66,543 research outputs found

    A multi-formalism approach for model-based dynamic distribution of user interfaces of critical interactive systems.

    Get PDF
    International audienceEvolution in the context of use requires evolutions in the user interfaces even when they are currently used by operators. User Centered Development promotes reactive answers to this kind of evolutions either by software evolutions through iterative development approaches or at runtime by providing additional information to the operators such as contextual help for instance. This paper proposes a model-based approach to support proactive management of context of use evolutions. By proactive management we mean mechanisms in place to plan and implement evolutions and adaptations of the entire user interface (including behaviour) in a generic way. The approach proposed handles both concentration and distribution of user interfaces requiring both fusion of information into a single UI or fission of information into several ones. This generic model-based approach is exemplified on a safety critical system from space domain. It presents how the new user interfaces can be generated at runtime to provide a new user interface gathering in a single place all the information required to perform the task. These user interfaces have to be generated at runtime as new procedures (i.e. sequences of operations to be executed in a semi-autonomous way) can be defined by operators at any time in order to react to adverse events and to keep the space system in operation. Such contextual, activity-related user interfaces complement the original user interfaces designed for operating the command and control system. The resulting user interface thus corresponds to a distribution of user interfaces in a focus+context way improving usability by increasing both efficiency and effectiveness

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    SOCR: Statistics Online Computational Resource

    Get PDF
    The need for hands-on computer laboratory experience in undergraduate and graduate statistics education has been firmly established in the past decade. As a result a number of attempts have been undertaken to develop novel approaches for problem-driven statistical thinking, data analysis and result interpretation. In this paper we describe an integrated educational web-based framework for: interactive distribution modeling, virtual online probability experimentation, statistical data analysis, visualization and integration. Following years of experience in statistical teaching at all college levels using established licensed statistical software packages, like STATA, S-PLUS, R, SPSS, SAS, Systat, etc., we have attempted to engineer a new statistics education environment, the Statistics Online Computational Resource (SOCR). This resource performs many of the standard types of statistical analysis, much like other classical tools. In addition, it is designed in a plug-in object-oriented architecture and is completely platform independent, web-based, interactive, extensible and secure. Over the past 4 years we have tested, fine-tuned and reanalyzed the SOCR framework in many of our undergraduate and graduate probability and statistics courses and have evidence that SOCR resources build student's intuition and enhance their learning.

    Using visual analytics to develop situation awareness in astrophysics

    Get PDF
    We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists who need to analyze heterogeneous, complex data under time pressure, and make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes several novel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in production use for 2 years by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley's three levels of situation awareness
    corecore