally in [17], it was proved that an MMSE-optimal estimate of the principal value of the phase is

simply the noisy phase of the spectral observations. All conventional Bayesian STSA estimators,

for this reason, tend to estimate only the spectral amplitude while keeping the phase unchanged.

Furthermore, as stated in Section 1.3.3, early investigations for spectral phase estimation such as

those reported in [24, 25], concluded that, given the inherent complexity in the estimation of speech

spectral phase, it is not possible to estimate the latter with enough accuracy. On the other hand,

rather recently, with the increase in processing power, researchers have started investigating the

role of spectral phase in improving the speech quality, e.g., in [109, 110, 111]. Also, it was demon-

strated through extensive experimentations in [27] that, given the STFT overlap is increased a bit,

the performance of amplitude estimators can be improved to some extent when combined with less

noisy spectral phases. A comprehensive discussion on the topic of spectral phase estimation can

be found in [112].

All in all, we believe that the accurate estimation of speech spectral phase is still an open

problem and further research in this direction deserves to be undertaken in the future [112]. For

this reason, we restrict ourselves to using simple estimates for ω̂ in the proposed estimators in (4.15)

and (4.19). In this sense, in the multi-channel case with spatially uncorrelated noise, averaging

schemes can be done on the delay-compensated noisy phase of the observations in different channels,

i.e., Ωn + φn. Also, the following MMSE-optimal multi-channel spectral phase estimate derived in

[40] was found to be efficient

tan(ω̂) =

N∑
n=1

√
ζn
σ2
vn

={Ynejφn}
N∑

n=1

√
ζn
σ2
vn

<{Ynejφn}
(4.20)

where <{.} and ={.} denote the real and imaginary parts, respectively. Clearly, this estimator of
the spectral phase reduces to the noisy phase of the observation in the single-channel case, which
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still can be regarded as a reasonable estimate for the speech spectral phase.

4.3.3 Performance Evaluation in Spatially Uncorrelated Noise

In this section, we investigate the performance of the proposed multi-channel STSA estimation

methods in Sections 4.3.1 and 4.3.2. Various types of noise from the NOISEX-92 database [104]

were considered for the evaluations. Yet, due to the consistency in the obtained results, we present

those for the white, babble and car noises. Clean speech utterances including 10 male and 10 female

speakers are used from the TIMIT speech database [105]. The sampling rate was set to 16 kHz

and a Hamming window with length 20 ms and overlap of 75% is used for the STFT analysis and

synthesis. In all simulations, the noise variance is estimated by the soft-decision IMCRA method

[80] and the decision-directed approach [17] is used to estimate the a priori SNR. Unless otherwise

stated, the number of microphones is considered to be N = 2.

Figure 4.1: Scenario of capturing a far field source of speech in spatially uncorrelated noise by a
linear microphone array.

We considered a speech source located in the far field impinging on a linear microphone array,

as illustrated in Figure 4.1. The far field assumption implies the same angle of arrival, θ, with

respect to all microphones, which is assumed to be known as θ = 70◦. The latter assumption
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is equivalent to knowing the steering vector Φ(k) in (4.3). Therefore, the observation at each

microphone consists of a delayed version of the speech source plus a noise component that is inde-

pendent in different microphones. To generate noisy speech signals with uncorrelated noise across

microphones, considering an inter-microphone distance of 10 cm, we time delayed the reference

clean speech and added independent noises at desired SNR values in the range of -10 dB to 10 dB.
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Figure 4.2: LLR versus input global SNR for the multi-channel STSA estimators with N = 2
microphones in spatially uncorrelated noise, (a): white noise, (b): babble noise and (c): car noise.

To evaluate the performance of the multi-channel extension of the proposed Wβ-SA estimator

presented in Section 4.3.1, following the same trend in Chapter 3, we compare the multi-channel

Wβ-SA estimator in (4.10) with the multi-channel modification of the recent STSA estimators

with super-Gaussian priors in [34, 85]. Figures 4.2-4.4 are indicative of the performance scores

of the considered estimators versus the input global SNR for different noise types, wherein the

advantage of the proposed estimator in (4.10) can be observed through higher PESQ and segmen-

tal SNR and smaller LLR values. Also, as compared to Figures 3.12-3.14 in Chapter 3, i.e., the

corresponding curves for the single-channel estimators, superior performance is seen to be provided

by the multi-channel estimators. Furthermore, to have a clear assessment of the amount of im-

provement obtained by employing more microphones, the performance scores using the proposed

multi-channel estimator in (4.10) for different microphone numbers in babble noise have been il-

lustrated in Figure 4.5. It is observed that, especially for a lower number of microphones, there is

considerable improvement in the enhanced speech with increasing the microphone numbers.
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Figure 4.3: PESQ versus input global SNR for the multi-channel STSA estimators with N = 2
microphones in spatially uncorrelated noise, (a): white noise, (b): babble noise and (c): car noise.

Next, we evaluate the performance of the STSA estimators using spectral phase proposed in

Section 4.3.2. In this sense, we consider both the MMSE and Wβ-SA estimators using phase,

expressed respectively by (4.15) and (4.19), and compare their performance to their conventional

counterparts, i.e., the phase independent MMSE and Wβ-SA amplitude estimators discussed in

Chapter 2. We employ the same schemes as those proposed in Chapter 3 for the parameter setting

of the Wβ-SA estimator.
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Figure 4.4: SNRSeg versus input global SNR for the multi-channel STSA estimators with N = 2
microphones in spatially uncorrelated noise, (a): white noise, (b): babble noise and (c): car noise.
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Figure 4.5: Performance scores of the proposed GGD-based Wβ-SA estimator in (4.10) for different
microphone numbers in babble noise.

In Figures 4.6-4.9, the performance scores have been shown for the aforementioned estimators

with N = 1 and N = 2 microphones in case of babble noise. In practice, babble noise has proved to

be one of the most challenging noise types, as it often occupies the same range of spectrum as the

clean speech. The results obtained by using other types of noise were also mostly consistent. As

observed, while the Wβ-SA estimator outperforms the MMSE, the spectral phase-based versions
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of both estimators provide considerably superior performance with respect to their conventional

variations. This performance advantage is even more visible in the lower range of the input SNR,

where the use of speech phase information in the estimation of its amplitude results in higher

improvements.

To investigate the effect of the accuracy of the underlying spectral phase estimate, ω̂, in the

phase-based STSA estimation, we experimentally studied the cases where the noisy phase, Ω, the

MMSE phase estimate by (4.20), and the phase of the clean speech, ω, are exploited for ω̂. The

performance scores are indicated in Figure 4.9 for the phase-based Wβ-SA estimator with N = 4.

It is observed that, whereas using a better estimate of the phase, i.e., that given by (4.20), leads to

an improvement with respect to using the noisy phase, employment of the perfect speech phase in

the STSA estimation provides considerable enhancement in the speech quality. This empirically

proves the potential of the amplitude estimation to provide even superior performance in noise

reduction, given more accurate estimates of the speech phase.
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Figure 4.6: LLR for the conventional and spectral phase-based STSA estimators in babble noise
with (a): N = 1 and (b): N = 2 microphones.
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Figure 4.7: PESQ for the conventional and spectral phase-based STSA estimators in babble noise
with (a): N = 1 and (b): N = 2 microphones.
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Figure 4.8: Segmental SNR for the conventional and spectral phase-based STSA estimators in
babble noise with (a): N = 1 and (b): N = 2 microphones.
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Figure 4.9: Performance of the spectral phase-based Wβ-SA estimator in (4.19) in babble noise
with N = 4, using the noisy phase, using the MMSE estimate of phase in (4.20), and using the
phase of the clean speech.

4.4 Multi-Channel STSA Estimation in Spatially Corre-

lated Noise

In this section, we investigate the multi-channel STSA estimation method in the general case of

spatially correlated noise. It should be noted that multi-channel STSA estimation in spatially

uncorrelated noise, as discussed in the previous section, can be thought of as a special case; Yet,

due to the simplicity of the derived expressions and their similarity to the single-channel case, it

was preferred to study them as a standalone solution.

4.4.1 Extension of STSA Estimation to the Multi-Channel Case Under

Known DOA and Noise PSD Matrix

In this subsection, we study the extension of the single-channel Bayesian STSA estimation method

to the multi-channel case. It will be revealed that the resulting multi-channel estimator in spatially

correlated noise can be expressed in a general framework that requires the knowledge of the DOA

of the speech source as well as the noise PSD matrix across microphones.

For the sake of conciseness, it is noted that we follow the same assumptions and notation

explained by (4.1)-(4.3) but we discard the assumption of spatially uncorrelated noise as by (4.4),
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i.e., we consider E{VnVm} 6= E{Vn}E{Vm}. To derive an STSA estimator using a Bayesian cost

function in the multi-channel case, it is required to obtain the moment term E{f(X )|Y} with
f(X ) as some function of X . In this regard, in a similar fashion to (4.6), it follows that

E {f(X )|Y} =
∫∞
0
f(X )p(X )

[∫ 2π
0
p(Y|X , ω)dω

]
dX

∫∞
0
p(X )

[∫ 2π
0
p(Y|X , ω)dω

]
dX

(4.21)

where we used the uniform distribution for the spectral phase, ω. In [39], by the manipulation

of the resulting integrals in (4.21), a direct solution for the STSA estimation in the case of the

MMSE cost function, i.e., when f(X ) = X has been derived. However, handling the resulting

integrations in (4.21) is not an easy task for other choices of the underlying Bayesian cost function

and may not be tractable. Therefore, instead of looking for a direct solution for (4.21), we take an

indirect approach as follows. Since the noise is assumed to be correlated across channels, based on

a Gaussian noise assumption as before, it is deduced from (4.3) that the distribution p(Y|X , ω)
in (4.21) follows a complex multi-variate Gaussian PDF with zero mean and noise PSD matrix

ΣVV = E{VVH}, as the following

p(Y|X , ω) = 1

πN det{ΣVV}
exp

(
−(Y −X ejωΦ)HΣ−1

VV
(Y −X ejωΦ)

)
(4.22)

where det{.} denotes the matrix determinant and Φ is the array steering vector as in (4.3). We

now consider the internal integral in (4.21) over ω and its dependence on the observation vector

Y. By inserting (4.22) into (4.21), it can be deduced that the conditional expectation in (4.21) is

a function of the observation vector Y only through the scalar term ΦHΣ−1
VV

Y, denoted by Q(Y)

(see Appendix B for a proof of this), namely,

E {f(X )|Y} = E {f(X )|Q(Y)} (4.23)

Therefore, Q(Y) can be recognized as a sufficient statistic for the observation vector Y, regardless

of the underlying Bayesian cost function [113]. Accordingly, it is inferred that, under the multi-

variate Gaussian PDF for the noise vector V, a multi-channel STSA estimator can actually be

thought of as an equivalent single-channel estimator with the noisy observation to be Q(Y). To
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obtain more convenient expressions in the sequel, we rewrite Q(Y) as

Q(Y) =
(
ΦHΣ−1

VV
Φ
)
S(Y) (4.24)

where, obviously, S(Y) can also be regarded as a sufficient statistic for this problem. Thus, taking

the scalar observation, S(Y), as the input to the equivalent single-channel STSA estimator, we

can write

S(Y) =
ΦHΣ−1

VV
Y

ΦHΣ−1
VV

Φ
= X +

ΦHΣ−1
VV

V

ΦHΣ−1
VV

Φ
(4.25)

As seen in (4.25), the observation S(Y) consists of the same speech signal component X as that in

(4.3) and a corresponding noise component. It is straightforward to show that the variance of this

noise component is
1

ΦHΣ−1
VV

Φ
. In summary, the following framework can be used for multichannel

Bayesian STSA estimation under a Gaussian distribution for the noise:

• Provide the noisy array observations Y, and estimates of the steering vector Φ and noise

PSD matrix ΣVV.

• Obtain the sufficient statistic S(Y) in (4.25) as the scalar observation for an equivalent

single-channel Bayesian STSA estimator.

• Perform the corresponding single-channel STSA estimation with Y ′ = S(Y) as the input

observation, and σ2v′ =
1

ΦHΣ−1
VV

Φ
as the noise PSD.

In fact, the sufficient statistic term S(Y) can be interpreted as the MVDR beamformer [46] acting

here as the spatial processor and the equivalent single-channel STSA estimator acts as a post-

filtering scheme on the output of the beamformer. Figure 4.10 shows a schematic of the framework

for the multi-channel Bayesian STSA estimation discussed in this section, which consists of the

concatenation of an MVDR beamformer and a modified single-channel STSA estimator as a post-

filter.
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Figure 4.10: Block diagram of the proposed general scheme for multi-channel Bayesian STSA
estimation.

It is evident that, to implement the approach in Figure 4.10, the steering vector Φ and the

noise PSD matrix ΣVV must be known. As for the estimation of the steering vector or the

speech DOA, since speech is typically a wide-band signal in its bandwidth, any wide-band DOA

estimation method with moderate complexity can be used. In this sense, numerous wide-band DOA

estimation approaches have been suggested and investigated in the field of array processing, e.g.,

method of cross correlation, broadband MUSIC and the eigenvalue decomposition algorithms [46].

However, contrary to the estimation of noise PSD where the literature is so rich, the estimation

of noise PSD matrix in a general temporally/spatially non-stationary environment with no prior

knowledge about the speech/environment is still a challenging problem and the current literature

has received far less attention in this direction [114]. Therefore, in the following section, we tend

to focus on the estimation of the spatial PSD matrix of noise, ΣVV, as one of the main topics of

the current chapter.

4.4.2 Estimation of Noise PSD Matrix

In recent years, considerable research has been directed toward the estimation of the noise PSD

matrix. In this regard, due to the popularity of the groundbreaking method of minimum statistics

(MS) for noise PSD estimation proposed by Martin [115], a few straightforward extensions of this

method to noise PSD matrix estimation have been developed in the literature. In [116], a two-

channel noise PSD estimator has been suggested by combining the MS method and a voice activity

detector (VAD). However, the VAD-based noise estimation techniques are not capable of providing
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as much accuracy as the soft-decision methods, due to the lack of noise PSD updating during frames

where the speech component is present [80]. In [117], an MS-based method to estimate the noise

PSD matrix has been proposed by using the recursive smoothing of noisy speech through a fixed

forgetting factor. However, as proved in the context of single-channel noise estimation, selecting the

forgetting factor independently for each frame/frequency can largely enhance the noise estimation

accuracy. In [118], an algorithm for the estimation of the noise PSD matrix has been suggested

by employing an adaptive forgetting factor selected based on the multi-channel speech presence

probability (SPP). However, the SPP employed in [118] is obtained under a two-hypotheses basis

assuming either the presence or the absence of speech in all channels, which is not accurately true

due to the difference among the speech/noise components in each channel. Another recent method

has been proposed in [114] where it is attempted to eliminate the undesirable speech component

while estimating the noise PSD matrix. Nevertheless, due to employing the conventional fixed

smoothing in its structure, it results in trivial improvements at moderate SNRs.

In this subsection, we present a new algorithm for the estimation of the noise PSD matrix,

as needed by the multi-channel STSA estimator in the previous section, and in general, by many

multi-microphone speech enhancement methods such as beamforming. The proposed algorithm

does not require the knowledge of speech DOA and is applicable in a generic non-stationary noisy

environment. In the proposed approach, rather than only relying on previous time frames, we

make use of subsequent speech frames in order to achieve a more efficient smoothing scheme on

noisy observations.

4.4.2.1 Incorporation of Subsequent Speech Frames

All prior solutions to the noise estimation problem include recursive smoothing schemes using the

current and past noisy speech frames. This is due to the need for ensemble averaging implied by

the statistical expectation, E{.}. In this sense, to make use of all the available information, we

suggest to take advantage of several subsequent (future) speech frames in the recursive smoothing

performed for the noise PSD estimation. On this basis, we propose the following weighted recursive
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smoothing scheme for the estimation of the noise PSD matrix

P(k, l) = ξ κ(k, l)P(k, l − 1) + [1− κ(k, l)]Y(k, l)YH(k, l)

+(1− ξ) κ(k, l)
d∑

i=1

wiY(k, l + i)YH(k, l + i) (4.26)

where P(k, l) is the smoothed noisy spectrum, κ(k, l) is the forgetting factor in smoothing the

past frames, ξ is the smoothing parameter used to determine the weighting between the past

and future frames and wi are the weighting scheme applied on the d future frames. It should be

noted that the exploitation of d future frames in the noise estimation for current speech frame

implies a certain processing delay. Yet, due to the practical range of d, say d ≤ 5, and the overlap

between consecutive frames, the amount of delay is negligible as it is smaller than a few decades

of milliseconds only. As for the weighting parameter ξ, an experimentally fixed value of 0.65 has

worked best in the tested scenarios, which gives more emphasis to the numerous past frames. The

selection of κ(k, l) will be discussed in Section 4.4.2.2. As for the weightings wi, we consider a

fixed exponential scheme as wi = γi, noting that the conventional recursive smoothing performed

on past frames results in an exponential scheme for its weightings (as eq. (13) in [115]). Given this

and the fact that
∑d

i=1wi = 1, we end up with the following expression in terms of γ exponent

γd+1 − 2γ + 1 = 0, for a selected d (4.27)

It should be noted that for small d values, (4.26) has exactly one real-valued positive solution that

makes it possible to use γi as a proper weighting.

4.4.2.2 Iterative Method for the Selection of the Forgetting Factor

In spite of the high importance in the selection of the forgetting factor, κ(k, l), the literature on the

noise PSD matrix estimation lacks efficient schemes for this purpose. We herein take into account

the fact that, in the recursive smoothing of noisy speech, a larger weight should be assigned to

the update term when the speech component is weaker (or equivalently the noise component is

stronger) and vice versa [80]. To this end, we suggest to measure the speech signal intensity in all
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channels by the following definition of the overall SNR

ζ̄(k, l) ,

∥∥ΣXX(k, l)
∥∥
2∥∥ΣVV(k, l)
∥∥
2

=

∥∥ΣYY(k, l)−ΣVV(k, l)
∥∥
2∥∥ΣVV(k, l)

∥∥
2

(4.28)

where ΣXX denotes the speech PSD matrix, with X(k, l) as X(k, l)Φ(k), and ‖.‖2 indicates the
`2-norm of a matrix. The equation at the right of (4.28) holds due to the uncorrelated speech and

noise components. Based on this measure of the SNR, we propose to select the forgetting factor

as

κ(k, l) = κmin + (κmax − κmin) ζ̃(k, l) (4.29)

with κmin and κmax as the fixed minimum and maximum values for κ(k, l) chosen as 0.25 and 0.94,

respectively, and ζ̃(k, l) is the thresholded and normalized ζ̄(k, l), which is given by

ζ̃(k, l) =





1, if ζ̄(k, l) ≥ τH

ζ̄(k,l)−τL
τH−τL , if τL < ζ̄(k, l) < τH

0, otherwise

(4.30)

with the high and low thresholds τH = 22 and τL = 0.35, in respect. Now to implement (4.28),

proper estimates of ΣYY(k, l) and ΣVV(k, l) are required. The PSD matrix of noisy speech,

ΣYY(k, l), can be simply estimated for our purpose through the recursive smoothing of the noisy

observations Y. However, an estimate of ΣVV(k, l) is not available. Therefore, we propose the

following iterative algorithm to estimate κ(k, l) in (4.29):

(1) Replace ΣVV(k, l) in (4.28) by P(k, l − 1) and calculate ζ̄(k, l).

(2) Calculate ζ̃(k, l) using (4.30).

(3) Calculate κ(k, l) using (4.29).

(4) Use κ(k, l) to obtain P(k, l) in (4.26)

(5) Replace ΣVV(k, l) in (4.28) by P(k, l) and calculate ζ̄(k, l).

(6) Continue the next steps from (2).

where P(k, l) is in fact the estimate for the noise PSD matrix at the end of each iteration. As for
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the first frame, assuming that there is no speech component present, κ(k, 1) is chosen as κmin and

then P(k, 1) is calculated. In all of the experimentations, we found that using only two iterations of

the above was sufficient and no considerable improvements were obtained by using more iterations.

4.4.2.3 Minimum Tracking and Bias Compensation

We here employ an extension of the minimum tracking method [115] to further improve the accu-

racy of noise PSD estimation. To this end, we track the minimum norm of the noise PSD matrix

estimate, i.e., P(k, l), across the current and last M−1 frames. Therefore, we define Pmin(k, l) as

the matrix with minimum `2-norm on the set {P(k, l),P(k, l − 1), · · · ,P(k, l −M + 1)}. Yet, as
stated in [115], Pmin(k, l) is biased toward lower values and the bias needs to be compensated.

Based on the statistics of the minimum tracking, this bias has been estimated in [115] for the case

of noise PSD estimation. However, the problem becomes theoretically too tedious when dealing

with noise PSD matrix estimation. For this reason, considering that the bias is linearly dependent

on the number of frames, M , as evident in eq. (17) in [115], we found the following approximation

to the inherent bias in Pmin(k, l) to be useful

Bmin ≈ 1 +
M − 1

2
(4.31)

Now by multiplying the minimum tracked value, Pmin(k, l), by its bias in the above, we obtain the

ultimate estimate for the noise PSD matrix as

Σ̂VV(k, l) = BminPmin(k, l) (4.32)

The value of Σ̂VV(k, l) given by the above is to be used as the proposed estimate for the noise

spatial PSD matrix.
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4.4.3 Performance Evaluation in Spatially Correlated Noise
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Figure 4.11: Scenario of capturing a speech source in spatially correlated noise with two micro-
phones, generated by the ISM method.

In this section, we evaluate the performance of the proposed methods in Sections 4.4.1 and 4.4.2,

wherein the multi-channel noise reduction has been considered in the spatially correlated noise

case. Here, in order to account for the features in a realistic environment, we used the image

source method (ISM) in [119] to generate the observed microphone array signals. The ISM is a

very well-known technique used to generate a synthetic room impulse response (RIR) between a

speech source and an acoustic sensor in a given environment [120]. Once such an RIR is generated,

the observed speech can be obtained by convolving the RIR with the clean speech signal. This

technique has been widely used to evaluate the performance of various audio processing methods

in the field of room acoustics and signal processing. In our case, we considered the geometry shown

in Figure 4.11, where a source of clean speech and two sources of noise have been assumed to be

located at the indicated positions.
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Figure 4.12: LLR versus input global SNR for multi-channel STSA estimators and MVDR beam-
former with N = 2 microphones in spatially correlated noise, (a): white noise, (b): babble noise
and (c): car noise.

As seen, we considered a linear set of microphone array with inter-sensor distance of 5 cm

positioned in a 5m×4m×3m room with a reverberation time of 50 msec. The latter is actually too

small for a highly reverberant environment (where the range of reverberation time is around 0.5-

1 sec), yet we assumed such small reverberation time only to account for more realistic conditions

compared to a noise-only environment. The RIRs between the source of speech/noise and the

microphone array are obtained by the ISM method, then convolved with the audio samples of

speech/noise (extracted from the same databases as in Section 4.3.3), and added together to

generate the observed noisy speech.

We implemented the multi-channel STSA estimation framework in Section 4.4.1 for different

STSA estimators, considering the known DOA for the speech source in Figure 4.11 and using the

recursive smoothing of the noisy observations to calculate the noise PSD matrix.
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Figure 4.13: PESQ versus input global SNR for multi-channel STSA estimators and MVDR beam-
former with N = 2 microphones in spatially correlated noise, (a): white noise, (b): babble noise
and (c): car noise.

The latter is one of the most basic methods of noise PSD matrix estimation and has been

widely used in the literature. In a fashion similar to Section 4.3.3, the performance scores have

been illustrated for the STSA estimators with super-Gaussian priors and also the conventional

MVDR beamformer in Figures 4.12-4.14. As observed, almost the same pattern as that in Sec-

tion 4.3.3 holds, where the proposed GGD-based Wβ-SA estimator achieves superior performance

with respect to the other STSA estimators. Also, all multi-channel STSA estimators outperform

the conventional MVDR beamformer in the entire range of input SNR, which is reasonable due to

their structure proposed in Section 4.4.1. This structure is in fact a post-processing stage applied

on the output of the MVDR beamformer.
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Figure 4.14: Segmental SNR versus input global SNR for multi-channel STSA estimators and
MVDR beamformer with N = 2 microphones in spatially correlated noise, (a): white noise, (b):
babble noise and (c): car noise.

Next, we investigate the performance of the proposed noise PSD matrix estimation approach

in Section 4.4.2 with respect to other recent methods in the same area. In all simulations, the

number of subsequent frames considered in the smoothing was assumed to be d=3 implying that

γ=0.5437 in (4.27). Even though small improvements were obtainable by increasing d up to 5−6,
for the sake of comparable complexity burden, we kept d at 3. This also ensures that the imposed

processing delay is not more than 15msec in total. In order to focus on the relative performance

of the noise PSD matrix estimation methods only, we consider the MVDR beamformer with the

known DOA as in Figure 4.11 and evaluate the enhanced speech at the output of the beamformer.

In this respect, we consider the method of Hendriks in [114], the SPP-based approach proposed

in [118], as well as the conventional recursive smoothing of observations and the smoothing but

by using the available noise-only samples. The latter can be in fact considered as a perfect noise

estimation method implying an upper bound on how far a smoothing-based approach in noise PSD

matrix estimation can be improved (all methods of noise estimation in fact use smoothing of the

noisy observations).
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Figure 4.15: LLR versus input global SNR for the enhanced speech using the MVDR beamformer
with different noise PSD matrix estimation methods in spatially correlated noise, (a): white noise,
(b): babble noise and (c): car noise.

The performance measures for the aforementioned methods have been indicated in Figures 4.15-

4.17. It is observable that the proposed algorithm outperforms the other three methods in the

entire range of the input SNR by almost 0.1 in PESQ and 1∼2 dBs in segmental SNR, which

are considerable improvements in the speech quality. Furthermore, despite the advantage of the

proposed approach in Section 4.4.2, it is viewed that there still exists a large gap between the

perfect method, i.e., that by using the noise samples, and the proposed approach, especially in the

higher range of the input SNR. The reason is due to the presence of the strong speech components

in the estimated elements across the noise PSD matrix in the soft-decision-based methods, which

results in speech signal cancellation and unfavorable distortion in the MVDR output. Therefore,

it can be concluded that there is still further room to develop more accurate noise PSD matrix

estimation methods that are capable of suppressing the speech component present in the observed

noisy speech. The latter has been one of the major challenges in all noise PSD matrix estimation

methods proposed so far.
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Figure 4.16: PESQ versus input global SNR for the enhanced speech using the MVDR beamformer
with different noise PSD matrix estimation methods in spatially correlated noise, (a): white noise,
(b): babble noise and (c): car noise.
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Figure 4.17: Segmental SNR versus input global SNR for the enhanced speech using the MVDR
beamformer with different noise PSD matrix estimation methods in spatially correlated noise, (a):
white noise, (b): babble noise and (c): car noise.

To further evaluate the performance of the noise PSD matrix estimation methods, we illustrate

the MVDR beamformer response (output) errors in Figure 4.18, as suggested by equation (37) in

[114]. This criterion in fact shows a measure of distance between the reference output obtained by

using the noise-only samples and the outputs by using the noise PSD matrix estimation methods.

Due to the smaller beamformer response error in the proposed method, it can be concluded that

the proposed algorithm achieves an MVDR output closer to that obtained by the reference method.

The same performance evaluations with respect to other types of non-stationary noise were also

performed, confirming the superiority of the proposed algorithm in all scenarios.
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Figure 4.18: MVDR beamformer response error versus input global SNR using different noise PSD
matrix estimation methods, (a): white noise, (b): babble noise and (c): car noise.

To have a complete evaluation of the proposed noise PSD matrix estimation, we further inves-

tigate its performance for a higher number of microphones using the same scenario as Figure 4.11

with an inter-microphone distance of 5 cm and the number of microphones as N=2−4. In Fig-

ure 4.19, the performance measures are illustrated for this scenario with babble noise. As observed,

the performance consistently improves for a higher number of microphones, yet there appears to

be a smaller improvement as N goes higher. This consequence, which was also observed with

the other noise PSD matrix estimation methods, is due to the increment in the amount of speech

distortion and signal cancellation, as a result of higher accumulated error in the estimation of more

elements in larger noise PSD matrices.

Finally, we evaluate the performance of the proposed noise PSD matrix estimation method

with respect to the number of subsequent frames, d, in Figure 4.20. Herein, we changed d from 1

to 5 in (4.27) and measured the performance of the MVDR beamformer using the babble noise.

As observed, with an increasing d up to 3−4, there appear to be improvements in the speech

quality, yet the improvements become so trivial and almost zero for higher values of d. This is

because the smoothing of the subsequent frames, as performed by (4.26), assigns smaller and nearly

zero weights to the farther subsequent frames. Therefore, we took d to be 3 for the rest of the

experiments.
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Figure 4.19: Performance measures of the MVDR beamformer for different microphone numbers
using the proposed method of noise PSD matrix estimation in babble noise.
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Figure 4.20: Performance measures of the MVDR beamformer using the proposed method of noise
PSD matrix estimation with a different number of involved subsequent frames, d, in babble noise.

4.5 Conclusion

In this chapter, multiple aspects of noise reduction using the STSA estimation technique in multi-

channel were investigated, including extensions of STSA estimators from single- to multi-channel

in spatially uncorrelated/correlated cases, STSA estimation using spectral phase, and estimation

of the noise PSD matrix.

First, we showed that the single-channel STSA estimation method can be extended to the case

of multi-channel under both spatially correlated and spatially uncorrelated noisy environments.

In this regard, the developed single-channel Wβ-SA estimator in Chapter 3 was extended to its

multi-channel counterpart in Section 4.3.1 under a known DOA for the speech source, and the

performance evaluations indicated its superiority with respect to the multi-channel version of the

other recent STSA estimators.
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In Section 4.3.2, the role of speech spectral phase in the estimation of the spectral amplitude,

i.e., STSA, was studied. On this basis, MMSE and Wβ-SA estimators using spectral phase es-

timates were developed with closed-form solutions. Performance assessment of the phase-aware

amplitude estimators revealed a considerable advantage over the conventional, i.e., phase inde-

pendent, amplitude estimators, and furthermore, deduced the fact that further improvements are

achievable given more accurate estimates of the spectral phase.

With regards to the spatially correlated noise, it was demonstrated in Section 4.4.1 that the

multi-channel STSA estimator in fact turns into an MVDR beamformer and a modified single-

channel STSA estimator as a post-filter, under a known or estimated speech DOA and noise PSD

matrix estimate. In this respect, performance assessment of different multi-channel STSA estima-

tors within the proposed framework proved their advantage compared to the MVDR beamforme,

and in addition, the advantage of the Wβ-SA estimator with respect to the other estimators.

Finally, since the most crucial factor in the performance of the multi-channel STSA estimators,

and generally, most beamforming methods such as the MVDR, is the estimation of the spatial noise

PSD matrix, we tackled this problem in Section 4.4.2. Taking advantage of a few subsequent speech

frames and the soft-decision MS method, we developed a generic approach to noise PSD matrix

estimation in a non-stationary noise field. Performance evaluations were conducted by using the

noise PSD matrix estimates obtained from the proposed approach and two recent approaches in

the MVDR beamformer and the advantage of the proposed algorithm with respect to the previous

two methods was confirmed. Also, it was revealed that further precision in the noise PSD matrix

estimation can be reached in the future by properly eliminating the speech component from the

noisy observations.
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Chapter 5

Speech Dereverberation Using the

Weighted Prediction Error Method

In this chapter, we target the problem of speech reverberation suppression, namely dereverberation,

by using a well-known and efficient statistical model-based approach, i.e., the weighted prediction

error (WPE) method. In the same line as the presented contributions in case of noise reduction,

the WPE method is implemented in the STFT domain.

5.1 Introduction

One of the major categories of reverberation suppression methods is the model-based statistical

approaches that offer optimal solutions to estimate the anechoic (reverberation-free) speech. In

[121], probabilistic models of speech were incorporated into a variational Bayesian expectation-

maximization algorithm which estimates the source signal, the acoustic channel and all the in-

volved parameters in an iterative manner. A different strategy was followed in [122], where the

parameters of an auto-regressive (AR) model for speech and reverberation model are iteratively

determined by maximizing the likelihood function of the considered model parameters through

an expectation-maximization (EM) approach. Therein, a minimum mean-squared error (MMSE)

estimator is derived that yields the enhanced speech. Within the same line of work, using the time-

varying statistical model for the speech and the multi-channel linear prediction (MCLP) model

for reverberation has led to efficient dereverberation [123, 124]. Since the implementation of such

methods in the time domain is computationally costly, it was proposed in [125, 126] to employ
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the MCLP-based method in the short-time Fourier transform (STFT) domain. The resulting ap-

proach, referred to as the weighted prediction error (WPE) method, is an iterative algorithm that

alternatively estimates the reverberation prediction coefficients and speech spectral variance, using

batch processing of the speech utterance.

The rest of this chapter is organized as follows. Section 5.2 gives a summary of the proposed

methods in this chapter. A brief review of the original WPE method is presented in Section 5.3.

Section 5.4 describes the proposed WPE method with the estimation of speech spectral variance. In

Section 5.5, we discuss the WPE method using the modeling of the IFC, including the ML solution

for the proposed estimator of the reverberation prediction weights and the suggested method for

the estimation of the IFC. Performance assessment is presented in Section 5.6 and conclusions are

drawn in Section 5.7.

5.2 Brief Description of the Proposed Methods

As seen in the previous section, the WPE method basically requires an estimate of the desired

speech variance, σ2dn,k
, along with the reverberation prediction weights, gk, leading to a sub-optimal

strategy that alternatively estimates each of the two quantities. Also, as observed in (5.5), the

desired speech component is assumed to be temporally (across all STFT time frames) independent,

while this assumption is not accurate due to the high correlation present within speech frames. In

this chapter, we develop new WPE-based methods in order to overcome the two aforementioned

drawbacks.

Considering the estimation of the unknown speech spectral variance in the original WPE

method, we introduce a suitable estimator for the speech spectral variance and integrate it into

the ML solution for the reverberation prediction weights. Specifically, this task is accomplished by

resorting to the reverberation suppression within the spectral enhancement literature [43] and em-

ploying the statistical model-based estimation of late reverberant spectral variance (LRSV) [127]

in order to estimate the speech spectral variance. In addition to the performance merit w.r.t. the

previous WPE-based methods, the proposed approach offers a considerable gain in reducing the

computational complexity.

With regards to the inherent temporal correlation in the desired speech, our major contribution

is to model the correlation across STFT frames, namely the inter-frame correlation (IFC). Since
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an accurate modeling of the IFC is not tractable, we consider an approximate model where only

the frames within each segment of the speech are considered correlated. It is shown that, given

an estimate of the IFC matrix, the proposed approach results in a convex quadratic optimization

problem w.r.t. reverberation prediction weights, which is then solved by an ordinary optimization

toolbox solver. Furthermore, an efficient method for the estimation of the underlying IFC matrix

is developed based on the extension of a recently proposed speech variance estimator. We evaluate

the performance of our approach incorporating the estimated correlation matrix and compare

it to the original and several variations of the WPE method. The results reveal lower residual

reverberation and higher overall quality provided by the proposed method.

The presented contribution in Section 5.4 has been published in [128] and the contribution in

Section 5.5 has been submitted as [129].

5.3 Review on the WPE Method

In this section, we present a brief review of the original WPE method. Suppose that a single source

of speech is captured by M microphones located in a reverberant enclosure. In the STFT domain,

we denote the clean speech signal by sn,k with time frame index n∈{1, . . . , N} and frequency bin
index k∈{1, . . . , K}. Then, the reverberant speech signal observed at the m-th microphone, xmn,k,
can be represented in the STFT domain using a linear prediction model as [126]

xmn,k =

Lh-1∑

l=0

(
hml,k

)∗
sn−l,k + emn,k (5.1)

where hml,k is an approximation of the acoustic transfer function (ATF) between the speech source

and the m-th microphone in the STFT domain with the length Lh, and (.)
∗ denotes the complex

conjugate. The additive term emn,k models the linear prediction error and the additive noise term,

and is neglected here [126]. Therefore, (5.1) can be rewritten as

xmn,k = dmn,k +

Lh-1∑

l=D

(
hml,k

)∗
sn−l,k (5.2)
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where dmn,k=
∑D−1

l=0

(
hml,k

)∗
sn−l,k is the sum of anechoic (direct-path) speech and early reflections at

the m-th microphone, and D corresponds to the duration of the early reflections. Most derever-

beration techniques, including the WPE method, aim at reconstructing dn,k as the desired signal,

or suppressing the later reverberant terms denoted by the summation in (5.2). Replacing the con-

volutive model in (5.2) by an auto-regressive (AR) model results in the well-known multi-channel

linear prediction (MCLP) form for the observation at the first microphone, i.e.,

dn,k = x1n,k −
M∑

m=1

(gm
k )

H xm
n−D,k = x1n,k − gHk xn−D,k (5.3)

where dn,k ≡ d1n,k is the desired signal, (.)
H is the Hermitian transpose, and the vectors xm

n−D,k and

gm
k are defined as

xm
n−D,k = [xmn−D,k , x

m
n−D−1,k , . . . , x

m
n−D−(Lk−1),k]

T

gm
k = [gm0,k , g

m
1,k , . . . , g

m
Lk−1,k]

T (5.4)

where gm
k is the regression vector (reverberation prediction weights) of order Lk for the m-th

channel. The right-hand side of (5.3) has been obtained by concatenating {xm
n−D,k} and {gm

k }
over m to respectively form xn−D,k and gk. Estimation of the regression vector gk and using it in

(5.3) gives an estimate of the desired (dereverberated) speech. From a statistical viewpoint, this

is performed by using the maximum likelihood (ML) estimation of the desired speech dn,k at each

frequency bin [126]. In this sense, the conventional WPE method [125, 126] assumes a circular

complex Gaussian distribution for the desired speech coefficients, dn,k, with time-varying spectral

variance and zero mean. Now if dn,k is assumed to be independent across time frames, i.e., using

zero inter-frame correlation (IFC), the joint distribution of the desired speech coefficients for all

frames at frequency bin k is given by

p(dk) =
N∏

n=1

p(dn,k) =
N∏

n=1

1

πσ2dn,k

exp

(
−|dn,k|

2

σ2dn,k

)
(5.5)

with σ2dn,k
as the unknown time-varying spectral variance of the desired speech defined as E{|dn,k|2}.

Now, by inserting dn,k from (5.3) into (5.5), we can see a set of unknown parameters at each

frequency bin consisting of the regression vector, gk, and the desired speech spectral variances
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σ2
dk
={σ2d1,k , σ2d2,k , . . . , σ2dN,k

}. Denoting this set by Θk={gk, σ
2
dk
}, and taking the negative of loga-

rithm of p(dk) in (5.5), the objective function for the

Table 5.1: Outline of the steps in the conventional WPE method.

• At each frequency bin k, consider the speech observations xmn,k, for all n and

m, and the set of parameters D, Lk and ε.

• Initialize σ2dn,k
by σ2

(j)

dn,k
=|xn,k|2 at j=0.

• Repeat the following over the iteration j until the convergence of gk or maxi-

mum allowed iterations:

A
(j)
k =

∑N
n=1 xn−D,k xH

n−D,k /σ
2(j)

dn,k

a
(j)
k =

∑N
n=1 xn−D,k x

1∗

n,k /σ
2(j)

dn,k

g
(j)
k = A−1(j)

k a
(j)
k

r
(j)
n,k = g

(j)H

k xn−D,k

d
(j)
n,k = x1n,k − r

(j)
n,k

σ2
(j+1)

dn,k
= max{|d(j)n,k|2, ε}

• g
(j)
k is the desired reverberation prediction weights after convergence.

parameter set Θk can be written as

J (Θk) = − log p(dk|Θk) =
N∑

n=1

(
log σ2dn,k

+

∣∣x1n,k − gHk xn−D,k

∣∣2

σ2dn,k

)
(5.6)

where the constant terms have been discarded. To obtain the ML estimate of the parameter

set Θk, (5.6) has to be minimized w.r.t. Θk. Since the optimization of (5.6) jointly w.r.t. gk

and σ2
dk
is not mathematically tractable, an alternative sub-optimal solution is suggested in [125,

126] where a two-step optimization procedure is performed w.r.t. only one of the two parameter

subsets gk and σ
2
dk
at each step. The two-step approach is repeated iteratively until a convergence

criterion is satisfied or a maximum number of iterations is reached. A step-by-step summary

of the conventional WPE method is outlined in Table 5.1. Often in practice, 3 to 5 iterations

118



lead to the best possible results [126], yet there is no guarantee or a widely accepted criterion on

the convergence of the method. Furthermore, the instantaneous estimate of the desired speech

variance, i.e. |d(j)n,k|2 in the table, may lead to unreasonably small values that deteriorate the

overall performance of the WPE method. The aforementioned disadvantages can be mitigated by

employing a proper estimate of the spectral variance of desired speech, as will be explained in the

following section.

5.4 WPE Method with the Estimation of Early Speech

Variance

In this section, we propose an efficient estimator for the spectral variance of the desired speech,

σ2dn,k
, based on the statistical modeling of the acoustical transfer function (ATF), and incorporate

this estimator to the WPE dereverberation method. As seen in (5.1)-(5.2), the desired speech dn,k

is in fact the sum of the first D delayed and weighted clean speech terms, sn−l,k. In the context

of statistical spectral enhancement methods [43], dn,k is often referred to as the early speech, as

compared to the late reverberant speech given by the sums in (5.2) and (5.3). Therefore, the

observation at the first microphone can be rewritten as

x1n,k = dn,k + rn,k (5.7)

with rn,k denoting the late reverberant speech. Several methods are available in the spectral

enhancement literature for the estimation of σ2dn,k
in (5.7), such as the decision directed (DD)

approach for signal-to-reverberant ratio (SRR) estimation [43]. Using the latter method, σ2dn,k
can

be obtained as the product of the estimated SRR, i.e., σ2dn,k
/σ2rn,k

, and an estimate of the late

reverberant spectral variance, σ2rn,k
. However, the application of conventional spectral enhance-

ment techniques, originally developed for noise reduction purposes, is based on the assumption of

independence between dn,k and rn,k. Here, however, contrary to the scenario of additive noise, as

evidenced from the model in (5.1) and (5.2), the early and late reverberant terms are basically

correlated, due to the temporal correlation across successive time frames of the speech signal.

Therefore, the non-zero correlation between dn,k and rn,k must be taken into account. Doing so, it
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follows from (5.7) that

σ2x1
n,k

= σ2dn,k
+ σ2rn,k

+ 2E
{
<{dn,k r∗n,k}

}
(5.8)

with <{.} denoting the real value and 2E
{
<{dn,k r∗n,k}

}
representing the non-zero cross-correlation

terms between dn,k and rn,k. Nevertheless, the estimation of the cross-correlation terms in (5.9),

due to their dependency on the phases of dn,k and rn,k, may not be analytically tractable.

In [130], a spectral subtraction algorithm for noise suppression has been proposed based on

the deterministic estimation of speech magnitudes in terms of observation and noise magnitudes

without assuming that they are independent. Therein, the authors consider the following problem

similar to (5.8):

∣∣x1n,k
∣∣2 = |dn,k|2 + |rn,k|2 + 2 |dn,k| |rn,k| cos

(
θdn,k

− θrn,k

)
(5.9)

where |dn,k| is to be estimated in terms of |x1n,k| and |rn,k|, and θdn,k
and θrn,k

are the unknown

phases of dn,k and rn,k respectively. Through a geometric approach, the following estimate of |dn,k|
is then obtained as

∣∣∣d̂n,k
∣∣∣ =

√√√√1− (γ−ξ+1)2
4γ

1− (γ−ξ−1)2
4ξ

∣∣x1n,k
∣∣ (5.10)

where the two parameters ξ and γ are defined as

ξn,k ,
|dn,k|2

|rn,k|2
, γn,k ,

∣∣x1n,k
∣∣2

|rn,k|2
(5.11)

Herein, we propose to employ this approach in order to provide a correlation-aware estimate of

|dn,k|, to be exploited in turn in the estimation of σ2dn,k
.

Due to the unavailability of |dn,k|2 and |rn,k|2, the two parameters in (5.11) are not known a priori

and have to be substituted by their approximations. To this end, we exploit |d̂n−1,k|2 for |dn,k|2

and a short-term estimate of σ2rn,k
for |rn,k|2. To determine the latter, we resort to the statistical

model-based estimation of the LRSV, which has been widely used in the spectral enhancement

literature. Therein, an estimate of this key parameter is derived using a statistical model for the

ATF along with recursive smoothing schemes. In brief, the following scheme is conventionally used
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to estimate the LRSV [127]:

σ2x1
n,k

= (1− β) σ2x1
n−1,k

+ β
∣∣x1n,k

∣∣2 (5.12a)

σ2r̃n,k
= (1− κ) σ2r̃n−1,k

+ κ σ2x1
n−1,k

(5.12b)

σ2rn,k
= e−2αkRNe σ2r̃n−(Ne−1),k

(5.12c)

where αk is related to the 60 dB reverberation time, T60dB,k, through αk = 3 log 10/ (T60dB,kfs)

with fs as the sampling frequency in Hz, R is the STFT time shift (hop size) in samples, β and

κ are smoothing parameters (which can be in general frequency-dependent) and Ne is the delay

parameter defining the number of assumed early speech frames, which is herein taken as D. This

choice of Ne is made so that the number of previous frames considered as early speech in the

LRSV estimation is equal to the number of included frames in the desired speech dn,k by the WPE

method in (5.2). The term r̃n,k actually represents the entire reverberant speech including both

the early and late reverberant speech, but excluding the direct-path. Using the LRSV estimator

in (5.12), the short-term estimate of σ2rn,k
is obtained by choosing the smoothing parameters β and

κ to be close to one. By this choice, the estimate of σ2rn,k
is updated faster, and will therefore be

closer to the true value of |rn,k|2. Yet, to avoid unreasonably small values for the approximated

|rn,k|2 in the denominator of (5.11), this parameter is lower bounded to 10−3.
Now, given the estimate of early speech magnitude, |d̂n,k|, provided by (5.10), it is simple to

use a recursive smoothing scheme to estimate σ2dn,k
, as the following

σ̂2dn,k
= (1− η) σ̂2dn−1,k

+ η |d̂n,k|2 (5.13)

with η as a fixed smoothing parameter. This estimate of σ2dn,k
can be efficiently integrated into

the original WPE method discussed in Section 5.3, replacing the instantaneous estimate given by

|d(j)n,k|2 in Table 5.1. By doing so, the objective function in (5.6) turns into a function of only the
regression vector, gk, and it is therefore possible to obtain the latter as A

−1
k ak in Table 5.1, without

the need for an iterative strategy.
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5.5 WPE Method Using the Inter-Frame Correlations

2 3 2 4 2 5 2 6 2 7 2 2 7 3 2 7 4 2 7 5 28 9 : 9 ; < = > ? @ A > B ? <2 C 72 C 32 C D2 C 42 C E2 C 52 C F2 C 62 C G
H IJKLMN OPQ RST

Figure 5.1: Normalized IFC of the early speech dn,k averaged over frequency bins versus STFT
frame number for a selected speech utterance.

To demonstrate the importance of the temporal correlation in the desired early speech component,

dn,k, across STFT frames, which is the main motivation to develop the WPE method using IFC in

this work, we have illustrated in Figure 5.1 the IFC present in the early speech for a given frame

lag. To generate this figure, we extracted the early part, i.e., the first 60 msec, of a room impulse

response (RIR) with 60 dB reverberation time T60dB=800 msec, and then convolved it with the

anechoic speech utterance to obtain the early speech dn,k
1. Next, the IFC measure |E{dn,kd ∗n−l,k}|

was estimated through time averaging (i.e., long-term recursive smoothing) of the product dn,kd
∗
n−l,k

over n and then normalized by the estimated value of E{|dn,k|2}. The plotted values are the average
over all frequency bins and have been obtained for the lag of l=3. As observed from Figure 5.1,

the amount of correlation between the early speech components dn,k and dn−l,k is considerable

as compared to the spectral variance E{|dn,k|2}. Whereas this correlation is neglected in earlier

versions of the WPE method, the method that we here propose takes this correlation into account

by jointly modeling the early speech terms. From Figure 5.1, it is also observed that, even though

the updating rate of the underlying smoothing is not high, the estimated IFC fluctuates rapidly

1Note that, considering D=3 early terms and using a frame length of 40 msec with 50% overlap, the early speech
component corresponds to the first 60 msec of the RIR.
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across frames. Therefore, an efficient approach with fast convergence should be devised for its

estimation.

In the following section, we first derive a solution for the reverberation prediction vector gk by

considering the IFC, in contrast to the model in (5.5). Next, based on an extension of the method

proposed for the estimation of the speech spectral variance in Section 5.4, an approach for the

estimation of the IFC matrix of the desired speech terms, as required by the derived solution, will

be developed.

5.5.1 Proposed ML Solution

Considering the joint distribution of the desired speech STFT coefficients and assuming the inde-

pendence across frequency bins, the temporally/spectrally independent model in (5.5) should be

replaced by

p(dk) = p(d1,k)
N∏

n=2

p(dn,k|Dn,k) (5.14)

with p(dn,k|Dn,k) denoting the distribution of dn,k conditioned on Dn,k = [dn−1,k, dn−2,k, · · · ,
d1,k]

T . Considering the fact that dn,k depends only on a limited number of the speech coefficients

from previous frames, or equivalently, the fact that the IFC length is finite, (5.14) can be written

as

p(dk) = p(d1,k)
N∏

n=2

p(dn,k|d′n−1,k) = p(d1,k)
N∏

n=2

p(dn,k,d
′
n−1,k)

p(d′n−1,k)
(5.15)

where the conditioning term Dn,k in (5.14) has been replaced by the shorter segment d
′
n−1,k =

[dn−1,k, dn−2,k, · · · , dn−τk,k]T with τk as the assumed IFC length in frames. Unfortunately, pro-

ceeding with the model in (5.15) to find an ML solution for the regression vector gk does not

lead to a convex optimization problem. Therefore, to overcome this limitation, we alternatively

exploit an approximate model by considering only the correlations among the frames within each

segment, d′n,k=[dn,k, dn−1,k, · · · , dn−τk+1,k]T , and disregarding the correlations across the segments.
This results in the following approximate model

p(dk) '

⌊

N
τk

⌋

∏

n=1

p
(
d′n,k

)
=

⌊

N
τk

⌋

∏

n=1

1

πτk detΦn,k

exp
(
−d′Hn,kΦ−1n,kd

′
n,k

)
(5.16)
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where Φn,k=E{d′n,kd′Hn,k} represents the correlation matrix of d′n,k, det denotes the determinant of
a matrix and b.c is the floor function. Now, using (5.3), the desired speech segment d′n,k can be
expressed as

d′n,k = un,k −UH
n,k hk (5.17)

where

un,k =[x
(1)
n,k, x

(1)
n−1,k, · · · , x

(1)
n−τk+1,k]

T (5.18)

Un,k =[Xn,k,Xn−1,k, · · · ,Xn−τk+1,k]
∗

hk =g
∗
k

In the same manner as the original WPE method [126], by considering the negative of the logarithm

of p(dk|hk), an ML-based objective function for the regression weight vector hk can be derived as

follows,

J (hk) , − log p(dk|hk) =

⌊

N
τk

⌋

∑

n=1

(
d′Hn,kΦ

−1
n,kd

′
n,k +Kn,k

)
(5.19)

with Kn,k representing the terms independent of hk, which can be discarded. Inserting (5.17) into

(5.19) and doing further manipulation result in

J (hk) =

⌊

N
τk

⌋

∑

n=1

(
hH
k An,khk − bH

n,khk − hH
k bn,k + cn,k

)
(5.20)

where we defined

An,k = Un,k Φ−1n,k UH
n,k

bn,k = Un,k Φ−1n,k un,k (5.21)

cn,k = uH
n,k Φ−1n,k un,k

Now by neglecting the constant term cn,k, (5.20) can be arranged as

J (hk) = hH
k Ãkhk − b̃H

k hk − hH
k b̃k (5.22)
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with Ãk and b̃k as

Ãk =

⌊

N
τk

⌋

∑

n=1

An,k , b̃k =

⌊

N
τk

⌋

∑

n=1

bn,k (5.23)

It can be shown that the matrix Ãk is positive semidefinite, and therefore, the quadratic objective

function in (5.22) is real-valued and convex in terms of hk. Subsequently, to find the global

minimum of J (hk), we can express (5.22) in the following form

J (hk) =
(
hk − ĥk

)H

Ãk

(
hk − ĥk

)
+ c′k (5.24)

where c′k is an independent term and

ĥk = Ã−1
k b̃H

k (5.25)

It is evident that ĥk in the above is the global minimum of the objective function J (hk) in (5.24),

or equivalently, it is the estimate of the reverberation prediction weights by the proposed WPE

method.

5.5.2 Estimation of the IFC Matrix

To calculate the optimal reverberation prediction weights by (5.25), Ãk and b̃k in (5.23), and

in turn, An,k and bn,k given by (5.21) have to be calculated. To do so, as seen in (5.21), the

IFC matrix of the desired speech terms, Φn,k, has to be estimated beforehand. In Section 5.4, a

new variant of the WPE method was suggested, which exploits the geometric spectral subtraction

approach in [130] along with the estimation of LRSV, in order to estimate the spectral variance

of the desired speech, σ2dn,k
. We here develop an extension of the proposed method in Section 5.4

to estimate the spectral cross-variances of the desired speech terms, ρn1,n2,k=E{dn1,kd
∗
n2,k
}, which

in fact constitute the IFC matrix Φn,k. In this regard, according to Section 5.4, the following

estimate of dn,k can be obtained

d̂n,k =

√√√√√
1− (γn,k−ξn,k+1)2

4γn,k

1− (γn,k−ξn,k−1)2
4ξn,k

x
(1)
n,k (5.26)

We exploit (5.26) to provide primary estimates of dn1,k and dn2,k and then use recursive smoothing

of dn1,kd
∗
n2,k

to estimate the elements of the IFC matrix Φn,k. In this sense, given the estimate of
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the desired speech components d̂n1,k and d̂n2,k by (5.26), it is straightforward to use a recursive

smoothing scheme to estimate the spectral cross-variance ρn1,n2,k, as the following

ρ̂n1,n2,k = (1− η) ρ̂(n1−1),(n2−1),k + η d̂n1,k d̂
∗
n2,k

(5.27)

with η as a fixed smoothing parameter. Equivalently, by expressing (5.27) in matrix form, it follows

Φ̂n,k = (1− η) Φ̂n−1,k + η d̂′n,k d̂′Hn,k (5.28)

with the vector of the estimated desired speech terms d̂′n,k = [d̂n,k, d̂n−1,k, · · · , d̂n−τk+1,k]T . The

inverse of the estimated IFC matrix Φ̂n,k is to be used to obtain An,k and bn,k in (5.21). Here,

to avoid the complexity involved in direct inversion of Φ̂n,k and also to overcome the common

singularity issue encountered in the inversion of the sample correlation matrix, we use the Sherman-

Morrison matrix inversion lemma [131] to implicitly invert Φ̂n,k, as given by (5.28). The simplified

form of this lemma can be written as [131]

(
A− UVH

)−1
= A−1 + A

−1UVHA−1
1− VHA−1U (5.29)

for an invertible matrix A and any two column vectors U and V . Using (5.29) for the inverse of
Φ̂n,k in (5.28), i.e., by taking A, U and V respectively as (1− η) Φ̂n−1,k, −η d̂n,k and d̂′n,k, it can

be deduced that

Φ̂−1n,k =
Φ̂−1n−1,k
1− η

− η

1− η

Φ̂−1n−1,k d̂′n,k d̂′Hn,k Φ̂−1n−1,k

1− η + η d̂′Hn,k Φ̂−1n−1,k d̂′n,k
(5.30)

The above can be recursively implemented to update the inverse of Φ̂n,k at each frame without

the need for direct matrix inversion.

It should be noted that the overall WPE-based dereverberation approach presented in this

section can be considered as an extension of the method presented in Section 5.4, by taking into

account the IFC of the desired speech signal. Namely, for the choice of τk=1, it can be shown that

the proposed solution in (5.25) degenerates to the method suggested in Section 5.4.
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5.6 Performance Evaluation

5.6.1 Experimental Setup

In this section, we evaluate the performance of the proposed WPE methods for dereverberation

against the original WPE and a few recent variations of this method. To this end, clean speech

utterances are used from the TIMIT database [105], including 10 male and 10 female speakers.

The sampling rate is set to 16 kHz and a 40 msec Hamming window with overlap of 50% is used

for the STFT analysis-synthesis. To have the best performance, the number of early speech terms

considered in (5.2), i.e., D, is taken to be 3 with the length of the reverberation prediction vector,

i.e., Lk, chosen as 20. We take the length of the IFC to be independent of frequency, i.e., τk ≡ τ ,

for our experiments. The number of microphones M is taken to be 2 and we use the first 10

seconds of the reverberant speech observation to estimate the reverberation prediction weights gk

in all conducted experiments.

In order to perform the matrix inversion in (5.25) with better accuracy, we use the QR factor-

ization of the matrix Ãk in (5.23) with forward-backward substitution [132]. Also, to estimate the

LRSV by (5.12c), knowledge of the reverberation time T60dB is required. We used the reverberation

time estimation method in [133] to estimate this parameter blindly from the observed speech. The

estimated T60dB in this way is accurate enough not to degrade the performance of the underly-

ing LRSV estimator in (5.12). The smoothing parameters β and κ in (5.12a) and (5.12b) were

respectively selected as 0.5 and 0.8 while η in (5.13) was fixed at 0.7. The use of time-frequency

dependent values for the latter parameter could lead to improved results and remains an avenue for

future work. Our approach requires no prior knowledge of the direct-to-reverberant ratio (DRR)

parameter or its estimate.

We use both recorded and synthetic RIRs to generate microphone array signals modeling a

reverberant noisy environment. In this sense, to account for a real-world scenario, we convolve

the clean speech utterances with measured RIRs from the SimData of the REVERB Challenge

[134], where an 8-channel circular array with diameter of 20 cm was placed in a 3.7×5.5 m room

to measure the RIRs2. The resulting signal was combined with additive babble noise from the

same database at an SNR of 10 dB. As well, to further analyze the performance of the considered

2Note that only two of the available 8 channels are used herein.
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methods using flexible levels of reverberation, we use the ISM method [119] to simulate a scenario

as illustrated in Figure 5.2. As viewed, a source of anechoic speech and two independent anechoic

sources of babble noise, taken from Noisex-92 [104], are placed in an acoustic room with the

indicated dimensions. The RIRs from the speech and noise sources to the linear microphone array

are synthesized with a controlled reverberation time, T60dB, and then convolved with the anechoic

signals and added up at a reverberant SNR of 15 dB.

For the comparative evaluation of different dereverberation methods, we use four performance

measures, as recommended by the REVERB Challenge [135]. These performance metrics in-

clude: the perceptual evaluation of speech quality (PESQ), the cepstrum distance (CD), the

frequency-weighted segmental SNR (FW-SNR) and the signal-to-reverberation modulation en-

ergy ratio (SRMR). The PESQ score is one of the most frequently used performance measures in

the speech enhancement literature and is the one recommended by ITU-T standards for speech

quality assessment [102]. It ranges between 1 and 4.5 with higher values corresponding to better

speech quality. The CD is calculated as the log-spectral distance between the linear prediction

coefficients (LPC) of the enhanced and clean speech spectra [136]. It is often limited in the range

of [0,10], where a smaller CD value shows less deviation from the clean speech. The FW-SNR is

calculated based on a critical band analysis with mel-frequency filter bank and using clean speech

amplitude as the corresponding weights [136]. It generally takes a value in the range of [-10,35] dB

with the higher the better. The SRMR, which has been exclusively devised for the assessment

of dereverberation, is a non-intrusive measure (i.e., one requiring only the enhanced speech for

its calculation), and is based on an auditory-inspired filterbank analysis of critical band temporal

envelopes of the speech signal [137]. A higher SRMR refers to a higher energy of the anechoic

speech relative to that of the reverberant-only speech.
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Figure 5.2: A two-dimensional illustration for the geometry of the synthesized scenario of a noisy
reverberant environment.

Recently, there has been growing interest in the use of properly fitted distributions for speech

priors and estimation of the corresponding parameters, as discussed in detail in Chapter 2. In

the context of dereverberation based on the WPE method, this has been accomplished recently

by using the complex generalized Gaussian (CGG) and Laplacian speech priors, respectively in

[138] and [139]. To evaluate the reverberation suppression performance of the proposed methods,

we compare them to the original WPE method [126], the two aforementioned developments of

this method in [138, 139], as well as reverberation suppression using spectral enhancement [43].

The CGG-based method has in fact the same solution as the original WPE method but with

a power-scaled estimator of the speech spectral variance in the iterative procedure of Table 5.1.

The Laplacian-based method, however, does not have a closed-form solution for the reverberation

prediction weights, gk, and has to be implemented through numerical optimization, e.g., using the

CVX toolbox [140]. The spectral enhancement approach to dereverberation, as will be investigated

thoroughly in the next chapter, is in fact similar to the noise reduction methods reviewed in Chapter

2 but with using an LRSV estimator, e.g., that in (5.12), to replace the estimate of noise spectral

variance.
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5.6.2 Evaluation of the Proposed Method in Section 5.4

In Figures 5.3 and 5.4, performance comparison of the proposed method in Section 5.3 with respect

to the conventional, two recent WPE-based methods, and using spectral enhancement [43] is

illustrated. The values of ∆PESQ and such represent the improvements in these quantities relative

to the corresponding value for the unprocessed (reverberant) speech, which is denoted in the figures

as “ref”. As seen, the Laplacian-based method outperforms the original WPE, whereas the CGG-

based method provides only trivial improvements. However, the proposed method in Section 5.3,

in addition to being non-iterative in nature, is able to provide a more efficient reverberation

suppression than the former methods.
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Figure 5.3: Improvements in PESQ and CD scores versus the number of iterations for different
dereverberation methods.

It is also observable that the spectral enhancement method with an LRSV estimator is not as

efficient as the WPE-based methods for the purpose of dereverberation.

Next, to evaluate experimentally the efficiency of the proposed estimate for the speech spectral

variance, σ2dn,k
, in Section 5.3, we considered two other recursive smoothing based schemes to

update σ2dn,k
and compared their performance with the proposed one in Figure 5.5. In this case,

we used the scenario of Figure 5.2 but with excluding the noise sources and considering a source-

to-microphone distance of 1.5 m. As in [43], we used the well-known DD approach to estimate the

ratio σ2dn,k
/σ2rn,k

and then multiplied it by the LRSV estimate from (5.12) to obtain an estimate of
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σ2dn,k
, which is denoted in Figure 5.5 as the “DD Approach”. To demonstrate the importance of

taking into account the cross-correlation terms between the desired and late reverberant speech,

as in (5.8), we estimated the desired spectral variance, σ2dn,k
, by disregarding the cross terms in

(5.8) and using the term σ2
x1
n,k

−σ̂2rn,k
. Since the observation spectral variance is estimated by a

fixed recursive smoothing scheme, we denoted this method by “Smoothing of Observations” in

this figure. It is observable that the proposed estimation of σ2dn,k
results in further reverberation

suppression, especially for higher reverberation conditions where the amount of correlation between

the desired and late reverberant speech signals increases.

Ò Ó Ô Õ Ö× Ø Ù Ú Û Ü Ý Þ ß à Û Ü á à â Ý ã äå æ Ö ÒÒ æ Ö ÓÓ æ Ö ÔÔ æ Ö
∆

çè éêëìíî ïð
ñ ò Ç ó ô õ ö ÷ ø È ù ö È ó Ç ú Ç È ôÉ õ û ü û È ö ÷ ý þ øÿ � � � ö � Ç � ý þ ø� ö ò ÷ ö ó û ö È � ö � Ç � ý þ øý þ ø � û ô ù ñ ò Ç ó ô õ ö ÷ � ö õ û ö È ó Ç ø � ô û ú ö ô û � È

Ò Ó Ô Õ Ö× Ø Ù Ú Û Ü Ý Þ ß à Û Ü á à â Ý ã äÒ æ ÖÓ
Ó æ ÖÔ
Ô æ ÖÕ

∆

êì�ìíî ïð
ñ ò Ç ó ô õ ö ÷ ø È ù ö È ó Ç ú Ç È ôÉ õ û ü û È ö ÷ ý þ øÿ � � � ö � Ç � ý þ ø� ö ò ÷ ö ó û ö È � ö � Ç � ý þ øý þ ø � û ô ù ñ ò Ç ó ô õ ö ÷ � ö õ û ö È ó Ç ø � ô û ú ö ô û � ÈÊ Ë Ì Í Î Ï 	 Î Ê Ë Ì Í 
 Ï Ð 	

Figure 5.4: Improvements in FW-SNR and SRMR scores versus the number of iterations for
different dereverberation methods.

It should be noted that the proposed estimator of the desired speech spectral variance can also

be used in spectral enhancement-based methods, yet the dereverberation performance of the latter

was found to be inferior to the LP-based methods in general.

We also evaluated experimentally the computational cost of our proposed algorithm by using

the estimation of σ2dn,k
discussed in Section 5.3, the proposed algorithm using the DD approach to

estimate σ2dn,k
, and the conventional WPE method using a maximum of 3 iterations. The results

are presented in Figure 5.6 in terms of the batch processing time needed to estimate the WPE
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regression vector, gk. As seen, by eliminating the iterative process of the WPE method through

the proposed algorithm, the computational effort has been considerably reduced.
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Figure 5.5: PESQ and CD scores versus T60dB for the reverberant speech and the enhanced one
using the WPE method with different estimators of the desired speech spectral variance, σ2dn,k

.
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Figure 5.6: Processing time required for the estimation of gk with lengths of Lk=15 and Lk=30
using a 10-second speech segment for different methods. An i5-2400 CPU @ 3.10GHz with RAM
of 4.00GB was used for the implementation in Matlab.

5.6.3 Evaluation of the Proposed Method in Section 5.5

Regarding the proposed method in Section 5.4, to investigate the IFC present between early speech

terms with different frame lags, we calculated the normalized IFC by sample averaging over all
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frequency bins and frames. The results are shown in Figure 5.7 for both anechoic and reverberant

speech signals with different values of the reverberation time. As seen, the IFC is quite pronounced

for smaller lag values (say 5 or less), but decreases to a lower level for larger lags. We will take

into account this observation in choosing the appropriate IFC length, τ , in the sequel. A more

detailed study of the IFC in the STFT domain can be found in [141].
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Figure 5.7: Normalized IFC averaged over frequency bins and frames versus the frame lag for
speech samples with different amounts of reverberation.

Next, we study the effect of the assumed number of correlated speech frames, τ , on the overall

performance of the proposed dereverberation approach. It was found that the choice of this

parameter is more dependent on the number of early speech frames, D, than on other involved

parameters, e.g., Lk and T60dB. This theoretically makes sense since the parameter D determines

the duration of the early reflections, and therefore, the IFC is controlled by D to a large extent.

Figure 5.8 shows the PESQ scores of the proposed approach versus different τ with D ranging from

1 to 4, when using the measured RIRs from the SimData of the REVERB Challenge. Apart from

the observation that the performance of the proposed approach is best for D=3, it can be seen that

the higher the value of D the larger the value of the choice of τ resulting in the best performance.

The latter result is due to the fact that the higher the value of D the larger the amount of the IFC

between subsequent frames of the desired speech. It is also observed that the best choice of the

parameter τ occurs in the range of 2-6, despite the fact that the theoretically optimal choice of τ is
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N , i.e., the number of frames in the entire speech utterance 3. The reason for this limitation in the

performance of the proposed approach seems to be due to the limited accuracy in the estimation

of the IFC matrix, Φn,k. In effect, the estimation error in Φ̂n,k, which grows with the size τ of

the matrix Φn,k, degrades the overall performance of the proposed method. Therefore, we choose

the value of τ=5 for the case of D=3 in our experiments. This is also consistent with the fact

that the IFC is more strongly present in the lag values of around 5 or less, as inferred before from

Figure 5.7.
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Figure 5.8: Performance of the proposed WPE method versus the assumed IFC length, τ , for
different D.

Finally, we compare the performance of the proposed methods in Sections 5.3 and 5.4 along

with other WPE-based methods. The comparative results by using the recorded RIR from the RE-

VERB Challenge are presented in Table 5.2 in terms of the aforementioned objective performance

measures. As observed, whereas the CGG-based method achieves close scores to the original WPE

and the Laplacian-based method is superior to the former, the WPE with spectral speech variance

estimation, i.e., that proposed in Section 5.3, performs better than the former three methods, and

the WPE with IFC, i.e., that proposed in Section 5.4, achieves superior results w.r.t. to all. Note

that the method presented in Section 5.3 is actually a particular case of the presented method in

Section 5.4 by neglecting the IFC and estimating only the speech spectral variance at each frame

independently. We found that the objective performance of the considered methods in terms of

the four investigated scores used in this work was almost consistent.

3Note that in this case, the approximate model in (5.16) turns into an accurate joint model for all the desired
speech frames.
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Table 5.2: Performance comparison of different WPE-based dereverberation methods using
recorded RIRs.

Method PESQ CD
FW-SNR

(dB)

SRMR

(dB)

Unprocessed 2.28 4.22 2.92 3.89

Original WPE [126] 2.58 3.51 5.16 6.49

CGG-based WPE [138] 2.61 3.45 5.39 6.82

Proposed WPE in Section 5.3 2.69 3.37 6.12 7.60

Proposed WPE in Section 5.4 2.75 3.20 6.85 8.11

Next, to evaluate the performance of the considered dereverberation methods for different

amounts of reverberation, we obtained the objective performance measures by using the synthesized

RIRs with different T60dB by the ISM method. The results are presented in Figures 5.9 and 5.10 for

T60dB in the range of 100 to 1000 msec. For better visualization, the resulting improvements in the

performance scores w.r.t. the unprocessed speech (denoted by ∆PESQ and such) are illustrated.

As seen, the proposed methods in Sections 5.3 and 5.4, which are both based on the estimation

of the speech spectral variance by means of an LRSV estimator from the context of spectral

enhancement, perform considerably better than the previous versions of the WPE method, which

tend to estimate the speech spectral variance iteratively along with the reverberation prediction

weights. Also, it is observed that the proposed method in Section 5.4 achieves the best scores w.r.t.

the others in almost the entire range of T60dB. This advantage is more visible for the moderate

values of T60dB.

In addition to the objective performance measurements reported in the paper, informal subjec-

tive listening to the enhanced speech files revealed superior quality and lower residual reverberation

provided by the proposed method as compared to the other methods in [126, 138, 139].
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Figure 5.9: Improvement in PESQ and CD scores versus T60dB for different WPE-based derever-
beration methods using synthetic RIRs.
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Figure 5.10: Improvement in FW-SNR and SRMR scores versus T60dB for different WPE-based
dereverberation methods using synthetic RIRs.

5.7 Conclusion

In this chapter, we presented novel dereverberation approaches based on the WPE method and by

taking advantage of speech spectral variance estimation from the context of spectral enhancement.

The spectral variance estimate is obtained through a geometric spectral enhancement approach and

a conventional LRSV estimator, based on the correlation between the early and late reverberant

terms. In Section 5.3, it was shown that by integrating the suggested spectral variance estimator
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into the WPE method, this method can be implemented in a non-iterative manner, that is less

complex and more efficient in reverberation suppression, as compared to the original WPE method

and its more recent variations.

Next, as an extension to the suggested method in Section 5.3, we proposed to approximately

model and exploit the temporal correlation across desired speech frames, namely the IFC in the

STFT domain. It was shown that this dereverberation problem can be handled by solving an

unconstrained quadratic optimization in a straightforward manner, given an estimate of the spec-

tral correlation matrix of the subsequent frames. Performance evaluations using both recorded

and synthetic RIRs revealed that the proposed methods considerably outperform the previous

variations of the WPE method.

It is concluded that incorporating the statistical model-based estimation of the desired speech

variance into the linear prediction dereverberation methods can lead to better dereverberation

performance. This approach, unlike the state-of-the-art WPE methods, results in a non-iterative

estimator for the reverberation prediction weights, provided that a proper estimate of the spectral

auto- and cross-variances of the desired speech terms is available. We believe the existing limit on

the performance of the suggested WPE method in this work is mostly due to the inaccuracy in

the estimation of the inter-frame spectral correlations, and therefore, this limit can be overcome

by developing more efficient estimators of the IFC. This topic can serve as a future research

avenue for speech dereverberation in the STFT domain. Accurately modeling and incorporating

the correlation across the spectral components of desired speech at each frame, namely the intra-

frame correlation, can also be regarded as a direction of future research. Furthermore, since

the proposed and state-of-the-art WPE methods result in constant (time-invariant) reverberation

prediction weights, in order to cope with changing reverberant environments, development of an

incrementally updated (over blocks of time frames) WPE method remains as further research.
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Chapter 6

Speech Dereverberation Using the

Spectral Enhancement Method

6.1 Introduction

Spectral enhancement methods originally developed for the purpose of noise reduction have also

been modified and used for dereverberation. The major advantage of the spectral enhancement

methods over other techniques such as channel equalization (inverse filtering) and linear prediction-

based methods is their simplicity in implementation in the STFT domain and low computational

complexity, which has made them one of the most widely used techniques for speech enhancement.

According to Section 2.4, since it is well known that the late reverberation is the major reason for

deterioration of speech quality, spectral enhancement methods for dereverberation aim at the sup-

pression of late reverberation by estimating the early reverberant speech. In this regard, assuming

that early and late reverberations are independent and under the phase equivalence of the reverber-

ant and anechoic (non-reverberant) speeches, these methods can be employed for late reverberation

suppression by estimating the late reverberant spectral variance (LRSV) and using it in place of

the noise spectral variance [43]. Therefore, the main challenge here is to estimate the LRSV blindly

from a set of reverberant observations. Originally suggested by Labert et al. in [142], the late

reverberation is treated as a sort of additive noise, and through statistical modeling of the RIR,

an estimator of the LRSV is derived and used in a spectral subtraction rule. On this basis, several

estimators of the LRSV have been proposed and applied to spectral enhancement methods for

dereverberation in the past decade. Since the LRSV estimator in [142] is based on a time-domain
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model of the RIR and also under the implicit assumption that the source-to-microphone distance

is larger than a critical distance, i.e., the distance at which the direct-to-reverberant ratio (DRR)

is larger than 1 (in smaller distances, the LRSV estimator in [142] overestimates the true LRSV),

in [127], Habets developed a new LRSV estimator that overcomes these deficiencies. Therein, he

proposed a statistical RIR model in the STFT domain and used it to derive an extension of the

Lebart’s LRSV estimator that takes into account the energy contribution of the direct path and

reverberant parts of speech. This statistical RIR model is dependent only on the reverberation

time, which generally changes slowly with time. However, similar to Lebart’s method, the recursive

scheme suggested in [127] is basically derived for a fixed RIR, i.e., no changing environment, and

it also requires the a priori knowledge of RIR statistics or the DRR parameter. In [143], therefore,

an LRSV estimator that is based on the correlation of the reverberant and dereverberated speech

has been proposed in contrast to the previous model-based LRSV estimation approaches. The

suggested LRSV estimation scheme requires no knowledge of the RIR model parameters such as

the reverberation time and DRR, and outperforms the previous methods. However, this method

is able to track very slow changes in RIR and underestimates the LRSV in case of time-varying

RIRs. Therefore, it is recommended in [143] to use the model-based LRSV estimation as before

for the general case of time-varying RIRs, and it is proved that under a few extra mild conditions,

the model-based LRSV estimation approach is valid. In this regard, a smoothing parameter (the

so-called shape parameter therein) that is a function of the frequency bins is suggested, but this

shape parameter has to be estimated blindly and the amount of data needed for its accurate es-

timation is on the order of several seconds. In the same direction, a few more recent schemes of

LRSV estimation have been suggested in the literature such as the one in [144]. Therein, since the

shape parameter used in the LRSV estimation scheme is affected by the error in the estimation

of LRSV, in order to obtain a smoother shape parameter, it was suggested to use more than one

term of the past spectral variance of the reverberant speech.

In summary, it can be concluded that even though the existing literature includes a few major

schemes for the estimation of the LRSV, blind estimation of this parameter particularly in fast

changing environments is still a challenging problem and requires further research.

The rest of this chapter is organized as follows. In Section 6.2, a summary of the proposed

methods is explained. A brief review of late reverberation suppression using spectral enhancement
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(gain function-based method) is presented in Section 6.3. Section 6.4 presents the proposed ap-

proach for the estimation of the LRSV. In Section 6.5, we describe a few other developments in

order to make use of the conventional spectral enhancement method in reverberation suppression,

which include the estimation of signal-to-reverberant ratio (SRR), application of SPP to the gain

function used for enhancement, spectral flooring and the use of beamforming for reverberation

suppression. In Section 6.6, performance evaluations are discussed for both the proposed LRSV

estimator and the other developed schemes, and Section 6.7 gives the conclusions of this chapter.

6.2 Brief Description of the Proposed Methods

In this chapter, we suggest a new smoothing scheme for the estimation of the LRSV, that takes ad-

vantage of the WPE method for the selection of the shape parameter. Contrary to the conventional

WPE dereverberation method, which is in need of a few seconds of observations to estimate the

reverberation prediction weights, we implement the WPE method in an incremental-based manner.

At each block of the increment, the estimated reverberation prediction weights are used to extract

a rough estimate of the reverberant and dereverberated (direct-path) speech components at that

block, which, in turn, are exploited to estimate the spectral variances of the direct-path and rever-

berant components of the RIR. The latter is used to select the shape parameter dynamically for

each block, and makes the proposed scheme especially suitable for changing environments. Further,

we employ the dereverberated speech component in a moving average (MA) scheme to estimate

the reverberant-only spectral variance that is of high importance to obtain a precise estimate of

the LRSV.

Next, we consider developing several other notions from the context of noise reduction to their

counterparts in dereverberation, including the estimation of SRR, a flooring scheme for the gain

function, application of SPP to modify the gain function, and using beamforming to suppress

the late reverberation. Regarding the estimation of SPP, we develop a two-step scheme where in

the first step, an initial estimate of the SPP is obtained based on a modification of the decision-

directed approach. This initial estimate is exploited to obtain an MMSE optimal smoothing

parameter as well as a gain function, which are in turn used in the second step of the algorithm

to determine the ultimate value of the SRR. The suggested flooring scheme is based on a linear

prediction model of the desired (early) reverberant speech and replaces the small values of the gain
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function by an attenuated version of the estimated early speech, in order to avoid the introduced

distortion by the spectral modification. Next, we derive a straightforward but efficient extension

of the notion of SPP, originally defined for a noisy scenario, that is used to optimally modify the

spectral gain function to suppress the late reverberation. Finally, it is shown that the concept

of single-channel LRSV estimation can be generalized to the estimation of cross-LRSVs in the

multi-channel, which in fact constitutes an estimate for the LRSV matrix. The latter is beneficial

in employing the conventional beamforming techniques, e.g., the MVDR beamformer, to suppress

the late reverberation.

The contributions presented in this chapter are to be submitted as [145].

6.3 Background: Late Reverberation Suppression Using

Spectral Enhancement

In this section, we present a brief overview of the state-of-the-art literature on LRSV estimation for

single-channel late reverberation suppression using spectral enhancement. Recall from Section 2.4

that the reverberant speech in the STFT domain can be written as

Y (k, l) = YE(k, l) + YL(k, l) (6.1)

where YE(k, l) and YL(k, l) are respectively the early and late reverberant components at the

kth frequency bin and lth frame. The goal of late reverberation suppression through spectral

enhancement is to obtain an estimate of the early reverberant component, YE(k, l), by reducing

the late reverberation, YL(k, l). This has been originally done by Lebart in [142] where the classic

spectral subtraction rule, originally developed for additive noise reduction, is applied by a gain

function on the observations in order to suppress YL(k, l), as the following

ŶE(k, l) = G(k, l)Y (k, l) (6.2)

with ŶE(k, l) and G(k, l) are respectively the estimated early reverberant speech and spectral gain

function. For the latter, various expressions can be found from the noise reduction literature, e.g.,

those employed in [142]. Yet, this gain function generally depends on two important parameters,
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which, in the context of late reverberation suppression, are

ζ(k, l) =
σ2YE

(k, l)

σ2YL
(k, l)

, η(k, l) =
|Y (k, l)|2
σ2YL

(k, l)
(6.3)

where the two parameters σ2YE
(k, l)=E{|YE(k, l)|2} and σ2YL

(k, l)=E{|YL(k, l)|2} are respectively
the spectral variances of the early and late reverberant components. Borrowed from the noise

reduction context, σ2YE
(k, l) can be estimated through the conventional decision-directed (DD) ap-

proach [17]. However, the estimation of σ2YL
(k, l) or the so-called LRSV, due to its high influence in

the overall performance of the spectral enhancement method, has attracted considerable attention

in the recent literature and is the main focus of this work.

In [127], Habets suggests the following statistical RIR model in the STFT domain

H(k, l) =





BD(k), l = 0

BR(k, l)e
−α(k)lP , l ≥ 1

(6.4)

where P is the STFT frame advance (hop size), α(k) is defined as 3 ln10/(fsT60dB(k)) with fs as

the sampling frequency and T60dB(k) as the reverberation time, and BD(k) and BR(k, l) are two

zero-mean mutually independent and identically distributed (i.i.d.) Gaussian random processes

corresponding respectively to the direct-path and reverberant components of the RIR in the STFT

domain. Based on this model, the following recursive scheme for the LRSV estimator was derived

[127]

σ̂2YL
(k, l) = e−2α(k)P (NE−1)σ̂2YR

(k, l −NE + 1)

σ̂2YR
(k, l) = [1− κ(k)]e−2α(k)P σ̂2YR

(k, l − 1) + κ(k)e−2α(k)P σ̂2Y (k, l − 1)

σ̂2Y (k, l) = [1− β]σ̂2Y (k, l − 1) + β|Y (k, l)|2

(6.5)

with β as a fixed smoothing parameter and κ(k) as the shape parameter used to estimate the

reverberant spectral variance σ2YR
(k, l). Accurate estimation of the latter is highly important in

the context of LRSV estimation, since σ2YR
(k, l) should exclude the direct-path speech component

in order to avoid distorting this component by the underlying spectral suppression rule. Hence,

proper selection of the shape parameter κ is of high importance in this context. In [127], it is

proved that the optimal value of this parameter is in fact the ratio of the variance of BR(k, l) to
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that of BD(k), i.e., σ
2
BR
(k)/σ2BD

(k), which can be obtained by the following

κ(k) =
σ2BR

(k)

σ2BD
(k)

=
e2α(k)P − 1

DRR(k)
(6.6)

with DRR(k) as the ratio of the energy of the direct-path speech to that of the reverberant speech

or the so-called direct-to-reverberant ratio. However, to use (6.6), DRR(k) has to be blindly es-

timated, which requires the additional implementation of a blind DRR estimation method, which

requires at least a few seconds of speech observations. Therefore, this scheme does not suit well

the case of a changing RIR. Also, as observed in (6.5), the estimation of the reverberant spectral

variance σ2YR
(k, l) is actually performed by the recursive smoothing of the entire reverberant obser-

vation Y (k, l), and therefore, it does not exclude the direct-path component in the estimation of

σ2YR
(k, l). The latter is found to be one of the major obstacles of using spectral modification for the

purpose of dereverberation. In the following section, we propose a new scheme for the estimation

of the LRSV, which particularly takes advantage of the linear prediction-based dereverberation in

eliminating the direct-path component in estimating the reverberant spectral variance σ2YR
(k, l).

6.4 Proposed LRSV Estimator

We base our LRSV estimation approach on the scheme in [127] discussed in Section 6.2. Yet,

we target time-varying acoustic environments where the RIR cannot be assumed constant over a

period of a few seconds. It should be noted that, however, even though the RIR modeling in [127] is

basically valid for constant RIRs, it is shown in [143] that the same modeling is approximately valid

for time-varying RIRs, provided that the reverberation time and DRR remain almost constant

during an interval of the order of a few time frames. Therefore, under reasonably moderate

conditions, the same LRSV estimators developed for constant RIRs such as [127] can be used for

changing acoustic environments. We also here base our estimator for the LRSV on the model in

[127] but aim at adapting it with the changing acoustic environment.

Due to the importance of the accuracy in the estimation of the reverberant spectral variance

σ2YR
(k, l) as in (6.5), in this work, we mostly focus on the proper estimation of σ2YR

(k, l). In this

143



respect, in a similar fashion to (6.5), we use the following scheme for the estimation of the LRSV

σ̂2YL
(k, l) = e−2α(k)P (NE−1)σ̂2YR

(k, l −NE + 1) (6.7)

σ̂2YR
(k, l) = [1− κ(k, l)]σ̂2YR

(k, l − 1) + κ(k, l)|ŶR(k, l)|2

As compared to (6.5), a new time and frequency-dependent scheme for the shape parameter κ(k, l)

is proposed, which fits properly the case of a time-varying RIR. In addition, rather than estimating

the reverberant spectral variance σ2YR
(k, l) by only smoothing the observation |Y (k, l)|2, we exploit

a reverberant-only component of the speech, ŶR(k, l), which specifically excludes the direct-path

component. This helps avoiding the leakage of the direct-path speech into the estimated LRSV to

a large extent. In Sections 6.4.1 and 6.4.2, we will respectively discuss the proposed schemes for

the shape parameter κ(k, l) and the reverberant-only speech component ŶR(k, l), which are based

on an incremental (block) processing of the observed speech.

6.4.1 Suggested Scheme for the Shape Parameter

In this section, based on (6.6), we propose a new blind scheme to obtain the shape parameter κ.

This is achieved by finding a proper estimator for the DDR(k) in (6.6) as a function of time frame

l and frequency bin k. The parameter DDR(k) can be actually interpreted as the ratio of the

energy of the direct-path component to that of the reverberant component [42]. In fact, choosing

the shape parameter κ by (6.6) results in further updating of the reverberant spectral variance

σ̂2YR
(k, l) when the reverberant energy is higher, and conversely, further smoothing of σ̂2YR

(k, l)

when the direct-path energy is dominant. Based on this fact, we suggest to choose the shape

parameter by the following

κ1(k, l) =
e2α(k)P − 1

σ̂2YD
(k, l)/σ̂2YR

(k, l)

κ(k, l) = min{max{κ1(k, l), 0}, 1}
(6.8)

where σ̂2YD
(k, l) and σ̂2YR

(k, l) are estimates of the spectral variances of the direct-path and re-

verberant speech components, respectively, and the equation at the bottom is to ensure that the

shape parameter lies in [0, 1]. To estimate the two spectral variances in (6.8), we use the recursive
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smoothing method, i.e.,

σ̂2YD
(k, l) = [1− γ1]σ̂

2
YD
(k, l − 1) + γ1|ŶD(k, l)|2

σ̂2YR
(k, l) = [1− γ2]σ̂

2
YR
(k, l − 1) + γ2|ŶR(k, l)|2

(6.9)

with γ1 and γ2 as two fixed smoothing parameters taken to be 0.25, and ŶD(k, l) and ŶR(k, l) as

estimates of the direct-path and reverberant components of speech, respectively. Since ŶD(k, l)

and ŶR(k, l) are not available a priori, we resort to a linear prediction-based dereverberation in

the STFT domain, namely the WPE method [126], in order to obtain rough estimates of these

two terms. However, the WPE method is in essence a batch processing technique and it requires

preprocessing of the entire speech utterance in order to provide an accurate performance. This

violates our goal of dealing with a time-varying acoustic environment, where the RIR is prone to

change in a duration of less than a second. Furthermore, large processing delays are imposed due to

the mentioned preprocessing stage, which is undesirable for real-time speech processing systems. To

overcome these obstacles, here we employ theWPEmethod block-wise for speech blocks (processing

increments) of typically 0.5 second long. We then exploit the estimated direct-path and reverberant

components obtained from the WPE method in (6.9) at the end of each processing block. A

schematic of the processing blocks and time frames is shown in Figure 6.1. Within this framework,

despite the fact that the precision of the underlying WPE method may degrade to some degree,

the resulting primary estimates of the direct-path and reverberant components, i.e., ŶD(k, l) and

ŶR(k, l), are precise enough to be used in the suggested scheme for κ(k, l) in (6.8) and (6.9), as

will be investigated thoroughly in Section 6.6.

Now, denoting each processing block by λ and the block length (in samples) by ∆, based on

[126], the resulting incremental WPE method can be summarized as follows: õ ö ÷ ø ù ú ÷ û ü øõ ö ÷ ø ý þ ú ÷ ø ù ÿ þ � � ø ù ù ö � � � ü � � � ù
Figure 6.1: An illustration of the STFT frames and the processing blocks over speech time samples.
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• At the processing block λ, the observation Y (k, l) is considered for l ∈ {λM, λM+1,· · · , λM+

M − 1} (which is actually M of the STFT frames). We set the following parameters: d=1,

I=15, γ=0.65 and ε=10−3, and form the observation vector Y(k, l − d) as below

Y(k, l − d) = [Y (k, l − d), Y (k, l − d− 1), · · · , Y (k, l − d− I + 1)]T (6.10)

• The speech spectral variance σ2YD
(k, l) is initialized as σ2YD0

(k, l) = |Y (k, l)|2.

• Repeat the following for j = 0 : J − 1

Aλj
(k) =

∑

l

Y(k, l − d)YH(k, l − d)

σ2YDj
(k, l)

aλj
(k) =

∑

l

Y(k, l − d)Y ∗(k, l)

σ2YDj
(k, l)

(6.11)

where l ∈ {λM, λM + 1, · · · , λM +M − 1}

gλj
(k) = A−1

λj
(k) aλj

(k) (6.12)

YRj
(k, l) =gH

λj
(k)Y(k, l − d)

YDj
(k, l) =Y (k, l)− YRj

(k, l)
(6.13)

σ2YDj+1
(k, l) = [1− γ]σ2YDj+1

(k, l − 1)

+γmax
{
|YDj

(k, l)|2, ε
} (6.14)

• The terms YRj
(k, l) and YDj

(k, l) at the last iteration are considered as ŶR(k, l) and ŶD(k, l)

in (6.9).

Note that, contrary to the original WPE method, here the reverberation prediction weights gλj
(k)

are estimated separately for each time block λ. Also, to obtain a smoother speech spectral vari-

ance σ2YD
(k, l), which reasonably enhances the overall performance, a smoothing scheme has been

considered for this parameter in (6.14) rather than its instantaneous estimate used in the original

method. In our case, the parameter setting d=1 should be considered so that YDj
(k, l) in (6.13)

inclusively estimates the direct-path component of speech. Even though the WPE method is often

implemented for a fixed number of iterations J or until a maximum number of iterations is reached,
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we found a more efficient heuristic criterion for the number of iterations, which will be discussed

in Section 6.4.3.

6.4.2 Estimation of the Reverberant Component

The estimate of the reverberant component ŶR(k, l) used in (6.7) largely affects the overall precision

of the LRSV estimation and thus the corresponding spectral enhancement method, since ŶR(k, l)

should exclude the direct-path component of speech to avoid overestimation of the LRSV. To

obtain a proper estimate of the reverberant component, here we employ a modification of the

correlation-based approach suggested in [143], which was originally proposed to estimate the late

reverberant component. This approach models the estimate of the late reverberant speech, ŶL(k, l),

as a weighted sum of Q previous frames of the dereverberated speech, as the following

ŶL(k, l) =
√
B

Q−1∑

q=0

cq(k)Yde(k, l − δ − q) (6.15)

where Yde(k, l) is the dereverberated speech, δ is to introduce a delay (on the order of a few frames)

to avoid the direct-path and early reverberant components, cq’s are the MA model (prediction)

coefficients, Q is taken as 60 and B = 1.65 is a bias correction factor [143]. Since we here aim at

the estimation of the entire reverberant speech (including the early and late components), we set

δ = 1 in the above to skip only the direct-path component and use the dereverberated component

obtained from the WPE method for Yde(k, l). This results in

ŶR(k, l) =
√
B

Q−1∑

q=0

cq(k, λ)ŶD(k, l − 1− q) (6.16)

where we have used the term ŶD(k, l) as an estimate for Yde(k, l), which is obtained by applying

the WPE method in Section 6.4.1. Also, in a similar fashion to the reverberation prediction

weights gλ(k), we have considered the prediction coefficients cq(k, λ) to be updated as a function

of the time block index λ to account for moderate changes in the environment. Now, it remains

to obtain the prediction coefficients cq(k, λ), as required by (6.16). Based on [143], the prediction

coefficients can be optimally obtained by minimizing the mean squared error between Y (k, l) and
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cq(k, λ)ŶD(k, l − 1− q), leading to the following solution

ĉq(k, λ) =
El{Y (k, l)ŶD(k, l − 1− q)}
El{|ŶD(k, l − 1− q)|2}

(6.17)

where El{.} denotes the expectation over time frame l. Although in [143], the above scheme is not
actually followed in order to avoid long-term time averaging, here the block processing framework

allows us to perform the time averaging over all frames of the block. In this sense, denoting

the terms in the numerator and denominator of (6.17) by E(1) and E(2) respectively, we use the

following sample means

E1 ≈
1

M

∑

l

Y (k, l)ŶD(k, l − 1− q)

E2 ≈
1

M

∑

l

|ŶD(k, l − 1− q)|2
(6.18)

where we let l ∈ {λM, λM + 1, · · · , λM +M − 1}, i.e., we perform the sample means over the

M time frames of the processing block. It should be noted that, even though the incremental-

based implementation of the WPE method, as discussed in Section 6.4.1, introduces deviations

in the prediction weights gλ(k) from those obtained through the full batch processing, the WPE

method still does a good job at isolating the direct-path component from the reverberant one as

obtained by (6.16). Further details regarding the performance of the WPE method based on block

processing will be further discussed in Section 6.6.

6.4.3 Incremental Implementation of the WPE Method

The original WPE method essentially requires batch processing using at least a few seconds of

the reverberant observation. In spite of this, we apply the WPE method for processing blocks

of 0.5 second, since it is employed only to provide primary estimates of the reverberant and

dereverberated speech components, which are used in updating the shape parameter κ(k, l) in

(6.8) and the reverberant speech component ŶR(k, l) in (6.16). However, to further increase the

accuracy of the underlying WPE method in order to fit it into our incremental processing approach,

we make a few modifications to the original version of this method. The first, as discussed in

Section 6.4.1, is to add a smoothing scheme for the estimation of the speech spectral variance

σ2YD
(k, l) in (6.14). Next, we suggest to employ a heuristic criterion for the number of iterations

performed in (6.11)-(6.14). Conventionally, a fixed or a maximum number of iterations can be
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employed, or the following convergence criterion can be used in the jth iteration [146]

‖gj(k)− gj−1(k)‖2
‖gj−1(k)‖2

< ρ (6.19)

with ‖.‖2 denoting the `2-norm and ρ as a fixed threshold value; the iterations are discarded if

the above holds. Here, we suggest a convergence criterion based on a heuristic interpretation of

the WPE method in [146], as follows. The reverberation prediction weights gj(k) can actually be

derived based on the minimization of the following cost function [146]

Fj(gj) =
∑

l

∣∣Y (k, l)− gH
j (k)Y(k, l − d)

∣∣2

|YDj−1
(k, l)|2 =

∑

l

|YDj
(k, l)|2

|YDj−1
(k, l)|2 (6.20)

which in fact penalizes the sparsity of dereverberated speech in the numerator as compared to the

anechoic speech in the denominator. Here, we take advantage of the criterion expressed in (6.19)

to formulate a more efficient convergence criterion than the one in (6.19) for the reverberation

prediction weights at the λth processing block, gλj
(k), as the following

Gj(k, λ) =
λM+M−1∑

l=λM

|YDj
(k, l)|2

|YDj−1
(k, l)|2 < ρ′ (6.21)

where the summation is performed on all frames of the λth processing block and the threshold

value ρ′ is experimentally set to 0.01M . This choice of the convergence criterion ensures that a

certain level of sparsity in the dereverberated speech, as inspired by the cost function in (6.20),

is reached before discarding the iterations. Since the values of |YDj
(k, l)|2 and |YDj−1

(k, l)|2 may
change dramatically, making the criterion in (6.21) unsuitable for some frequencies or processing

blocks, we set the minimum and maximum allowed number of iterations respectively to 2 and 10.

Finally, to smooth the changes of the reverberation prediction weight gλ(k) across processing

blocks, we perform a smoothing scheme on gλ(k) to obtain its ultimate value, g′λ(k), as the

following

gλfinal
(k) = [1− µ]gλ−1(k) + µgλ(k) (6.22)

with µ fixed at 0.8, to determine the updated values of g′λ(k) mostly upon the current processing

block.

In Figure 6.2, a block diagram of the main steps of the proposed approach for LRSV estimation
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is illustrated. It is observed that the estimates of the direct and reverberant components by

the WPE method are useful in both updating the shape parameter κ(k, l) and the reverberant

component ŶR(k, l) in the LRSV estimation scheme in (6.7).� � � 	 
 � 
 � �  � � �  � 
 �� � � � 
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Figure 6.2: Block diagram of the proposed algorithm for LRSV estimation.

6.5 Other Developments on Classic Spectral Enhancement

Methods

In addition to the developed LRSV estimator in the previous part, there are a few major modifica-

tions that should be taken into account to efficiently employ the STSA estimation method for the

purpose of dereverberation. Even though using each of the proposed schemes in this section may

result in trivial improvements, the combination of all the suggested schemes considerably enhances

the performance of the STSA estimation used for dereverberation, as compared to the ordinary

schemes exploited in the context of noise reduction. The proposed schemes include the estimation

of SRR, the flooring of the spectral gain function, use of the SPP in modifying the gain function,

and the beamforming (multi-channel) method for dereverberation.

6.5.1 Estimation of SRR

The estimation of SRR in the context of late reverberation suppression, i.e., σ2YE
/σ2YL

, is basically

related to its counterpart in the context of noise reduction, i.e., the a priori SNR, which has been

conventionally estimated by the DD approach [17]. In this sense, we have the following estimator
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for the SRR

ζ̂(k, l) = ω
|ŶE(k, l − 1)|2
σ̂2YL

(k, l − 1)
+ (1− ω) P{η(k, l)− 1}, 0 ≤ ω < 1 (6.23)

with ω as a fixed smoothing parameter and the function P{.} defined as

P{x} =




x, x ≥ 0

0, otherwise
(6.24)

to avoid the invalid negative values of η(k, l) − 1. Herein, |ŶE(k, l − 1)| has to be replaced by

G(k, l − 1)|Y (k, l − 1)|. To date, there has been a few major modifications and improvements to

this classic approach such as those in [147, 148]. In [147], it was proved that an adaptive (i.e.,

frame and frequency dependent) smoothing parameter, ω(k, l), can improve the performance of the

DD approach and an optimal choice of this parameter based on the MMSE criterion was proposed

therein. In [148], it was discussed that the conventional DD approach in fact introduces a delay in

the estimation of ζ(k, l) and that the spectral gain computed at the current frame is more adapted

to the previous frame. Therein, to compensate for this inherent delay, it was suggested to shift

the frame index in the right hand side of (6.24) by one, and consequently, estimate ζ(k, l) using

the current estimate of the gain function G(k, l) and the estimate of η(k, l+1). We here employ a

similar approach in our context of SRR estimation and propose the following two-stage method:

• First, we use the following to calculate an initial estimate of the SRR, ζ̂0(k, l)

ζ̂0(k, l) = ω0
G2
0(k, l)|Y (k, l)|2
σ̂2YL

(k, l)
+ (1− ω0)

σ̂2YE
(k, l + 1)

σ̂2YL
(k, l + 1)

(6.25)

with ω0 chosen as 0.5, G0(k, l) is that obtained by using the conventional DD approach for

ζ̂(k, l) in (6.23), and proper estimates for σ̂2YL
(k, l) and σ̂2YE

(k, l) can be respectively used from

the proposed LRSV estimator in Section 6.4 and the early speech spectral variance estimator

in Chapter 5. Note that, as compared to the second term at the right hand side of (6.23),

instead of the asymptotically optimal estimate of ζ(k, l), i.e., η(k, l)−1, a more meaningful
estimate has been exploited, which is not in need of the rectifying function P{.}.

• Second, we use a more precisely adjusted smoothing expression to obtain the ultimate estimate
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of ζ(k, l) as the following

ζ̂(k, l) = ωopt(k, l)
G2
1(k, l)|Y (k, l)|2
σ̂2YL

(k, l)
+ (1− ωopt(k, l))

σ̂2YE
(k, l + 1)

σ̂2YL
(k, l + 1)

(6.26)

where the gain G1(k, l) is obtained by using the estimated ζ̂0(k, l) from the first step and

ωopt(k, l) is the optimal smoothing parameter that can be derived in the MMSE sense. In the

sequel, the derivation of ωopt(k, l) is discussed.

Following an MMSE framework to estimate ωopt(k, l), the MSE between the true and estimated

SRR, i.e., E{(ζ(k, l) − ζ̂(k, l))2}, has to be minimized. By using (6.26) for ζ̂(k, l) and expanding
the MSE term, we obtain

MSE = ω2(k, l)E{A2}+ (1− ω(k, l))2E{B2}+ 2ω(k, l)E{A}(1− ω(k, l))E{B}

− 2ζ(k, l)
[
ω(k, l)E{A}+ (1− ω(k, l))E{B}

]
(6.27)

where A and B respectively denote
G2

1(k,l)|Y (k,l)|2
σ̂2
YL
(k,l)

and
σ̂2
YE

(k,l+1)

σ̂2
YL
(k,l+1)

. It can be seen that the MSE term

in (6.27) is a quadratic function of ω(k, l) and that its second derivative with respect to ω(k, l)

is positive. Therefore, the MSE function is convex and by setting to zero its first derivative with

respect to ω(k, l), the optimal value of ω(k, l) can be derived as the following

ωopt(k, l) =
E{B2} − E{A}E{B}+ ζ(k, l) (E{A} − E{B})

E{A2}+ E{B2} − 2E{A}E{B} (6.28)

Clearly, the expectation on B or B2 can be dropped since it is a deterministic term. More-

over, it can be deduced that E{A} is in fact equal to ζ(k, l), and E{A2} can be expressed

as
G4

1(k,l)

σ̂4
YL
(k,l)

E{|Y (k, l)|4}, which can be obtained by smoothing the values of |Y (k, l)|4. Wherever

needed, we choose to use ζ̂0(k, l) as an estimate for ζ(k, l) in calculating ωopt(k, l) by (6.28). Also,

to ensure that the smoothing parameter ωopt(k, l) always falls into the interval [0, 1] and it results

in the best performance, we lower and upper bound the values given by (6.28) by 0.1 and 0.7,

respectively.
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6.5.2 Application of SPP to Gain function

Use of speech presence probability (SPP) to modify the gain function of an STSA estimator in a

noisy field was discussed in Section 2.1.7 of Chapter 2. In this part, we develop a straightforward

extension of the SPP that can be used to modify the STSA gain function in a reverberant field,

as the following

GM(k, l) = GH1(k, l)P(H1|Y (k, l)) +GH0(k, l)P(H0|Y (k, l)) (6.29)

where GH1(k, l) and GH0(k, l) respectively denote the gain functions under the hypotheses H1 and

H0. Obviously, GH1(k, l) is the conventional gain function without taking into account the SPP.

Whereas GH0(k, l) is theoretically zero, in practice, a small value, Gmin(k, l), is considered for

this term [78, 79]. Since we target late reverberation suppression in a reverberant field, the two

hypotheses H1 and H0 are defined as

H1 : Y (k, l) = YE(k, l) + YL(k, l)

H0 : Y (k, l) = YL(k, l) (6.30)

We here suggest a simple yet effective development of the SPP term, P(H1|Y (k, l)), by looking at
the linear prediction model for YE(k, l) as

∑D−1
`=0 g

∗(k, `)Y (k, l − `) in Chapter 5. In this sense, it

is evident that the presence of YE(k, l) not only depends on the observation at the current frame

Y (k, l), but also depends on the observations at D − 1 previous frames. Therefore, we suggest to

replace the conditional probability P(H1|Y (k, l)) by P(H1|YD(k, l)) as the SPP in a reverberant

field, withYD(k, l) as [Y (k, l), Y (k, l−1), · · · , Y (k, l−D+1)]T . Now, we use the same conventional
Bayesian framework to obtain P(H1|YD(k, l)), as follows

P(H1|YD(k, l)) =
P(YD(k, l)|H1)P(H1)

P(YD(k, l)|H1)P(H1) + P(YD(k, l)|H0)P(H0)
(6.31)
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and to obtain P(YD(k, l)|H1) and P(YD(k, l)|H0), we use the complex independent Gaussian

model, as the following

P(YD(k, l)|H1) =
D−1∏

`=0

P(Y (k, l − `)|H1) =

exp

(
−

D−1∑
`=0

|Y (k,l−`)|2
σ2
YE

(k,l−`)+σ2
YL
(k,l−`)

)

πD
∏D−1

`=0 (σ
2
YE
(k, l − `) + σ2YL

(k, l − `))

P(YD(k, l)|H0) =
D−1∏

`=0

P(Y (k, l − `)|H0) =

exp

(
−

D−1∑
`=0

|Y (k,l−`)|2
σ2
YL
(k,l−`)

)

πD
∏D−1

`=0 σ
2
YL
(k, l − `)

(6.32)

where the LRSV and speech spectral variance estimation methods proposed previously can be used

to estimate σ2YL
(k, l−`) and σ2YE

(k, l−`) respectively. Now by replacing (6.32) into (6.31) and using

a fixed choice for P(H1), the proposed SPP can be calculated. In this work, we chooseD and P(H1)

to be 3 and 0.75 respectively. It should be noted that, while in the conventional literature such as

the Cohen’s IMCRA method [80], P(H1) is suggested to be a function of time/frequency, it was

found in more recent works that assuming a fixed value for this parameter does not considerably

change the performance of the calculated SPP [149].

6.5.3 Spectral Gain Flooring for Dereverberation

In the same manner as that in the context of noise reduction, in frequency bins with weaker direct-

path (early) speech components, the gain function G(k, l) of an STSA estimator may approach

values close to or almost zero. This introduces too much of attenuation on the present early speech

components, which is perceived as large distortions in the enhanced speech signal. We experimen-

tally found that the resulting distortion is even higher in case of reverberation suppression than the

conventional noise reduction by STSA estimation, which is perhaps due to the overestimation in

the LRSV estimator and the correlation of early and late reverberant components. Furthermore,

we subjectively found that applying a larger gain function than the regular, despite providing less

suppression of the late reverberation, results in a more pleasant enhanced speech. Therefore, in the

sequel, we suggest a gain flooring scheme for the STSA gain function in reverberant environments,

which is both efficient and simple. This scheme can be applied on the modified gain function in

(6.29).

Resorting to the gain flooring schemes in the context of noise reduction, such as the one
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proposed in Section 3.3.3 of Chapter 3, it follows that the gain function GM(k, l) can be modified

as

G′M(k, l) =





GM(k, l), if GM(k, l) > ρ1(k, l)

Gf (k, l), otherwise

(6.33)

where ρ(k, l) is a threshold value depending on the noise masking threshold as given by (3.11),

and Gf (k, l) is the flooring value of the gain function. Following the same scheme as in (6.33), we

here suggest a choice for the flooring value, Gf (k, l). To this end, we consider the linear prediction

model for the early speech component, as discussed in Chapter 5, where an estimate of YE(k, l),

say ŶE(k, l), can be written as the sum
∑D−1

`=0 g
∗(k, `)Y (k, l − `). In this sense, to estimate the

prediction weights g(k, `), we minimize the MSE between ŶE(k, l) and g
∗(k, `)Y (k, l − `), which

results in the following solution

ĝ(k, `) =
E{ŶE(k, l)Y ∗(k, l − `)}

E{|Y (k, l − `)|2} (6.34)

Now, by using GM(k, l)Y (k, l) for ŶE(k, l), and also using sample averaging over l for the expec-

tation E{.} in (6.34), the prediction weights ĝ(k, `) and therefore ŶE(k, l) can be obtained. We

now define the flooring value of the gain function as an attenuated version of the smoothed gain

function, as the following

Gf (k, l) = Cf
ŶE(k, l)

|Y (k, l)| (6.35)

with Cf as a fixed attenuation factor empirically set as 0.25. The parameter D was taken to be 3

for the suggested scheme in this section.

6.5.4 Beamforming for Late Reverberation Suppression

Beamforming methods have been used since long in the past for the purpose of noise reduction. As

the most important and highly used methods in this regard, the multi-channel Wiener filter and

the minimum variance distortionless response (MVDR) can be mentioned [46]. Furthermore, in

Chapter 4, it was seen that the multi-channel extension of the STSA estimators under a complex

Gaussian distribution for noise results in the MVDR beamformer plus an STSA post-filter. Most of
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the beamforming methods including the MVDR method require an estimate of the PSD matrix of

the background noise/disturbance, and in fact, their capability to suppress the ambient disturbance

highly depends on the precision in the estimation of the PSD matrix. In case of reverberation

suppression, our literature survey revealed that, to date, a very efficient and promising approach

to blindly estimate the PSD matrix of the late reverberant speech that can be integrated into

the MVDR beamformer does not exist. Therefore, we here suggest a straightforward extension of

the conventional LRSV estimator to estimate the PSD matrix of interest. Denoting this matrix

by ΦYL
(k, l)=E

{
YLY

H
L

}
with YL(k, l)=[YL1(k, l), YL2(k, l), · · · , YLM

(k, l)]T and YLm
(k, l) as the

late reverberant component in the mth microphone, we can divide the elements of the matrix into

auto- and cross-terms (i.e., the diagonal and non-diagonal entries), as seen in the following

ΦYL
(k, l) =




E{|YL1 |2} E{YL1Y
∗
L2
} . . . E{YL1Y

∗
LM
}

E{YL2Y
∗
L1
} E{|YL2 |2} . . . E{YL2Y

∗
LM
}

...
...

. . .
...

E{YLM
Y ∗L1
}} E{YLM

Y ∗L2
}} . . . E{|YLM

|2}




(6.36)

As for the estimation of the diagonal elements, conventional LRSV estimators such as those dis-

cussed in Section 6.4 can be used. For example, by using Lebart’s method [142], we have

E{|YLm
(k, l)|2} = e−2α(k)PNEE{|Ym(k, l −NE)|2}

E{|Ym(k, l)|2} = [1− β]E{|Ym(k, l − 1)|2}+ β|Ym(k, l)|2
(6.37)

For the estimation of the off-diagonal elements, E{YLm
Y ∗Ln
}, a straightforward extension of (6.37)

can be used as the following

E{YLm
(k, l)Y ∗Ln

(k, l)} = e−2α(k)PNEE{Ym(k, l −NE)Y
∗
n (k, l −NE)} (6.38)

E{Ym(k, l)Y ∗n (k, l)} = [1− β]E{Ym(k, l − 1)Y ∗n (k, l − 1)}+ βYm(k, l)Y
∗
n (k, l)

Therefore, the PSD matrix, ΦXL
(k, l), can be obtained by

ΦYL
(k, l) = e−2α(k)PNE ΦY(k, l −NE)

ΦY(k, l) = [1− β] ΦY(k, l − 1) + β Y(k, l)YH(k, l)
(6.39)

156



Now, noting that the MVDR beamformer weights can be represented as
AH(k)Φ−1

YL
(k,l)

AH(k)Φ−1
YL

(k,l)A(k)
with

A(k) as the steering vector, it is evident that by inserting the suggested estimate of ΦYL
(k, l) by

(6.39) into the MVDR beamformer, the term e−2α(k)PNE is canceled out. Therefore, the MVDR

beamformer weights become independent of the reverberation parameter α(k)=3 log 10/(fsT60dB),

and the estimation of the reverberation time T60dB is not required. In this regard, the delayed

version of the PSD matrix, ΦY(k, l), i.e., ΦY(k, l − NE) can be used in the MVDR beamformer

and inversion algorithms such as the Sherman-Morrison formula can be exploited to calculate its

inverse. The parameters NE and β in (6.39) are respectively chosen as 5 and 0.1. We did not find

any performance advantage by extending more advanced estimators of the LRSV (such as the one

proposed in Section 6.4) into the matrix form and using them in the MVDR beamformer. Yet,

this can be considered as an avenue for further research.

6.6 Performance Evaluation

In this section, we first assess the performance of the suggested LRSV estimator in Section 6.4, as

well as the proposed schemes in Section 6.5, including the estimator of SRR, the extension of SPP

and the spectral gain flooring. Next, based on the existing literature and proposed methods, we

exploit a few schemes for the joint suppression of noise and late reverberation and evaluate their

performance in a noisy reverberant scenario.

6.6.1 Evaluation of the Proposed LRSV Estimator

In this section, we evaluate the performance of the proposed estimator of LRSV against other

recent LRSV estimation methods for both time-invariant and time-varying RIRs. To this end,

anechoic speech utterances including 10 male and 10 female speakers were used from the TIMIT

database [105]. The sampling frequency fs was set to 16 kHz and a 25 msec Hamming window with

the overlap of 75% was used for the STFT analysis-synthesis. To implement our block processing-

based approach, we considered a block length of 0.5 second, resulting in M=80 overlapping STFT

frames in each processing block (note that M can be calculated by dividing the block length ∆ by

the STFT hop size P ). It should be noted that there exists a trade-off in choosing the processing

block length, since the smaller the block length the more erroneous the prediction weights gλ(k),

and the larger the block length the higher the processing delay and also the slower the adaptation
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of the estimated LRSV with the changing RIR. With the current setting for the processing block

length, considering the computational complexity of the underlying WPE method (this has been

studied in detail in terms of the real time factor in [126]), the proposed approach seems suitable for

real time applications for which the dereverberation algorithm needs to work incrementally from

the beginning of the captured speech utterance with a small algorithmic delay. The number of early

terms considered in the RIR in (6.5), i.e., NE, is set as 10 for our experiments to obtain the best

performance. As for the estimation of the reverberation time T60dB, we use the blind reverberation

time estimator in [133], which is capable of estimating T60dB within the allowed processing blocks

with low complexity and enough accuracy for the purpose of LRSV estmation. Note that, even

for changing environments, the reverberation time parameter T60dB does not change considerably

[143]. Our approach does not require the estimation of the DRR parameter.

Using the same performance measures as those described in Chapter 5, in the following, we

evaluate the relative performance of the proposed LRSV estimator in both time-invariant and

time-varying reverberant environments.

6.6.1.1 Performance in Time-Invariant RIRs

In this part, we assess the performance of the proposed approach in comparison with other methods

in a scenario where the environment is invariant, using either a synthesized or a measured constant

RIR. In case of the measured RIR, we used a recorded RIR taken from the SimData of the

REVERB Challenge [134], where an 8-channel circular array with diameter of 20 cm was placed

in a 3.7 m×5.5 m acoustic room. The RIR at the first channel was considered as the observation.

The resulting signal was combined with additive babble noise from the same database at a global

SNR of 10 dB. Furthermore, to have a controlled reverberation time and be able to verify the

performance of the proposed approach in low-to-moderate T60dB values, we used the ISM method

[119] to synthesize RIRs with different T60dB. In all cases, the anechoic speech is convolved with

the RIR to obtain the reverberant speech signal. The geometry of the synthesized reverberant

environment scenario with T60dB changing from 100 msec to 800 msec is shown in Figure 6.3 in

detail. The reverberant global SNR was fixed at 15 dB for this experiment.
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Figure 6.3: A two-dimensional schematic of the geometric setup used to synthesize the time-
invariant RIR by the ISM method.

In the case of time-invariant RIR, we compare the proposed approach to the original Lebart’s

method [142], the correlation-based method in [143], the improved model-based method in [144] and

the true (perfect) LRSV estimator. The Lebart’s method is actually a special case of the scheme

in (6.5) with κ(k)=1. The correlation-based method, as expressed by eq. (26) in [143], is actually

based on obtaining X̂R(k, l) by (6.15) and then smoothing it to estimate the LRSV. Yet, due to

the unavailability of long-term expectations in (6.17), it uses a recursive smoothing scheme to find

the prediction coefficients cq(k). The improved model-based method in [144] uses more than one

term of the past spectral variances of the reverberant speech in order to obtain a smoother shape

parameter and is in fact an extension of the model-based method in [143]. The latter (as expressed

by eq. (51) in [143]), which is to be assessed in the following section, exploits the past estimates

of the LRSV averaged over frequency bins to obtain the shape parameter as κ(l). It should be

noted that the correlation-based and model-based methods in [143] were respectively developed

for time-invariant and time-variant RIRs. Finally, the true LRSV (used just as a reference for

comparison) was obtained by temporally smoothing the late reverberant spectra, which is in turn

calculated by convolving the anechoic speech with the hypothetical late component of the RIR,

i.e., that excluding the first 60 msec.
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To evaluate the efficiency of the proposed method with respect to the length of the processing

blocks, we calculated a measure of the error in the estimation of LRSV versus the processing block

length for different reverberation times, as shown in Figure 6.4.
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Figure 6.4: Normalized error in the estimation of the LRSV w.r.t. to the case of using the entire
speech utterance, versus the processing block length for different reverberation times.

We considered processing a speech segment of 3 seconds using block lengths of 0.1 to 1.5 seconds

to estimate the LRSV and calculated the following normalized error

e(∆) = El

{
||ˆ̄σ2XL

(k, l,∆)− σ̄2XL
(k, l)||2

||σ̄2XL
(k, l)||2

}
(6.40)

where ˆ̄σ2XL
(k, l,∆) and σ̄2XL

(k, l) respectively denote the estimated LRSV using a block length of

∆ and that using the entire utterance, ||.||2 is the `2-norm over frequency bins and El{.} is the
average value over time frames. As observed in Figure 6.4, for processing block lengths of 0.5

second, the relative error in the LRSV estimation is far smaller than that for shorter blocks of

around 0.1 to 0.2 second, yet not much larger than that for longer blocks of 1 or even 1.5 seconds.

In fact, even though choosing a longer processing block reduces the error in (6.40), due to the

processing delay introduced by the incremental processing, a trade-off has to be considered in the

choice of the block length. This was chosen in our case as 0.5 second.

Next, to determine how close the estimated LRSVs are with respect to the true LRSV, we

investigated the mean spectral variances, which are obtained by averaging the LRSVs over all
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frequency bins, as suggested by [127]. The results are indicated in Figure 6.5 for a speech utterance

of 425 time frames and all values were thresholded for better illustration.
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Figure 6.5: Mean spectral variances using the recorded RIR from the REVERB Challenge [134]
for: (a) the true LRSV, the LRSV estimated using RIR variances and the proposed LRSV (b) the
true LRSV, the LRSV estimated by the improved model-based method [144] and the one estimated
by the Lebart’s method [142].

In order to examine how fast the methods can track abrupt changes in the LRSV values, we

considered a short period of anechoic speech deactivation around the middle of the utterance. In

Figure 6.5 (a), the mean spectral variance of the proposed LRSV compared to that of the true

LRSV and the one obtained by using RIR variances have been shown. The latter, used as another

reference method for comparison, was obtained by using the available constant RIR, i.e., h(n), to

calculate the DRR as following

DRR(k) =

∑NE−1
n=0 [h(n)]2

∑Lh−1
n=NE

[h(n)]2
∀k (6.41)

and then using it in (6.6) to obtain the shape parameter κ, which is to be used in the scheme

in (6.5), as proposed in [127]. It is observed that the proposed LRSV is able to closely track

the true LRSV and the one obtained by using RIR variances, even in the duration of the abrupt

drops/rises in the LRSV. As seen in Figure 6.5 (b), Lebart’s [142] and the improved model-based

[144] methods still follow the LRSV but with larger errors and more delay with respect to the true

LRSV, with Lebart’s method significantly overestimating the LRSV at the peaks.

To evaluate numerically the error in the proposed and considered LRSV estimates with re-

spect to the true LRSV estimate, the mean segmental error for different reverberation times was
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calculated and shown in Figure 6.6. The mean segmental error is calculated by [127]

Errseg = El

{
Ek

{
|σ̂2XL

(k, l)− σ2XL
(k, l)|2

}

Ek

{
|σ2XL

(k, l)|2
}

}
(6.42)

where σ̂2XL
(k, l) and σ2XL

(k, l) are respectively the estimated and true LRSVs, and with El{.} and
Ek{.} respectively denoting the expectation over time frames and frequency bins. As seen in

Figure 6.6, for both source-to-microphone distances of 1 m and 2 m, the proposed LRSV estimator

attains smaller errors for the entire range of T60dB, as compared to the other methods. Whereas the

improved model-based method in [144] and correlation-based method [143] achieve almost close

performance, Lebart’s method results in the highest error of all.
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Figure 6.6: Mean segmental error for different LRSV estimators using the synthesized RIRs by the
ISM method [119] with source-to-microphone distances of (a): 1 m (b): 2 m.

In order for the evaluation of the reverberation suppression achieved by exploiting the proposed

LRSV estimation method, we employed the popular Bayesian log-spectral amplitude (LSA) gain

function in [18] to perform late reverberation suppression using the true and estimated LRSVs.

The a priori SRR required by the gain function was estimated by the decision-directed approach

[17], and to obtain the best subjective performance, the LSA gain function was lower bounded to -

10 dB. In Table 6.1, the four aforementioned performance scores PESQ, CD, FW-SNR and SRMR

have been respectively shown for the unprocessed (observed) speech and the enhanced one by

using the true LRSV, proposed LRSV, improved model-based method in [144], correlation-based
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method in [143] and Lebart’s method in [142]. These results were obtained by using the recorded

RIR from the REVERB Challenge dataset [134]. Also, the same performance scores have been

reported in Table 6.2 for the case of synthesized RIRs using the ISM method with T60dB changing

from 200 msec to 800 msec and the source-to-microphone distance of 1 m. It is seen that the

proposed method is able to achieve the closest performance to the true LRSV as compared to the

others. While the improved model-based method performs slightly better than the correlation-

based method, Lebart’s method has the lowest scores. Furthermore, it can be deduced that as

T60dB is increased, the performance of all LRSV estimation methods degrades with respect to that

of the true LRSV, indicating that precise estimation of the LRSV is still a challenging problem

for highly reverberant environments. This is consistent with the results obtained for the mean

segmental error in Figure 6.6. Table 6.3 shows the same trend but for a source-to-microphone

distance of 2 m, resulting in slightly degraded performance results compared to the previous case.

We found that the results of the four performance measures used here were almost consistent for

different methods.

Table 6.1: Performance measures using the recorded RIR from the REVERB Challenge.

Method PESQ CD FW-SNR (dB) SRMR (dB)

Unprocessed 1.87 4.97 3.64 4.04

True LRSV 2.25 4.40 6.70 6.74

Proposed method 2.13 4.61 5.89 5.91

Improved model-based [144] 2.03 4.82 5.26 5.58

Correlation-based [143] 1.97 4.88 5.10 5.52

Lebart’s method [142] 1.88 5.03 4.65 5.11
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Table 6.2: Performance measures using the ISM method for source-to-microphone distance of 1 m.

PESQ

T60dB (msec) 200 400 600 800

Unprocessed 2.31 2.14 1.92 1.78

True LRSV 2.83 2.61 2.37 2.16

Proposed method 2.75 2.48 2.21 1.97

Improved model-based [144] 2.71 2.43 2.14 1.90

Correlation-based [143] 2.70 2.41 2.12 1.88

Lebart’s method [142] 2.63 2.32 1.99 1.81

CD

T60dB (msec) 200 400 600 800

Unprocessed 3.72 4.06 4.65 5.48

True LRSV 3.03 3.39 4.11 5.06

Proposed method 3.12 3.51 4.26 5.24

Improved model-based [144] 3.18 3.59 4.34 5.33

Correlation-based [143] 3.20 3.63 4.37 5.36

Lebart’s method [142] 3.26 3.73 4.48 5.44
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Table 6.3: Performance measures using the ISM method for a source-to-microphone distance of
2 m.

PESQ

T60dB (msec) 200 400 600 800

Unprocessed 2.28 2.12 1.87 1.75

True LRSV 2.81 2.59 2.33 2.15

Proposed method 2.72 2.46 2.20 1.94

Improved model-based [144] 2.68 2.39 2.10 1.88

Correlation-based [143] 2.66 2.38 2.09 1.86

Lebart’s method [142] 2.60 2.29 1.96 1.78

CD

T60dB (msec) 200 400 600 800

Unprocessed 3.76 4.08 4.71 5.57

True LRSV 3.08 3.45 4.20 5.15

Proposed method 3.16 3.56 4.31 5.23

Improved model-based [144] 3.21 3.63 4.40 5.39

Correlation-based [143] 3.24 3.67 4.46 5.42

Lebart’s method [142] 3.30 3.78 4.57 5.51

6.6.1.2 Performance in Time-Varying RIRs

In this part, we evaluate the relative performance of the proposed LRSV estimation method in

a scenario where the RIR is time-variant. In Figure 6.7, an illustration of this scenario used in

the ISM method to generate the corresponding impulse responses is shown. As seen, a talker is

moving from the indicated location at t=0 to the ending position at t=10 seconds on a straight

line, resulting in a variable source-to-microphone channel impulse response. We estimated the con-

tinuous trajectory by 20 discrete points and obtain the corresponding RIR for each point through

the ISM method. Then, the entire 10-second anechoic sample was segmented into 20 utterances

each of which was filtered by one of the RIRs at the discrete points. The entire reverberant speech

sample was generated next by combining the 20 individual segments. In this way, even though
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there exists some error due to the truncation done by the filtering, the length of the reverberant

speech sample remains the same as that of the anechoic speech whereas the continuous trajectory

is well approximated by the 20 discrete points.
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Figure 6.7: A two-dimensional schematic of the geometric setup used to synthesize the time-variant
RIR (moving talker) by the ISM method.

In Figure 6.8, the mean spectral variances are shown for the true LRSV, the one obtained by

the available RIR variances, the estimated LRSV by the proposed and other methods. It is evident

that, whereas the proposed method is able to follow the true LRSV with visibly good precision,

the other indicated methods track the changes in the true LRSV with considerable error, which

becomes even larger in the locations of sudden decays and rises. Yet, the proposed LRSV estimator

proves to be more robust against the abrupt changes in the LRSV due to its adaptation with the

changing RIR by employing the incremental-based WPE method.
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Figure 6.8: Mean spectral variances for: (a) the true LRSV, the LRSV estimated using RIR
variances and the proposed LRSV (b) the true LRSV, the LRSV estimated by the improved
model-based method [144] and the one estimated by the Lebart’s method [142].

Next, we evaluated the mean segmental error in (6.42) in the case of time-varying RIR for the

proposed method along with the improved model-based method in [144], the model-based method

in [143] and Lebart’s method [142]. As observed in Figure 6.9, the same trend as that for the

time-invariant RIR applies with the proposed method achieving the best similarity to the true

value of LRSV, whereas the model-based and improved model-based methods gain almost the

same performance particularly at high reverberation times.
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Figure 6.9: Mean segmental error for different LRSV estimators using the configuration in Fig-
ure 6.7 with H as (a): 1 m (b): 2 m.

Similar to Section 6.6.1.1, we here evaluate the reverberation suppression performance of the

proposed and other methods in terms of the PESQ, CD, FW-SNR and SRMR scores. In this
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respect, we consider the time-variant RIR scenario in Figure 6.7 and compare our LRSV estimation

method with the true LRSV, the improved model-based method in [144], the model-based method

in [143] and Lebart’s method in [142]. The results have been reported in Table 6.4 for the vertical

distance H in Figure 6.7 as 1 m, and in Table 6.5 for H=2 m. Based on these results, we deduce that,

in general, the performance scores of all methods falls lower than those in case of time-invariant

RIR. Consistently in all the performance scores, it is observed that the proposed method achieves

considerably closer scores to those obtained by the true LRSV, even in higher reverberation times

where the performance of all methods becomes farther from that of the true LRSV. This shows the

advantage of the proposed method especially for changing environments. Also, it is seen that while

the improved model-based and model-based methods result in almost close scores, the performance

of Lebart’s method, i.e., that with a constant shape parameter, is deteriorated further than that

in the case of time-invariant RIR. This shows the importance of adapting the shape parameter in

LRSV estimation to the changing RIR.
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Table 6.4: Performance measures for time-variant RIR with H=1 m in Figure 6.7.

PESQ

T60dB (msec) 200 400 600 800

Unprocessed 2.28 2.13 1.92 1.77

True LRSV 2.76 2.58 2.29 2.10

Proposed method 2.71 2.40 2.13 1.93

Improved model-based [144] 2.66 2.35 2.10 1.84

Model-based [143] 2.66 2.36 2.09 1.83

Lebart’s method [142] 2.56 2.27 1.93 1.76

CD

T60dB (msec) 200 400 600 800

Unprocessed 3.80 4.09 4.65 5.49

True LRSV 3.16 3.54 4.26 5.28

Proposed method 3.20 3.62 4.37 5.39

Improved model-based [144] 3.25 3.71 4.50 5.44

Model-based [143] 3.26 3.71 4.52 5.45

Lebart’s method [142] 3.31 3.77 4.61 5.52
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Table 6.5: Performance measures for time-variant RIR with H=2 m in Figure 6.7.

PESQ

T60dB (msec) 200 400 600 800

Unprocessed 2.26 2.10 1.88 1.71

True LRSV 2.73 2.54 2.23 2.02

Proposed method 2.70 2.35 2.06 1.90

Improved model-based [144] 2.62 2.31 1.99 1.77

Model-based [143] 2.61 2.31 1.97 1.74

Lebart’s method [142] 2.48 2.15 1.85 1.69

CD

T60dB (msec) 200 400 600 800

Unprocessed 3.84 4.13 4.67 5.53

True LRSV 3.18 3.55 4.29 5.33

Proposed method 3.21 3.65 4.38 5.42

Improved model-based [144] 3.28 3.74 4.52 5.47

Model-based [143] 3.28 3.76 4.53 5.48

Lebart’s method [142] 3.33 3.82 4.64 5.55

6.6.2 Evaluation of the Proposed Schemes in Section 6.5

In this section, we evaluate the performance of the proposed schemes in Section 6.5, namely, the

SRR estimator, the SPP as applied on the gain function, gain flooring scheme, and the suggested

LRSV estimation to be used in the MVDR beamformer. To this end, we use the same evaluation

methodology and experimental setup as in Section 6.6.1.1. Yet, to evaluate the beamforming

methods, we consider more than one microphone in the scenario represented in Figure 6.3. As

for the single-channel method (M=1), we use the LSA estimator [18] with the proposed LRSV

estimator in Section 6.4, and for the beamforming methods, including the delay-and-sum (DAS)

and MVDR, we use M=2, unless otherwise stated.

Table 6.6 shows the performance measures for the single- and multi-channel methods, using the

recorded RIRs from the REVERB Challenge. For the single-channel case, i.e., the LSA estimator,
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we evaluated the individual improvements obtained by using each of the SRR, SPP and gain

flooring schemes, as well as the overall improvement achieved by using all of the three schemes.

As seen, each of the suggested schemes is able to provide objective improvements with respect

to the conventional DD approach. Furthermore, the combination of the three schemes provides

considerable improvement in all the objective performance measures. Also, the MVDR beamformer

with the proposed LRSV matrix estimation considerably outperforms the DAS beamformer, which

has been widely used for reverberation suppression. Note that the use of two channels in the beam-

forming methods results in better performance as compared to the single-channel LSA methods,

especially for the MVDR beamformer.

Table 6.6: Performance measures using the recorded RIRs from the REVERB Challenge.

Method PESQ CD FW-SNR (dB) SRMR (dB)

Unprocessed 1.87 4.97 3.64 4.04

LSA Using DD Approach 2.13 4.61 5.90 5.91

LSA Using the SRR Scheme 2.16 4.53 6.08 6.02

LSA Using the SPP Scheme 2.17 4.53 6.10 6.06

LSA Using the Flooring Scheme 2.22 4.40 6.42 6.25

LSA Using All Schemes 2.25 4.29 6.55 6.38

DAS Beamformer 2.23 4.28 6.43 6.30

Proposed MVDR Beamformer 2.29 4.18 6.78 5.56

Table 6.7 shows the PESQ and CD scores for the same methods but by using the synthesized

RIRs through the ISM method. As observed, the proposed schemes as well as the MVDR beam-

former with the suggested LRSV matrix estimator provide further improvements with respect to

the classic methods. Yet, this advantage is more visible for higher levels of reverberation, i.e., for

T60dB higher than 200 msec.
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Table 6.7: Performance measures using the ISM method for source-to-microphone distance of 1 m.

PESQ

T60dB (msec) 200 400 600 800

Unprocessed 2.31 2.14 1.92 1.78

LSA Using DD Approach 2.83 2.61 2.37 2.16

LSA Using the SRR Scheme 2.83 2.62 2.40 2.20

LSA Using the SPP Scheme 2.82 2.62 2.42 2.22

LSA Using the Flooring Scheme 2.84 2.65 2.46 2.28

LSA Using All Schemes 2.84 2.66 2.49 2.31

DAS Beamformer 2.86 2.65 2.47 2.29

Proposed MVDR Beamformer 2.90 2.74 2.60 2.43

CD

T60dB (msec) 200 400 600 800

Unprocessed 3.72 4.06 4.65 5.48

LSA Using DD Approach 3.03 3.39 4.11 5.06

LSA Using the SRR Scheme 3.04 3.36 4.05 5.02

LSA Using the SPP Scheme 3.03 3.35 4.01 4.97

LSA Using the Flooring Scheme 3.00 3.31 3.94 4.91

LSA Using All Schemes 3.01 3.29 3.90 4.86

DAS Beamformer 2.96 3.27 3.91 4.88

Proposed MVDR Beamformer 2.95 3.21 3.78 4.72

In Figure 6.10, to investigate the performance of the suggested extension of the LRSV estimator

in Section 6.5.4 for larger numbers of microphones, we indicated the PESQ and CD measures versus

T60dB forM=2-4 using the ISM method. As seen, by increasing the number of microphones, higher

PESQ and lower CD values are achieved, indicating the advantage of the proposed method in

Section 6.5.4 by using more microphones.
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Figure 6.10: PESQ and CD measures versus the reverberation time for the MVDR beamformer
with different numbers of microphones using the proposed LRSV matrix estimation.

6.6.3 Joint Noise Reduction and Dereverberation

In many speech communication applications such as voice-controlled systems or hearing aids, dis-

tant microphones are used to capture a speech source, where the observed speech is often corrupted

by both reverberation and noise. In such a case, joint suppression of noise and reverberation is in

order. Due to the totally different nature and characteristics of noise and reverberation, however,

this problem has to be handled sequentially; i.e., the reduction of noise and reverberation suppres-

sion have to be performed in separate stages with minimal effect on each other’s performance. This

problem has been addressed in a few references, e.g., in [43, 146, 150, 151], within the category of

STFT domain methods.

In our case, resorting to the spectral enhancement (namely, the STSA estimation), the MVDR

beamforming, and the dereverberation based on the WPE method, we considered different com-

binations of these methods to handle the problem of jointly suppressing noise and reverberation.

Regarding the spectral enhancement method for joint noise and reverberation suppression, Habets

in [43] has suggested to use the same STSA gain functions as those for the case of noise reduction,

but to replace the noise spectral variance by the sum of the spectral variances of noise and late

reverberation. As for the estimation of the signal-to-noise plus reverberant ratio, the DD approach

is used therein in a similar fashion to the noise-only case. We here take advantage of this modifi-

cation of the STSA estimation, i.e., the so-called modified spectral enhancement, as expressed in

Figure 6.11.
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Figure 6.11: Modified spectral enhancement method used for jointly suppressing the noise and late
reverberation.

As for the MVDR beamformer, we exploit a straightforward extension of the Habets’ method in

[43] in order to replace the noise PSD matrix by the sum of noise and late reverberant PSD matrices,

making the beamforming method proposed in subsection 6.5.4 useful for the joint suppression of

noise and late reverberation. A block diagram of the proposed beamforming approach is shown in

Figure 6.12.
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Figure 6.12: Suggested algorithm to use the MVDR beamformer for the purpose of joint noise and
late reverberation suppression.

In Figure 6.13, 4 different multi-channel combinations of the WPE, the MVDR beamforming

and the spectral enhancement methods are illustrated. In this regard, we found that using the

WPE dereverberation method prior to the spectral enhancement leads to better performance in

terms of both suppressing noise and reverberation and imposing less distortion on the clean speech

component. In fact, the noise-robust feature of the WPE method, as claimed in [126], makes it

suitable to be used in the first stage of a joint noise and reverberation suppression algorithm. Yet,
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the spectral enhancement method based on a gain function (as followed by a gain flooring scheme)

imposes non-linear distortions and artifacts on both speech and reverberation, and therefore, it is

more efficient to use this method in the final stage of a joint noise and reverberation suppression
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Figure 6.13: 4 different combinations of the WPE method, the MVDR beamformer and the spectral
enhancement for joint noise and reverberation suppression.

Now, using the same parameter settings as those in subsection 6.6.1 and Section 5.6, we here

evaluate the performance of the single-channel combinations of the WPE method and the modified

spectral enhancement, as well as the performance of the 4 suggested multi-channel systems in

Figure 6.13 for the joint suppression of noise and reverberation. In this sense, we consider the

same scenario as that in Figure 6.3 but with two microphones for the case of multi-channel and

an SNR set to 5 dB.

In Figures 6.14 and 6.15, the objective performance scores are plotted for different combinations

of the WPE and the modified spectral enhancement (SE) methods. For better visualization,

only the improvement in the enhanced speech w.r.t. the unprocessed speech has been shown, as

denoted by ∆PESQ and such. As seen, the WPE method followed by the modified SE offers the

best performance as compared to the inverse combination and the modified SE. This is consistent

with all of the performance scores and the entire range of the reverberation time T60dB. Next

in Figures 6.16 and 6.17, the same objective performance scores are shown for the 4 different

multi-channel combinations illustrated in Figures 6.13. As observed, the system consisting of

the implementation of the WPE method independently on each of the channels followed by the

suggested MVDR in Figure 6.12 and the modified SE (as a post-filter) is able to provide the best
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performance.
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Figure 6.14: PESQ and CD scores versus the reverberation time for different single-channel com-
binations of the WPE and the modified SE methods.
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Figure 6.15: FW-SNR and SRMR scores versus the reverberation time for different single-channel
combinations of the WPE and the modified SE methods.
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Figure 6.16: PESQ and CD scores versus the reverberation time for different multi-channel systems
in Figure 6.13.
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Figure 6.17: FW-SNR and SRMR scores versus the reverberation time for different multi-channel
systems in Figure 6.13.

6.7 Conclusion

In this chapter, we focused on late reverberation suppression using the classic speech spectral

enhancement method originally developed for additive noise reduction. This method, in addition

to having low complexity and being straightforward in implementation, provides good reduction
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of reverberation energy at the expense of some distortion in the enhanced speech and the need for

an estimate of the reverberation time.

As the main contribution of this chapter, we proposed a novel LRSV estimator which replaces

the noise variance in order to modify the gain function for reverberation suppression. The sug-

gested approach employs a modified version of the WPE method in an incremental processing

scheme where rough estimates of the reverberant and dereverberated components of speech are

extracted for each processing block. These two estimates are exploited in the model-based smooth-

ing scheme used for the estimation of the LRSV. We evaluated the performance of the proposed

LRSV estimation method in terms of different performance measures suggested by the REVERB

Challenge in both time-invariant and time-variant acoustic environments. According to the exper-

iments, the proposed LRSV estimator outperforms the previous major methods considerably and

scores the closest results to the theoretically true LRSV estimator. Particularly in case of changing

RIRs where other methods cannot follow the true LRSV estimator accurately, the suggested esti-

mator is able to track the true LRSV values and results in smaller relative errors. The proposed

approach performs totally blindly and does not require any prior information about the speech

or environmental characteristics. Future work in this direction can involve taking into account

the inherent correlation of the early and late reverberant components of speech and making the

suggested approach robust against fast changes in RIR by reduction of the processing block length.

We also targeted a few other aspects of the spectral enhancement method for reverberation

suppression, which were only explored for the purpose of noise reduction. These include the es-

timation of SRR and the development of new schemes for the SPP and spectral gain flooring in

the context of late reverberation suppression. All these schemes are based on the modification

of their counterparts in the context of noise reduction and can be used individually or altogether

to improve the dereverberation performance of the classic spectral enhancement method. Perfor-

mance assessment of the suggested schemes revealed that they are capable of providing additional

improvements when exploited in a spectral gain function. Furthermore, a straightforward exten-

sion of the LRSV estimation to the case of LRSV matrix was presented, that is highly useful in

classic beamforming methods, such as the MVDR beamformer, in order to blindly perform late

reverberation suppression.
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Chapter 7

Conclusions and Future Work

7.1 Concluding Remarks

Due to its simplicity in implementation and low-to-moderate computational complexity, speech

enhancement in the STFT domain is still an ongoing area of research. In this thesis, we targeted

two of the most important aspects of speech enhancement, i.e., noise reduction and reverberation

suppression, and developed different methods/schemes in both single- and multi-channel cases for

each. Whereas for the noise reduction part, we contributed a few schemes to the class of Bayesian

STSA estimators within the spectral enhancement approach, for the reverberation suppression

part, we proposed both spectral enhancement-based and linear prediction-based dereverberation

approaches. Within each category, we proposed a few methods that resulted in objective and

subjective improvements in various noisy and reverberant conditions with respect to the most

recent state-of-the-art variants.

Regarding the single-channel Bayesian STSA estimation in Chapter 3, we presented a few

novel schemes for the selection of the parameters of a generalized Bayesian cost function, namely

the Wβ-SA, based on an initial estimate of the speech STSA and the properties of the human

auditory system. We further used this information to design an efficient flooring scheme for an

STSA estimator’s gain function by employing the recursive smoothing of the speech initial estimate.

Also, as an extension to this work, we applied the GGD model as the speech prior to the Wβ-SA

estimator and proposed to choose its parameters according to the properties of noise, i.e., the noise

spectral variance and the a priori SNR. Due to the more efficient adjustment of the estimator’s gain

function by the suggested parameter choice and also further keeping the speech strong components
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from being distorted through the gain flooring scheme, our STSA estimation schemes are able to

provide better noise reduction as well as introducing less speech distortion as compared to the

recent methods in the same area. Performance evaluations in terms of noise reduction and overall

speech quality indicated the advantage of the proposed speech STSA estimation method w.r.t.

previous estimators.

With regards to the multi-channel STSA estimation method discussed in Chapter 4, the prob-

lem was explored in several different aspects, including a general framework to extend a single-

channel STSA estimator to its multi-channel counterpart in case of both spatially correlated and

uncorrelated noise, STSA estimation by taking advantage of spectral phase, and the estimation

of the noise PSD matrix for a non-stationary environment. First, it was shown that any single-

channel Bayesian STSA estimation method can be generalized to the case of multi-channel in both

spatially correlated and spatially uncorrelated noise. In this regard, the single-channel Wβ-SA es-

timator designed in Chapter 3 was extended to its multi-channel counterpart and the performance

evaluations indicated that it outperforms the multi-channel versions of the other recent STSA es-

timators. Next, the role of speech spectral phase in the estimation of the spectral amplitude, i.e.,

STSA, was studied. On this basis, MMSE and Wβ-SA estimators using spectral phase estimates

were developed in closed-form solutions. Performance assessment of the phase-aware amplitude es-

timators revealed a considerable advantage over the conventional (phase independent) estimators,

and furthermore, revealed the fact that further improvements are achievable given more accurate

estimates of the spectral phase.

In the case of spatially correlated noise in Chapter 4, it was demonstrated that the multi-channel

STSA estimator scheme is in fact an MVDR beamformer and a modified single-channel STSA

estimator as a post-filter, under known or estimated speech DOA and noise PSD matrix. In this

respect, performance assessment of different multi-channel STSA estimators within the proposed

framework proved their advantage compared to the MVDR beamformer, and additionally, the

advantage of the Wβ-SA estimator with respect to the other estimators. Finally, we aimed at

the problem of noise PSD matrix estimation in a generic non-stationary noisy field, which can

be used by a multi-channel STSA estimator or an adaptive beamformer. Taking advantage of a

few subsequent speech frames and the soft-decision MS method, we developed a robust approach

to noise PSD matrix estimation, which does not require any prior assumptions or knowledge

about the noise/speech. Performance evaluations revealed the advantage of the proposed method
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as compared to a few recent generic methods of noise PSD matrix estimation, when used in a

beamformer to suppress the background noise.

In Chapter 5, the reverberation suppression in the STFT domain using the linear prediction-

based methods was considered. First, we developed a novel dereverberation approach based on

the WPE method by taking advantage of speech spectral variance estimation from the context

of spectral enhancement. The spectral variance estimate is obtained through a geometric spec-

tral enhancement approach along with a conventional LRSV estimator, considering the correlation

between the early and late reverberant terms. It was shown that by integrating the suggested

spectral variance estimator into the WPE method, the latter can be implemented in a single-step

non-iterative fashion, that is less complex and more efficient in terms of the amount of rever-

beration suppression, as compared to the original WPE method and its more recent variations.

Next, as an extension to the suggested former method, we proposed to approximately model and

exploit the temporal correlations across speech frames, known as the inter-frame correlation. We

handled this dereverberation problem by solving an unconstrained quadratic optimization, given

an estimate of the matrix of inter-frame correlations. Performance evaluations using both recorded

and synthetic acoustic room scenarios revealed that the proposed methods fairly outperform the

previous variations of the WPE method.

In Chapter 6, we focused on the problem of late reverberation suppression using the classic

speech spectral enhancement approach originally developed for the purpose of additive noise re-

duction. It can be concluded that this approach, in addition to having low complexity and being

straightforward in implementation, provides perceivable reduction of reverberation energy at the

expense of tolerable distortion in the enhanced speech. As the main contribution of this chapter,

we proposed a novel LRSV estimator that replaces the noise spectral variance in order to modify

the gain function from the noise reduction context for reverberation suppression. The suggested

LRSV estimation approach employs a modified version of the WPE method in an incremental

processing manner where rough estimates of the reverberant and dereverberated components of

speech are extracted at the processing block. These two estimates are exploited in the smoothing

scheme used for the estimation of the LRSV. We evaluated the performance of the proposed LRSV

estimation method in terms of different performance measures suggested by the REVERB Chal-

lenge in both time-invariant and time-variant acoustic environments. According to the conducted

experiments, the proposed LRSV estimator outperforms the previous major methods in this area
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and scores the closest results to the (theoretically) true LRSV estimator. Particularly, in the case

of a changing RIR where other methods fail to follow the true LRSV estimator accurately, the

suggested estimator is able to track the true LRSV values and results in smaller relative errors.

The proposed approach performs totally blindly and does not require any prior information about

the speech or environmental characteristics.

Furthermore in Chapter 6, we also targeted a few other aspects of the spectral enhancement

approach in order to fit it more properly to the reverberation suppression task. These include

the estimation of SRR and the development of new schemes for the SPP and spectral gain floor-

ing in the context of late reverberation suppression. All the suggested schemes are based on the

modification of their counterparts in the context of noise reduction and can be used either in-

dividually or in combination to improve the dereverberation performance of the classic spectral

enhancement method. Performance assessment of the suggested schemes revealed that they are

capable of providing additional improvements when exploited on a spectral gain function. Further-

more, a straightforward extension of the LRSV estimation to the case of LRSV matrix estimation

was presented, which is highly useful in conventional beamforming methods, such as the MVDR

beamformer, in order to blindly perform late reverberation suppression.

7.2 Scope for the Further Work

Based on the performed investigation of the state-of-the-art literature, the accomplished contribu-

tions in this thesis and the obtained experimental results, the following topics can be considered

as prospective directions for future research.

1. Joint estimation of STSA and DOA in the multi-channel case: Regarding the problem

of STSA estimation in the multi-channel case, which was explored in Chapter 4, the DOA

parameter (corresponding to the relative angular position of the speech source and microphone

array in the far-field) was assumed to be known or estimated beforehand. Even though there

exists a wide variety of research on the topic of DOA estimation as a stand-alone problem,

the joint estimation of DOA and STSA through including the DOA as an unknown parameter

in the Bayesian cost function can be regarded as a future work. This, apart from eliminating

the need for an additional DOA estimator when employing multi-channel STSA estimation,

can be considered as a practically interesting problem in case of near-field sources of speech.
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2. More accurate modeling of the inter-frame correlation in the WPE method: To

take into account the inter-frame correlations in the developed WPE method of Chapter 5, an

approximation to the joint statistical modeling of the speech STFT frames was used, where

only the correlation within segments of speech was assumed to be present with segments as-

sumed as independent. We believe the existing limit on the performance of the suggestedWPE

method therein is mostly due to the inaccuracy in the estimation of the inter-frame spectral

correlations, and therefore, this limit can be overcome by developing more efficient estimators

of the inter-frame correlation. Given the achieved experimental results, it is believed that by

applying a more accurate modeling of the inter-frame correlation or taking into account the

correlation across speech segments, considerably better dereverberation performance can be

obtained by the WPE method.

3. Incremental estimation of the regression vector in the WPE method: One main

shortcoming of the WPE dereverberation method (and in general, many linear prediction-

based methods) is that the regression vector gk is constant w.r.t. the time frame index, and

therefore, not updated over time. In Chapter 6, however, a modification of the WPE method

was efficiently employed in the proposed LRSV estimator, where the regression weights were

updated in an incremental (block-wise) manner. Even though that variant of the WPE

method is not accurate enough to provide acceptable dereverberation performance merely, it

actually proves that the WPE method has the potential to be implemented incrementally, i.e.,

for each short block/segment of the entire speech sample. Therefore, in order to deal with

changing reverberant environments, where the regression weights have to be updated fast

enough, development of an incrementally updated WPE method can be in order as further

research.

4. Taking into account the correlation of early and late speech components: The

suggestion of a novel LRSV estimator along with a few schemes borrowed from the context of

noise reduction based on a gain function led to considerable improvements in reverberation

suppression, as discussed in Chapter 6. This further proves the efficacy of the classic STSA

estimation method in handling late reverberation. However, one of the main assumptions in

deriving STSA estimators is the independence of the clean speech and additive noise, which

is translated to the independence of early and late components of speech when used for the

purpose of late reverberation suppression. Yet, as both theory and experiments reveal, these
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two components are highly correlated and assuming the late reverberation as an independent

corrupting component is not accurately valid (it is believed that the perceivable distortion

in the dereverberated speech is mostly due to this reason). Thus, taking into account the

inherent correlation between the desired early and the late speech components in designing

STSA estimators for late reverberation suppression can be thought of as a future avenue of

research.
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[27] K. Paliwal, K. Wójcicki, and B. Shannon, “The importance of phase in speech enhancement,”

Speech Communication, vol. 53, no. 4, pp. 465–494, 2011.

[28] T. Lotter, C. Benien, and P. Vary, “Multichannel direction-independent speech enhancement

using spectral amplitude estimation,” EURASIP Journal on Applied Signal Processing, vol.

2003, pp. 1147–1156, Jan. 2003.

[29] P. Loizou, “Speech enhancement based on perceptually motivated bayesian estimators of the

magnitude spectrum,” IEEE Transactions on Speech and Audio Processing, vol. 13, no. 5,

pp. 857–869, 2005.

[30] D. Tsoukalas, J. Mourjopoulos, and G. Kokkinakis, “Speech enhancement based on audible

noise suppression,” IEEE Transactions on Speech and Audio Processing, vol. 5, no. 6, pp.

497–514, Nov 1997.

[31] C. You, S. Koh, and S. Rahardja, “β-order MMSE spectral amplitude estimation for speech

enhancement,” IEEE Transactions on Speech and Audio Processing, vol. 13, no. 4, pp. 475–

486, July 2005.

187



[32] E. Plourde and B. Champagne, “Auditory-based spectral amplitude estimators for speech

enhancement,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 8,

pp. 1614–1623, Nov 2008.

[33] ——, “Generalized Bayesian estimators of the spectral amplitude for speech enhancement,”

IEEE Signal Processing Letters, vol. 16, no. 6, pp. 485–488, June 2009.

[34] M. B. Trawicki and M. T. Johnson, “Speech enhancement using Bayesian estimators of

the perceptually-motivated short-time spectral amplitude (STSA) with Chi speech priors,”

Speech Communication, vol. 57, pp. 101–113, 2014.

[35] I. Andrianakis and P. White, “Speech spectral amplitude estimators using optimally shaped

Gamma and Chi priors,” Speech Communication, vol. 51, no. 1, pp. 1–14, 2009.

[36] R. Prasad, H. Saruwatari, and K. Shikano, “Probability distribution of time-series of speech

spectral components,” IEICE Transactions on Fundamentals of Electronics, Communica-

tions and Computer Sciences, vol. E87-A, no. 3, pp. 584–597, 2004.

[37] B. Borgstrom and A. Alwan, “A unified framework for designing optimal STSA estima-

tors assuming maximum likelihood phase equivalence of speech and noise,” IEEE Trans. on

Audio, Speech, and Language Processing, vol. 19, no. 8, pp. 2579–2590, Nov 2011.

[38] I. Cohen and B. Berdugo, “Speech enhancement based on a microphone array and log-spectral

amplitude estimation,” in The 22nd Convention of Electrical and Electronics Engineers in

Israel, Dec 2002, pp. 4–6.

[39] R. Hendriks, R. Heusdens, U. Kjems, and J. Jensen, “On optimal multichannel mean-squared

error estimators for speech enhancement,” IEEE Signal Processing Letters, vol. 16, no. 10,

pp. 885–888, Oct 2009.

[40] M. Trawicki and M. Johnson, “Distributed multichannel speech enhancement with minimum

mean-square error short-time spectral amplitude, log-spectral amplitude, and spectral phase

estimation,” Signal Processing, vol. 92, no. 2, pp. 345–356, 2012.

[41] ——, “Distributed multichannel speech enhancement based on perceptually-motivated

Bayesian estimators of the spectral amplitude,” IET Signal Processing, vol. 7, no. 4, pp.

337–344, June 2013.

188



[42] P. Naylor and N. Gaubitch, Eds., Speech Dereverberation. Springer-Verlag, London, 2010.

[43] E. Habets, “Single- and multi-microphone speech dereverberation using spectral enhance-

ment,” Ph.D. dissertation, Technische Universiteit Eindhoven, Netherlands, 2007.

[44] K. Lebart, J. Boucher, and P. Denbigh, “A new method based on spectral subtraction for

speech dereverberation,” Acta Acoust, pp. 359–366, 2001.

[45] E. Habets and J. Benesty, “Joint dereverberation and noise reduction using a two-stage

beamforming approach,” in Joint Workshop on Hands-free Speech Communication and Mi-

crophone Arrays (HSCMA), May 2011, pp. 191–195.

[46] J. Benesty, J. Chen, and Y. Huang, Microphone Array Signal Processing, ser. Springer Topics

in Signal Processing Series. Springer-Verlag Berlin Heidelberg, 2008.

[47] K. Lebart and J. Boucher, “A new method based on spectral subtraction for speech derever-

beration,” ACUSTICA, vol. 87, no. 3, pp. 359–366, May 2001.

[48] D. Bees, M. Blostein, and P. Kabal, “Reverberant speech enhancement using cepstral pro-

cessing,” in 1991 International Conference on Acoustics, Speech, and Signal Processing,

ICASSP-91, vol. 2, Apr 1991, pp. 977–980.

[49] Y. Huang, J. Benesty, and J. Chen, “A blind channel identification-based two-stage approach

to separation and dereverberation of speech signals in a reverberant environment,” IEEE

Transactions on Speech and Audio Processing, vol. 13, no. 5, pp. 882–895, Sept 2005.

[50] M. Souden, J. Benesty, and S. Affes, “On optimal frequency-domain multichannel linear

filtering for noise reduction,” IEEE Transactions on Audio, Speech, and Language Processing,

vol. 18, no. 2, pp. 260–276, Feb 2010.

[51] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B. H. Juang, “Blind speech dere-

verberation with multi-channel linear prediction based on short time Fourier transform rep-

resentation,” in IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), March 2008, pp. 85–88.

189



[52] M. Parchami, W. P. Zhu, and B. Champagne, “Recent developments in speech enhancement

in the short-time fourier transform domain,” IEEE Circuits and System Magazine, 2016,

under publication.

[53] K. Paliwal and D. Alsteris, “On the usefulness of STFT phase spectrum in human listening

tests,” Speech Communication, vol. 45, no. 2, pp. 153 – 170, 2005.

[54] P. Vary, “Noise suppression by spectral magnitude estimation: mechanism and theoretical

limits,” Signal Processing, vol. 8, no. 4, pp. 387 – 400, 1985.

[55] H. Gustafsson, S. Nordholm, and I. Claesson, “Spectral subtraction using reduced delay

convolution and adaptive averaging,” IEEE Transactions on Speech and Audio Processing,

vol. 9, no. 8, pp. 799–807, Nov 2001.

[56] Y. Hu, M. Bhatnagar, and P. Loizou, “A cross-correlation technique for enhancing speech

corrupted with correlated noise,” in IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), 2001.

[57] N. Virag, “Single channel speech enhancement based on masking properties of the human

auditory system,” IEEE Transactions on Speech and Audio Processing, vol. 7, no. 2, pp.

126–137, Mar 1999.

[58] H. Fastl and E. Zwicker, Psychoacoustics: Facts and Models. Springer Berlin Heidelberg,

2007.

[59] B. Sim, Y. Tong, J. Chang, and C. Tan, “A parametric formulation of the generalized spectral

subtraction method,” IEEE Transactions on Speech and Audio Processing, vol. 6, no. 4, pp.

328–337, Jul 1998.

[60] Y. Hu and P. Loizou, “A generalized subspace approach for enhancing speech corrupted

by colored noise,” IEEE Transactions on Speech and Audio Processing, vol. 11, no. 4, pp.

334–341, July 2003.

[61] Y. Lu and P. C. Loizou, “A geometric approach to spectral subtraction,” Speech Communi-

cation, vol. 50, no. 6, pp. 453–466, 2008.

190



[62] R. Udrea and S. Ciochina, “Speech enhancement using spectral over-subtraction and residual

noise reduction,” in International Symposium on Signals, Circuits and Systems (SCS), vol. 1,

2003, pp. 165–168.

[63] P. Lockwood and J. Boudy, “Experiments with a nonlinear spectral subtractor (NSS), hidden

Markov models and the projection, for robust speech recognition in cars,” Speech Commu-

nication, vol. 11, no. 2, pp. 215–228, 1992.

[64] S. Kamath and P. Loizou, “A multi-band spectral subtraction method for enhancing speech

corrupted by colored noise,” in IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), vol. 4, May 2002, pp. IV–4164–IV–4164.

[65] P. Sovka, P. Pollack, and J. Kybic, “Extended spectral subtraction,” in European Signal

Processing Conference (EUSIPCO), 1996, pp. 963–966.

[66] Y. Cheng and D. O’Shaughnessy, “Speech enhancement based conceptually on auditory

evidence,” IEEE Transactions on Signal Processing, vol. 39, no. 9, pp. 1943–1954, Sep 1991.

[67] S. Haykin, Adaptive Filter Theory. Pearson Education, 2008.

[68] S. Marple, Digital Spectral Analysis with Applications. Prentice-Hall, Inc., 1986.

[69] M. Hasan, S. Salahuddin, and M. Khan, “A modified a priori snr for speech enhancement

using spectral subtraction rules,” IEEE Signal Processing Letters, vol. 11, no. 4, pp. 450–453,

April 2004.

[70] I. Cohen, “Relaxed statistical model for speech enhancement and a priori snr estimation,”

IEEE Transactions on Speech and Audio Processing, vol. 13, no. 5, pp. 870–881, Sept 2005.

[71] C. Plapous, C. Marro, and P. Scalart, “Improved signal-to-noise ratio estimation for speech

enhancement,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 6,

pp. 2098–2108, Nov 2006.

[72] S. Srinivasan, J. Samuelsson, and W. Kleijn, “Codebook driven short-term predictor parame-

ter estimation for speech enhancement,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 14, no. 1, pp. 163–176, Jan 2006.

191



[73] Y. Hu and P. Loizou, “A perceptually motivated approach for speech enhancement,” IEEE

Transactions on Speech and Audio Processing, vol. 11, no. 5, pp. 457–465, Sept 2003.

[74] ——, “Incorporating a psychoacoustical model in frequency domain speech enhancement,”

IEEE Signal Processing Letters, vol. 11, no. 2, pp. 270–273, Feb 2004.

[75] P. Wolfe and S. Godsill, “Efficient alternatives to the Ephraim and Malah suppression rule

for audio signal enhancement,” EURASIP Journal on Applied Signal Processing 2003:10, pp.

1043–1051, 2003.

[76] D. Middleton, An Introduction to Statistical Communication Theory: An IEEE Press Classic

Reissue. Wiley, 1996.

[77] A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and Products, ser. Table of Integrals,

Series, and Products Series. Elsevier Science, 2007.

[78] P. Scalart and J. Filho, “Speech enhancement based on a priori signal to noise estimation,”

in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 1996,

pp. 629–632 vol. 2.

[79] D. Malah, R. Cox, and A. Accardi, “Tracking speech-presence uncertainty to improve speech

enhancement in non-stationary noise environments,” in IEEE International Conference on

Acoustics, Speech, and Signal Processing, vol. 2, 1999, pp. 789–792 vol.2.

[80] I. Cohen, “Noise spectrum estimation in adverse environments: improved minima controlled

recursive averaging,” IEEE Transactions on Speech and Audio Processing, vol. 11, no. 5, pp.

466–475, Sept 2003.

[81] I. Cohen and B. Berdugo, “Speech enhancement for non-stationary noise environments,”

Signal Processing, vol. 81, no. 11, pp. 2403–2418, 2001.

[82] B. Fodor, “Contributions to statistical modeling for minimum mean square error estimation

in speech enhancement,” Ph.D. dissertation, Technische Universität Braunschweig, 2015.

[83] J. W. Shin, J.-H. Chang, and N. S. Kim, “Statistical modeling of speech signals based on

generalized Gamma distribution,” IEEE Signal Processing Letters, vol. 12, no. 3, pp. 258–

261, March 2005.

192



[84] R. Prasad, H. Saruwatari, and K. Shikano, “Probability distribution of time-series of speech

spectral components,” IEICE Transactions on Fundamentals of Electronics, Communica-

tions and Computer Sciences, vol. E87-A, no. 3, pp. 584–597, March 2004.

[85] B. Borgstrom and A. Alwan, “Log-spectral amplitude estimation with generalized Gamma

distributions for speech enhancement,” in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), May 2011, pp. 4756–4759.

[86] I. Andrianakis and P. White, “Speech spectral amplitude estimators using optimally shaped

Gamma and Chi priors,” Speech Communication, vol. 51, no. 1, pp. 1–14, 2009.

[87] Y.-C. Su, Y. Tsao, J.-E. Wu, and F.-R. Jean, “Speech enhancement using generalized maxi-

mum a posteriori spectral amplitude estimator,” in IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), May 2013, pp. 7467–7471.

[88] M. B. Trawicki and M. T. Johnson, “Speech enhancement using Bayesian estimators of

the perceptually-motivated short-time spectral amplitude (STSA) with Chi speech priors,”

Speech Communication, vol. 57, pp. 101–113, 2014.

[89] H. R. Abutalebi and M. Rashidinejad, “Speech enhancement based on β-order MMSE esti-

mation of Short Time Spectral Amplitude and Laplacian speech modeling,” Speech Commu-

nication, vol. 67, pp. 92–101, 2015.

[90] B. Chen and P. Loizou, “A Laplacian-based MMSE estimator for speech enhancement,”

Speech Communication, vol. 49, no. 2, pp. 134–143, 2007.

[91] O. Gomes, C. Combes, and A. Dussauchoy, “Parameter estimation of the generalized Gamma

distribution,” Mathematics and Computers in Simulation, vol. 79, no. 4, pp. 955–963, 2008.

[92] I. A. McCowan, “Robust speech recognition using microphone arrays,” Ph.D. dissertation,

Queensland University of Technology, 2001.

[93] J. Tu and Y. Xia, “Fast distributed multichannel speech enhancement using novel frequency

domain estimators of magnitude-squared spectrum,” Speech Communication, vol. 72, pp.

96–108, 2015.

193



[94] M. Parchami, W. P. Zhu, B. Champagne, and E. Plourde, “Bayesian STSA estimation

using masking properties and generalized Gamma prior for speech enhancement,” EURASIP

Journal on Advances in Signal Processing, vol. 2015, no. 1, pp. 1–21, 2015.

[95] C. You, S. Koh, and S. Rahardja, “Masking-based β-order MMSE speech enhancement,”

Speech Communication, vol. 48, no. 1, pp. 57 – 70, 2006.

[96] D. Greenwood, “A cochlear frequency-position function for several species–29 years later,”

The Journal of the Acoustical Society of America, vol. 87, no. 6, pp. 2592–2605, 1990.

[97] I. Cohen and B. Berdugo, “Speech enhancement for non-stationary noise environments,”

Signal Processing, vol. 81, no. 11, pp. 2403 – 2418, 2001.

[98] B. L. Sim, Y. C. Tong, J. S. Chang, and C. T. Tan, “A parametric formulation of the

generalized spectral subtraction method,” IEEE Trans. on Speech and Audio Processing,

vol. 6, no. 4, pp. 328–337, Jul 1998.

[99] N. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions. New York:

Wiley & Sons, 1995.

[100] O. Gomes, C. Combes, and A. Dussauchoy, “Parameter estimation of the generalized Gamma

distribution,” Mathematics and Computers in Simulation, vol. 79, no. 4, pp. 955 – 963, 2008.

[101] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures for speech enhancement,”

IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 1, pp. 229–238,

Jan 2008.

[102] “Perceptual evaluation of speech quality (PESQ), and objective method for end-to-end speech

quality assessment of narrowband telephone networks and speech codecs,” ITU, ITU-T Rec.

P. 862, 2000.

[103] J. Hansen and B. Pellom, “An effective quality evaluation protocol for speech enhancement

algorithms,” in Int. Conf. Spoken Lang. Process., 1998, pp. 2819–2822.

[104] “Noisex-92 database,” Speech at CMU, Carnegie Mellon University, available at:

http://www.speech.cs.cmu.edu/ comp.speech/Section1/Data/noisex.html .

194



[105] J. Garofolo, “DARPA TIMIT acoustic-phonetic speech database,” National Institute of Stan-

dards and Technology (NIST), 1988.

[106] M. Parchami, W. P. Zhu, and B. Champagne, “Microphone array based speech spectral

amplitude estimators with phase estimation,” in 2014 IEEE International Symposium on

Circuits and Systems (ISCAS), June 2014, pp. 133–136.

[107] ——, “A new algorithm for noise psd matrix estimation in multi-microphone speech enhance-

ment based on recursive smoothing,” in 2015 IEEE International Symposium on Circuits and

Systems (ISCAS), May 2015, pp. 429–432.

[108] J. A. C. Weideman, “Computation of the complex error function,” SIAM Journal on Nu-

merical Analysis, vol. 31, no. 5, pp. 1497–1518, 1994.

[109] T. Gerkmann and M. Krawczyk, “MMSE-optimal spectral amplitude estimation given the

STFT-phase,” IEEE Signal Processing Letters, vol. 20, no. 2, pp. 129–132, Feb 2013.

[110] P. Mowlaee and R. Saeidi, “Iterative closed-loop phase-aware single-channel speech enhance-

ment,” IEEE Signal Processing Letters, vol. 20, no. 12, pp. 1235–1239, Dec 2013.

[111] M. Krawczyk and T. Gerkmann, “STFT phase reconstruction in voiced speech for an im-

proved single-channel speech enhancement,” IEEE/ACM Transactions on Audio, Speech,

and Language Processing, vol. 22, no. 12, pp. 1931–1940, Dec 2014.

[112] T. Gerkmann, M. Krawczyk-Becker, and J. Le Roux, “Phase processing for single-channel

speech enhancement: History and recent advances,” IEEE Signal Processing Magazine,

vol. 32, no. 2, pp. 55–66, March 2015.

[113] M. Schervish, Theory of Statistics, ser. Springer Series in Statistics. Springer, 1995.

[114] R. C. Hendriks and T. Gerkmann, “Noise correlation matrix estimation for multi-microphone

speech enhancement,” IEEE Transactions on Audio, Speech, and Language Processing,

vol. 20, no. 1, pp. 223–233, Jan 2012.

[115] R. Martin, “Noise power spectral density estimation based on optimal smoothing and min-

imum statistics,” IEEE Transactions on Speech and Audio Processing, vol. 9, no. 5, pp.

504–512, Jul 2001.

195



[116] J. Freudenberger, S. Stenzel, and B. Venditti, “A noise PSD and cross-PSD estimation

for two-microphone speech enhancement systems,” in 15th Workshop on Statistical Signal

Processing, 2009. SSP ’09. IEEE/SP, Aug 2009, pp. 709–712.

[117] F. Kallel, M. Ghorbel, M. Frikha, C. Berger-Vachon, and A. B. Hamida, “A noise cross

PSD estimator based on improved minimum statistics method for two-microphone speech

enhancement dedicated to a bilateral cochlear implant,” Applied Acoustics, vol. 73, no. 3,

pp. 256–264, 2012.

[118] M. Souden, J. Chen, J. Benesty, and S. Affes, “An integrated solution for online multi-

channel noise tracking and reduction,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 19, no. 7, pp. 2159–2169, Sept 2011.

[119] E. Lehmann, “Image-source method: Matlab code implementation,” available at

http://www.eric-lehmann.com/.

[120] E. A. Lehmann and A. M. Johansson, “Prediction of energy decay in room impulse responses

simulated with an image-source model,” Journal of the Acoustical Society of America, vol.

124, no. 1, pp. 269–277, July 2008.

[121] H. Attias, J. C. Platt, A. Acero, and L. Deng, “Speech denoising and dereverberation using

probabilistic models,” Adv. Neural Inf. Process. Syst., vol. 13, p. 758–764, 2001.

[122] T. Yoshioka, T. Nakatani, and M. Miyoshi, “Integrated speech enhancement method using

noise suppression and dereverberation,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 17, no. 2, pp. 231–246, Feb 2009.

[123] T. Nakatani, B. H. Juang, T. Yoshioka, K. Kinoshita, M. Delcroix, and M. Miyoshi, “Speech

dereverberation based on maximum-likelihood estimation with time-varying Gaussian source

model,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 8, pp.

1512–1527, Nov 2008.

[124] K. Kinoshita, M. Delcroix, T. Nakatani, and M. Miyoshi, “Suppression of late reverberation

effect on speech signal using long-term multiple-step linear prediction,” IEEE Transactions

on Audio, Speech, and Language Processing, vol. 17, no. 4, pp. 534–545, May 2009.

196



[125] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B. H. Juang, “Blind speech derever-

beration with multi-channel linear prediction based on short time Fourier transform represen-

tation,” in 2008 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), March 2008, pp. 85–88.

[126] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H. Juang, “Speech dereverbera-

tion based on variance-normalized delayed linear prediction,” IEEE Trans. on Audio, Speech

and Language Processing, vol. 18, no. 7, pp. 1717–1731, Sept 2010.

[127] E. A. P. Habets, S. Gannot, and I. Cohen, “Late reverberant spectral variance estimation

based on a statistical model,” IEEE Signal Processing Letters, vol. 16, no. 9, pp. 770–773,

Sept 2009.

[128] M. Parchami, W. P. Zhu, and B. Champagne, “Speech dereverberation using linear prediction

with estimation of early speech spectral variance,” in 2016 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), March 2016, pp. 504–508.

[129] ——, “Speech dereverberation using weighted prediction error with correlated inter-frame

speech components,” Speech Communication, 2016, under review.

[130] Y. Lu and P. Loizou, “A geometric approach to spectral subtraction,” Speech Communica-

tion, vol. 50, no. 6, pp. 453–466, 2008.

[131] W. W. Hager, “Updating the inverse of a matrix,” SIAM Review, vol. 31, no. 2, pp. 221–239,

1989.

[132] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The

Art of Scientific Computing (3rd ed.). New York: Cambridge University Press, 2007.
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Appendix A

Derivation of Eq. (3.15)

Let us consider (3.15) as

E{Xm|Y } =
∫∞
0

∫ 2π
0
Xmp(Y |X , ω)p(X , ω)dωdX∫∞

0

∫ 2π
0
p(Y |X , ω)p(X , ω)dωdX

,
NUM

DEN
(A.1)

Obviously, it suffices to derive the numerator in (A.1) and then obtain the denominator as a

special case where m = 0. Using the GGD model in (3.14) with a = 2 for the speech STSA and

the uniform PDF for the speech phase, it follows that

p(X , ω) = 1

2π

2bc

Γ(c)
X 2c−1 exp(−bX 2) (A.2)

Substitution of (A.3) and also p(Y |X , ω) from (2.15) into the numerator of (A.1) results in

NUM =
2bc

2πΓ(c)

1

πσ2v︸ ︷︷ ︸
K1

∫ ∞

0

∫ 2π

0

Xm+2c−1 exp(−bX 2)

× exp

(
1

σ2v

(
|Y |2 + X 2 − 2 |Y |X cos(ψ − ω)

))
dωdX (A.3)

with ψ as the phase of the complex observation Y . To further proceed with (A.3), the integration

with respect to ω should be performed first. To this end, we may write

NUM = K1 exp

(
−|Y |

2

σ2v

)

︸ ︷︷ ︸
K2

∫ ∞

0

[
Xm+2c−1 exp(−bX 2) exp

(
−X

2

σ2v

)
∆1

]
dX (A.4)
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with

∆1 =

∫ 2π

0

exp

(X|Y | cos (ψ − ω)

σ2v

)
dω (A.5)

Further manipulation of ∆1 results in

∆1 = πI0

(
2X|Y |
σ2v

)
(A.6)

with I0(.) as the zero-order modified Bessel function of the first kind [77]. Now, by inserting (A.6)

into (A.4) and using Equation (6.631-1) in [77] to solve the resulting integral, it follows

NUM = πK2

Γ
(
m+2c
2

)
(
b+ 1

σ2
v

)m+2c
2

M

(
m+ 2c

2
, 1; ν ′

)
(A.7)

with ν ′ as defined in (3.16). Using the following property of the confluent hypergeometric function,

M (x, y; z) = ezM(y − x, y;−z) (A.8)

we further obtain

NUM = πK2e
ν′ Γ

(
m+2c
2

)
(
b+ 1

σ2
v

)m+2c
2

M

(
2−m− 2c

2
, 1;−ν ′

)
(A.9)

where, according to Section 3.4, we have b = c/σ2X . Now, by considering m = 0 in the above, a

similar expression is derived for DEN in (A.1). Devision of the obtained expression of NUM by

that of DEN results in equation (3.15).
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Appendix B

Proof of Equation (4.23)

In this appendix, we prove that the conditional expectation in the left side of (4.21), E {f(X )|Y},
depends on Y only through the sufficient statistic Q(Y) and not through any other terms involving

Y.

By inserting (4.22) into the internal integral in (4.21), it follows that

∫ 2π

0

p(Y|X , ω)dω =
1

πN det{ΣVV}
exp

(
−YHΣ−1

VV
Y
)
exp

(
−X 2ΦHΣ−1

VV
Φ
)

×
∫ 2π

0

exp
(
X ejωYHΣ−1

VV
Φ+ X e−jωΦHΣ−1

VV
Y
)
dω

(B.1)

Using (B.1) into the numerator and denominator of (4.21), it is obvious that the first exponential

term, which depends on Y, is canceled out. Therefore, the conditional expectation in (4.21)

depends on Y only through the integral on the right side of (B.1). Denoting this integral by I, we

obtain

I =

∫ 2π

0

exp
(
2<{X e−jωΦHΣ−1

VV
Y}
)
dω =

∫ 2π

0

exp
(
2X
∣∣∣ΦHΣ−1

VV
Y
∣∣∣ cos (Ψ− ω)

)
dω (B.2)

where Ψ is the phase of the complex term ΦHΣ−1
VV

Y. Noting that Ψ can be neglected due to the

integration over [0, 2π], it is evident that the integral I, and hence the conditional expectation in

(4.21), depend on the observation vector Y only through the scalar term ΦHΣ−1
VV

Y, or namely,

Q(Y).
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