
A multi-formalism approach for model-based dynamic

distribution of user interfaces of critical interactive

systems.

Celia Martinie, David Navarre, Philippe Palanque

To cite this version:

Celia Martinie, David Navarre, Philippe Palanque. A multi-formalism approach for model-
based dynamic distribution of user interfaces of critical interactive systems.. Interna-
tional Journal of Human-Computer Studies, Elsevier, 2014, vol. 72 (n 1), pp. 77-99.
<10.1016/j.ijhcs.2013.08.013>. <hal-01130579>

HAL Id: hal-01130579

https://hal.archives-ouvertes.fr/hal-01130579

Submitted on 12 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01130579

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12676

To link to this article : DOI :10.1016/j.ijhcs.2013.08.013
URL : http://dx.doi.org/10.1016/j.ijhcs.2013.08.013

To cite this version : Martinie, Celia and Navarre, David and
Palanque, Philippe A multi-formalism approach for model-based
dynamic distribution of user interfaces of critical interactive systems.
(2014) International Journal of Human-Computer Studies, vol. 72 (n°
1). pp. 77-99. ISSN 1071-5819

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12676/
http://oatao.univ-toulouse.fr/12676/
http://dx.doi.org/10.1016/j.ijhcs.2013.08.013
mailto:staff-oatao@listes-diff.inp-toulouse.fr

A multi-formalism approach for model-based dynamic distribution
of user interfaces of critical interactive systems

Célia Martinie, David Navarre n, Philippe Palanque

Institute of Research in Informatics of Toulouse, University of Toulouse, Interactive Critical Systems (ICS) Team, 118 route de Narbonne, 31042 Toulouse,

Cedex 9, France

a b s t r a c t

Evolution in the context of use requires evolutions in the user interfaces even when they are currently used by

operators. User Centered Development promotes reactive answers to this kind of evolutions either by software

evolutions through iterative development approaches or at runtime by providing additional information to the

operators such as contextual help for instance. This paper proposes a model-based approach to support

proactive management of context of use evolutions. By proactive management we mean mechanisms in place

to plan and implement evolutions and adaptations of the entire user interface (including behaviour) in a

generic way. The approach proposed handles both concentration and distribution of user interfaces requiring

both fusion of information into a single UI or fission of information into several ones. This generic model-based

approach is exemplified on a safety critical system from space domain. It presents how the new user interfaces

can be generated at runtime to provide a new user interface gathering in a single place all the information

required to perform the task. These user interfaces have to be generated at runtime as new procedures

(i.e. sequences of operations to be executed in a semi-autonomous way) can be defined by operators at any

time in order to react to adverse events and to keep the space system in operation. Such contextual, activity-

related user interfaces complement the original user interfaces designed for operating the command and

control system. The resulting user interface thus corresponds to a distribution of user interfaces in a

focusþcontext way improving usability by increasing both efficiency and effectiveness.

1. Introduction

In the early days, the basic design rationale for user interfaces

for control rooms was to assign one display to each component

to be monitored and one physical input to each command to be

sent to one component of the controlled system (see Fig. 1 as an

example). This resulted in very large command and control rooms

being rather easy to design and build but rather cumbersome to

operate. Such difficulties have been largely studied and reported in

scientific work looking at the design aspects (e.g. Petersen et al.,

1982; Fang Chen et al., 2005), at the implication on operations (see

typical image of controls customization where operators add beer

labels on top of control levers p. 95 (Norman, 1998) from Seminara

et al., 1977)) and safety when incident or accident occurred

((Reason, 1990) p 193 on Chernobyl accident).

In order to overcome such constraints, design drivers for com-

mand and control systems have been targeting at concentration1

and integration of both displays and controls. In several domains

such as control rooms (see Fig. 2) and aviation (see Fig. 4), such

concentration was achieved by adding computing resources for

concentrating data from multiple displays into a single (or some-

times several in case of large and complex systems) display unit.

In aeronautics such concentration of display is known under the

notion of “glass cockpit” as computer screens were replacing

previous analogic displays (such analogic displays can be seen

together with the computer screen on the cockpit of a Boeing 747

as shown in Fig. 4). The benefits of such concentration had

significant positive impact on operations making, for instance, large

commercial aircraft operations evolve from 3 operators to only 2 in

the Airbus 320 (the first commercial civil aircraft using glass cockpit

technology) even though other factors such as weight were also

predominant to the migration.

However, nowadays, operators of safety critical systems are

facing more and more sources of information competing for

attention which might affect their abilities to complete their tasks

thus reaching limits of user interfaces concentration. Automation

(i.e. delegation of user′s tasks to the system) can reduce tasks’

complexity and time consumption allowing operators to focus on

other tasks. However, too much (or inadequate) automation can

lead to complacency, loss of situational awareness, or skill degra-

dation, whereas not enough automation can lead to an unmanage-

able, unsafe or problematic workload (Parasuraman et al., 2000).

This is the reason why, for instance, SESAR (Single European Sky

n Corresponding author. Tel.: þ33 561556965.

E-mail addresses: martinie@irit.fr (C. Martinie), navarre@irit.fr,

navarre@univ-tlse1.fr (D. Navarre), palanque@irit.fr (P. Palanque).
1 By concentration we refer here to the terms coined by Vanderdonckt (2010).

ATM2 Research) programme targets at reaching higher levels of

automation in aviation in order to improve safety and efficiency of

ATM operations.

User Centered Design approaches (as defined and advocated in

(Norman and Draper, 1986)) support the design of user interfaces

that fit the user needs focussing on their usability. At design time,

user needs are identified, prototypes are designed, built and

evaluated with “real” users. Such iterative processes make it

possible to tune and adjust the user interfaces to the user needs,

and beyond that, to take into account the evolution of these needs

when the new system is introduced. Such approaches are efficient

for dealing with static interactive systems i.e. systems for which the

use can be defined beforehand with very limited evolutions over

time. However, these approaches are of little help when the

interactive system has to exhibit autonomous behaviour in order

to handle some tasks previously performed by the operators. Work

on function allocation such as the ones described in Harrison et al.

(2002) or Boy (1998) aim at supporting the design of automation

and more precisely at identifying and assessing candidate func-

tions to be automated. Beyond that, if the use of the system is

highly dynamic i.e. evolves regularly (for instance in order to

handle unexpected adverse events such as malfunctions, faults,

malicious attacks, …) here again User Centered Design approaches

do not provide dedicated support to anticipating evolutions and

for providing adequate solutions.

This paper proposes a model-based tool-supported approach for

the design and development of distributed user interfaces in the

context of highly dynamic complex systems requiring repetitive and

systematic activities to be allocated to the system in order to allow

operators to be focussing on more analysis and decision related

tasks. This approach embeds automatic generation of distributed

user interfaces allowing operators to monitor the execution of semi-

autonomous procedures. Thanks to this approach the command

and control user interface exploited by the operator is distributed

according to two tasks that are interleaved: the monitoring of the

system and the supervision of the execution of the recovery

procedures triggered in case of the occurrence of failures or faults.

Next section presents with more details the context that has

been introduced above. Section 3 presents the process associated

to the approach exhibiting why there is a need of distributing the

operators’ user interfaces in two different parts, one being the

standard command and control interface and the other one being

an additional UI generated for handling a dedicated adverse event.

Section 4 presents a case study about satellite ground segments

applying step by step the approach presented in Section 3. More

precisely that section presents how the generated user interface

complements the existing user interface for command and control

and why it is better to distribute it rather than integrating in into

the existing one as argued in Kontogiannis (2010). Section 5

presents how and on which aspects informal evaluation has been

addressed, while Section 6 concludes the paper and presents

directions for future work.

2. Automation in the context of complex systems

As introduced above, operations in complex system usually

involve repetitive actions that have to be performed in a systematic

and reliable way. Fitts (1951) and more recently Carver and Turoff

(2007) have demonstrated that humans and machine possess

different capabilities making them more complementary than

concurrent. In automated systems, function allocation (Boy, 1998)

between human and machine has always been a point of con-

troversy. In the context of automation, “function allocation” means

that the actor, (either being human or machine), that is best suited

should be responsible of performing the function. One early static

model of function allocation is the MABA–MABA list (Men Are

Better At–Machines Are Better At (see Fig. 3b) proposed by Fitts

(1951). This model clearly states that functions are better suited for

one actor or the other (see Fig. 3a). The main design issue based on

function allocation is to specify functions in order to allocate them

to the right actor but heuristics and questionnaire-based methods

have been proposed as described in Liu et al. (2011) or Harrison

et al. (2002).

There are many different levels for implementing design

decisions in order to include autonomous behaviors in a comput-

ing system. The first one (static level) consists in defining and

designing the allocation at design time and to design and build the

interactive system according to this allocation of functions. This is

for instance the case in automotive industry with the ABS (anti-

lock braking system). This autonomous system prevents vehicles

wheel from blocking while the driver is breaking. Even though the

autonomous system is triggered by the user, its behavior is “hard

coded” and cannot be altered. The second one (dynamic execution

level) consists in designing and defining flexible and redundant

functions as in the aeronautics domain with the auto pilot. All the

functions that are available in that autonomous system (such as

climbing to a certain altitude) can also be performed manually by

Fig. 1. Small portion of Chernobyl nuclear power plant control room (from http://

www.upandatom.net/Chernobyl.htm).

Fig. 2. Example of a computer-based, concentrated control room (Large Hadron

Collider at CERN).

2 Air traffic management.

the pilot. The decision to allocate the execution of the function to

the autonomous system remains in the hand of the user. The last

level (dynamic execution and definition level) allows the user to

define the behavior of the automation and also to decide when

such autonomous behavior will be executed. Such level corre-

sponds for instance to the definition and execution of macros in

Microsoft Excel or the text styles in Microsoft Word.

The current paper addresses the last level in the context of

command and control systems for satellite control rooms. Indeed,

in case of malfunction the operator is required to define a

procedure in charge of solving the identified problem. Such

procedures are then tested and executed either in an autonomous

or manual way. However, even in the case of autonomous execu-

tion some information might be required from the operator to

complete the execution. Such information can be values of some

parameters (presented on some display units) of the satellite or

go/no go that contacted experts in the domain of the failure (e.g.

engines, electricity, …) have provided to the operator. One of the

issues related to that problem is that the information required

from the operator can be distributed amongst many displays

making this activity cumbersome, time consuming or even error-

prone. The objective of this research work is to exploit the content

of the procedure defined by the operator to generate an additional

user interface dedicated to the management of the procedure. This

user interface gathers (in a single concentrated location) all the

information that has to be checked and provided by the operator

throughout the execution of the procedure. Beyond that, as the

new user interface duplicates information that was previously

available in other synoptics the resulting entire user interface

provides information distributed over several user interfaces.

How such user interfaces can be generated from the definition of

the procedure is presented in details in the following section. It is

important to note that the point is not here to modify the existing

user interface of the application but to generate and additional,

contextual user interface. This prevents difficulties that may occur

and which are known under the term “automation surprises”

(Palmer, 1995) if the routine interface was unpredictably altered by

the generation process. Indeed, currently the new interface gen-

erated can be simply ignored, at no cost, by the operators.

3. A design process for generating interfaces for partly

automated systems

This section presents a new user-centered design process based

on models for the development of partly autonomous interactive

systems. Next section presents the requirements for such a process

while Section 3.2 presents an overview of it. Sections 3.3 and 3.4

present respectively a refined view of the process and its position-

ing with respect to CAMELEON reference framework (Calvary

et al., 2003).

3.1. Requirements for a user interface generation and distribution

process for dynamic partly automated system

As presented in Section 2, in the area of complex command and

control systems, some of the user tasks and activities cannot be

identified beforehand i.e. at design time. In addition to that issue,

these tasks can be complex and/or inadequate for a human being

(requiring for instance, management of a large amount of informa-

tion, execution of multiple commands under strong temporal

constraints, …) thus requiring to be delegated to an autonomous

sub-system. In order to address those issues there is a need to

provide operators with meta-level systems able to combine multi-

ple commands and to delegate their execution to an autonomous

agent. The design of this part of the partly-autonomous command

and control system requires the same level of reliability and

usability as the rest of the application. While the reliability aspects

of user interfaces can be addressed using standard dependability

and fault-tolerance techniques such as the command and mon-

itoring architecture initially proposed by self-checking compo-

nents in Yau and Cheung (1975) and recently adapted to

interactive systems (Laprie et al., 1990) (such as in interactive

cockpits of large civil aircrafts (Tankeu-Choitat et al., 2011)), the

usability aspects have to be addressed according to the work done

in the area of automatic generation of user interfaces as described

in Jean (1998) or more recently in Nichols et al. (2007). Due to

space constraints and not to broaden too much its scope, this

paper does not address the dependability aspects of interactive

systems but the formalism used for describing in a complete and

unambiguous way interactive systems is used for the generation of

user interfaces.

Fig. 3. (a) Illustrations of the Fitts ((1951), pp. 7–8 list—(b) MABA-MABA list from Fitts (1951).

Fig. 4. Example of a computer-based, concentrated user interface—the glass

cockpit (transition to glass cockpit for the Boeing 747).

Systems which support the management of complex tasks and

of a huge amount of information usually require distributed user

interfaces (DUIs). Several definitions of this kind of interfaces co-

exist and present complementary viewpoints. For Vanderdonckt

(2010), a UI distribution “concerns the repartition of one or many

elements from one or many user interfaces in order to support one

or many users to carry out one or many tasks on one or many

domains in one or many contexts of use, each context of use

consisting of users, platforms, and environments”. Another defini-

tion proposed by Elmqvist (2011) identifies several dimensions for

the distribution of UI components: input, output, platform, space

and time. Demeure and Sottet (2008) also propose a reference

framework (called 4C) to analyse DUIs, which is composed of four

concepts: computation, coordination, communication and config-

uration. In the presented work, as we advocate for a task and

context based approach of DUI design, we use the first definition

because it explicitly and directly binds the tasks and context of use

to the DUI.

Several model-based approaches and toolkits aim at designing

and implementing DUIs reconfigurable at runtime. Fröberg et al.

(2011) present a framework called Marve in order to support

graphical components reallocation across platform. Their work

particularly focuses on event communication structure manage-

ment. Melchior et al. (2009) introduce a toolkit to deploy DUIs and

then a framework based on state transition diagrams to represent

distribution states of a DUI (Melchior et al., 2011). Demeure and

Sottet (2008) illustrate their 4C framework with several architec-

tural instances of DUIs with various types of devices. Kjeldsen

et al. (2003) also present a system architecture for widget inter-

action reconfiguration on planar surfaces.

A set of contributions dealing with dynamic reconfiguration

of distributed user interfaces layout are based on the CAMELEON

framework (Calvary et al., 2003) (an overview of this framework is

presented in Section 3.4.1). Manca et al. (2011) present a dialog

model description language which aims at supporting dynamic

distribution of user interfaces elements across various devices.

Other contributions deal with runtime architectures. Clerkx et al.

(2007) propose a design process and runtime architecture in order

to partially support dynamic redistribution of the user interface at

runtime. The MASP (Multi-Access Service Platform) runtime

architecture (Feuerstack et al., 2008; Roscher et al., 2011), takes

into account all of the CAMELEON layers and aims at supporting

dynamic redistribution of ubiquitous user interfaces layout across

platforms in order to adapt to unforeseen context of use.

These contributions do not take into account or partially (in

the case of state transition diagrams to represent the distribution

states (Melchior et al., 2009)) the behavioural part of the dis-

tributed interactive applications. This is a critical aspect when

dealing with command and control of safety critical systems which

might lead to deadlocks. We previously addressed that aspect by

proposing fault-tolerant architectures dedicated to the dynamic

reconfiguration of user interfaces in the context of cockpits of large

civil aircrafts. This reconfiguration supports distribution as well as

relocation of user interfaces of critical applications to other dis-

plays unit when the default one is faulty (Navarre et al., 2008a,

2008b).

Based on this earlier work, generation of user interfaces can be

envisioned if behavioural description of the automation is available

and if a generic mechanism for distribution is available. However,

such generation of the user interface must not have a negative

impact on monitoring activities, so distribution to another display

and/or to another window is required. This distribution allows

decoupling the introduction of new interfaces (generated) from the

set of existing ones. This guarantees the continuity of operation as

the predefined set of interfaces for monitoring and control is not

altered by the generated ones. Beyond that continuity of service

aspect such distribution makes it possible to provide a focus plus

context construction of the user interface. The context is provided

by the default command and control interface while the focus lies in

the user interface that has been generated following the definition

by the operator of a new procedure for the management of the

adverse event.

Lastly, as we are aiming at user interface generation at runtime,

it is important to ensure that the generation process will not

interfere with operators’ activities and will not add delay to the

management of the unexpected event.

Next two sections present our approach and a detailed descrip-

tion of the proposed generation process. As a large set of contri-

butions are based on the CAMELEON framework, Section 3.4

is dedicated to the presentation of this framework and to the

positioning of our proposed approach and generation process with

regards to the CAMELEON framework.

3.2. General overview of the approach

Fig. 5 presents the generic process involving dynamic generation

of part of the user interface. That Figure is split in three parts. The

first part, called “Design and development time” (in the upper part

of Fig. 5) corresponds to the design and development of the user

interface that is done following a classical user-centered develop-

ment process. The only difference with a classical user-centered

development process is located in the phase called “Design Auto-

mation” (function allocation as defined in Boy (1998)) dedicated to

the attribution of functions either to the partly-autonomous system

or to the operator. Of course the description of the process remains

on purpose abstract not even showing the iterations (which are

typical of a user-centered design process) as we only highlight here

the main principles. The interested reader can find a more complete

and precise description of such a user-centered design process in

Fig. 5. General overview of the approach.

Martinie et al. (2012). This “Design and development time” part is

split into two threads of developments represented by the two swim

lines. The right-hand side corresponds to the standard development

aiming at producing a usable user interface. The left-hand side

corresponds to the design and development of the UI for procedures.

The underlying concept behind this process is that there are two

types of user interfaces that will be used by the operator:

" A generic user interface allowing the operator to perform the

main tasks assigned to him/her.
" A set of specific user interfaces aiming at supporting specific

activities defined by procedures.

The generic user interface corresponds to the UI of the comm-

and and control system allowing managing the entire system

while the specific UI are dedicated to procedure (that might have

been defined after the UI of the command and control system has

been finalized). This process is rather generic in critical systems

where modification of the command and control systems might

involve time and resource consuming activities such as certifica-

tion by external authorities.

The other two parts in Fig. 5 correspond to the design and

development of the specific user interfaces dedicated to the

management of specific procedures. The part in the lower part of

Fig. 5, called “Runtime”, corresponds to the generation of a user

interface while the command and control system is in operation

(this part is detailed in Section 3.3). The part in the right-hand side

of Fig. 5, called “Complete UI”, contains the outputs from the

“Design and development time” part and from the “Runtime” part.

“Complete UI” part gathers:

" Standard generic UI (“Developed standard generic UI” blue box)

and standard UI for procedures that have been identified

during the design phases of the command and control system

(“Developed UI for procedures” blue box).
" UI that has been produced during operations as handling of

unexpected adverse events is not envisioned during the design

phases of the command and control system (“Generated UI for

new or modified procedure” blue box).

The “Complete UI” part in Fig. 5 is the user interface of the

command and control system and is thus the sum of these three

interfaces. It is important to note that the generated part does not

replace the existing one but is proposed as a contextual help to the

operators.

The following section focuses on the runtime generation

process (lower part of Fig. 5, called “Runtime”) making explicit

how the new user interface is produced via the analysis of the new

procedure.

3.3. Distribution and generation

Fig. 6 refines the user interface generation process presented at

the bottom of Fig. 5. It starts with a manual activity carried out by

the operator consisting at modifying an existing (or potentially

creating a new one).

(1) For describing the procedure (as explained with more details

in the case study section) operators are provided with beha-

vioural description languages such as YAWL (Hofstede, 2005)

or BPEL (Object Management Group, 1998a). Our process is

based on another language called ICOs (Interactive Cooperative

Objects) (Navarre et al., 2009) which combines Petri nets and

Object-Oriented constructs allowing manipulating values

within the Petri net-based behavioural description. Beyond

that, activation and rendering functions in ICO make it

possible to connect this behavioural description to the graphi-

cal user interface it describes. This activity is represented as a

manual and automated process as it is performed using

dedicated editing tool. The ICO description of the procedure

provides the grounding of the behavioural part of the user

interface that will be generated. It is possible to provide

support to the modification of the procedure description in

particular when using both guidelines (for instance related to

the specific class of systems) and a recommender system. The

introduction of guidelines may be done with an in-depth

analysis of ICO models and Hamsters models that would

provide means to identify usability guidelines, safety guide-

lines (such as, for instance, the triple confirmation require-

ment for safety critical (so-called catastrophic) telecommands

in ATV3) …. The introduction of a recommender system could

help the operator to identify relevant modifications related to

the modification he/she tries to introduce within the proce-

dure description (for instance, propositions such as “the

operator who introduced such parameters usually introduces

these other parameters …”).

(2) The ICO procedure is then automatically analysed using a Petri

net pattern detector based on a collection of patterns descrip-

tions. These patterns correspond to the basic bricks that

constitute the procedure behaviour and depend on the appli-

cation it is related to. The product of this pattern extraction is a

logical structure of the targeted application as a collection of

instantiated patterns (an instantiated pattern contains attri-

butes that directly relate it to the part of the ICO description it

corresponds to). As within our generation process this descrip-

tion is only transient, we do not handle it as a model per se,

even if it would be possible.

(3) For each of these instantiated patterns, the UI generation

phase associates a concrete component using a predefined

mapping and these components are then composed within a

generic graphical canvas, creating a default layout of these

components. The production of this phase is a model that does

not describe the behaviour of the generated application (the

behaviour being provided by the ICO model in the next step).

This is not presented on Fig. 6 but the components, the generic

canvas and the produced application are customizable, allow-

ing a fine tuning of the produced user interface. This would be

needed for instance when maintenance is performed of the

application thus going back to the design process.

(4) Lastly, the generated model and the ICO procedure are put

together to provide the final interactive user interface (using

the activation function and the rendering function of ICO

introduced above).

This generation process is instantiated and illustrated on a case

study presented in Section 4. Next section positions this user

interface generation process within the CAMELEON framework.

3.4. Generation process in perspective with the CAMELEON

framework

The proposed generation process is inspired by the work done

by the UsiXML community (Calvary et al., 2003; Limbourg and

Vanderdonckt 2004). There is a clear connection between this

CAMELEON framework and the contribution presented in this

paper. Next section gives an overview of the CAMELEON reference

framework and Section 3.4.2 makes explicit the similarities and

3 Automated transfer vehicle (a set of vehicles used as cargo for the Interna-

tional Space Station).

discrepancies between each phase of our process and the ones of

CAMELEON.

3.4.1. Overview of the CAMELEON reference framework

The UsiXML community proposes a generation process based on

the framework called CAMELEON (presented in Fig. 7). That frame-

work aims at supporting a model based approach for developing

interactive applications focussing both on usability and context-

sensitive aspects, where the application must support user changes,

targeted software, hardware platform changes ….

As illustrated in Fig. 7, the framework defines four main stages

related to each other by three kinds of transformation abstraction

and reification for a same context of use, and transformation for

between two different contexts of use. The four stages represent

different levels of abstraction from the task description to the final

user application running on the targeted platforms, and transfor-

mation allows navigating between them. More precisely:

" Task and concepts (tokens number 1 and number 5 in Fig. 7) is

a stage that aims at describing the complete set of tasks and

their related domain objects. Tasks are the set of activities users

have to performwith the system in order to achieve their goals.

Concepts are the information, knowledge and objects (devices,

widgets) users need to be able to accomplish their activities.
" The abstract user interface (AUI, tokens number 2 and number

6 in Fig. 7) stage consists in describing a UI model independent

of interaction modalities. The abstract UI model supports a set

of elementary actions, independent from any context of use.

These elementary actions are called AUI Objects (AUIO).
" The concrete user interface (tokens number 3 and number 7 in

Fig. 7) stage aims at transforming an abstract UI (AUI model) in

a concrete UI (dependent from modality of interaction) for a

particular context of use. The concrete UI describes how CUI

objects (CUIO) are composed according to a particular layout.

Concrete UI model also describes how it is possible to navigate

amongst the different windows constituting it. The produced

CUI model is the mockup of the final look and feel of the UI. CUI

model is independent from the targeted computing platform

but is dependent from the software environment.
" The final user interface (tokens number 4 and number 8 in

Fig. 7) stage aims at producing the final interactive application

from the CUI model by instantiating the CUI model for a

particular computing platform. It is considered as the running

system.

All of these stages can be led for different context of use in

terms of user, platform and environment (illustrated by grey and

green bounded rectangle on the right-hand side of Fig. 7).

There is a clear connection between this CAMELEON frame-

work and the contribution presented in this paper. Next paragraph

makes explicit the similarities and discrepancies between each

phase of our process and the ones of CAMELEON.

3.4.2. Positioning the generation process with regards to the

CAMELEON framework

The main principle of the CAMELEON approach is to generate

user interfaces from abstract representation. This CAMELEON

generation approach promotes the production of intermediate

representations before reaching the actual generation of the user

interface. The approach presented in previous section promotes

also a stepwise refinement process. The various phases of the

CAMELEON approach have been presented at the beginning of this

section and Fig. 8, makes explicit where each of these phases fits

within the generation process presented in Fig. 6.

Fig. 8 clearly exhibits the fact that the basic concepts of

CAMELEON are at the basis of our approach as they all appear in

the process.

We can thus acknowledge that this process is an instantiation of

the original CAMELEON framework for the particular case of partly

automated system but some significant differences exists. The

principle of the generation in our approach does not conflict with

the user centered principles. The user interface of the command

Key

ICO behavioural

description of

procedure

Standard generic UI

Behavioural

Patterns

UI

Components

Generated UI

Mapping

Pattern- UI

Components

Logical structure of

the targeted UI

Generic

canvas

Automated

Transformation

Data

repository

Produced

data

UI Generation

Complete User Interface

ICO specification

finalisation

HAMSTERS

description of

operators’

activities

Pattern extraction

Generated

UI for

procedure

Fina

systemlManual

Transformation

Modification of

procedure

Fig. 6. Generic generation process for the user interface of procedures.

and control system is designed using these principles and the

generation process only addressed new interfaces for specific

procedures which were unknown in the design phases. One of

the design drivers of CAMELEON approach is to save development

costs especially when the same application has to be developed

multiple times as it is to be used in multiple contexts and usually

multiple platforms. Here the context of use remains the same and

development cost is not an issue. Finally, the approach presented

above requires that operators are able to describe the new proce-

dures using a behavioural description technique as ICO. They thus

take an active part in the process of generating a new interface. This

is possible as operators of command and control systems are

usually highly qualified and they have to follow a thorough training

programme.

As stated above this process is generic and can be applied to

many types of command and control systems while other ones

(such as cockpits or civil aircraft) remain out of reach due to

certification constraints. Next section presents the instantiation of

this process to a satellite ground segment application.

4. Case study

The case study presented in the paper belongs to the category of

complex command and control systems from the space domain.

Such interactive systems are less time constrained than other ones

(such as aircraft cockpits). Beyond that, such systems are less safety

critical (the only possible safety issue would correspond to a space-

craft falling on earth and injuring people). However, the potential

cost of a failure is far beyond the development cost of these systems

making them belong to the category of critical systems. One of the

characteristics of such systems is the fact that the operations are

encapsulated in procedures that are defined to gather multiple

commands that are then semi-automatically executed by a simula-

tion engine. These concepts as well as the development process

presented above are exemplified on the ground segment of the

satellite PICARD. Even though in previous sections references were

made to other safety critical systems than satellite (such as aircraft

for instance) this section only refers to the operation of satellite

ground segments.

4.1. The context of space operations: The case of operational

procedures

To present with more details the context of application of this

work, we present below an application from space domain dealing

with ground segments which allow operators to interactively

monitor and control satellites. This work is based on several

research projects done with the French space agency (CNES) to

promote the use of model-based approaches to support the design

process of critical interactive systems. This section concerns a partFig. 7. The CAMELEON Framework from Calvary et al. (2003).

Fig. 8. Generation process within the CAMELEON framework.

of the work that has been done within TORTUGA4 and ALDABRA5

research and technology initiatives, where:

(5) TORTUGA (Tasks, Operations, Reliability and Training for Users

of Ground Segment Applications) project has been carried out

from 2008 to 2011 and demonstrated techniques and tools for

improving of reliability of both ground segment systems and

users involved in the operation of such systems.

(6) ALDABRA (Architecture and Language for Dynamic and Beha-

viourally Rich interactive Application) project has been carried

out from 2011 to 2012 and promoted the use of model-based

approach to support the generation of interactive synoptics

(support for operational procedures).

Fig. 9 presents a schematic view of a satellite application as

defined in the European Standard ECSS-E-70 (European Co-

operation for Space Standardization, 2008). The system is split in

two parts: the on-board part (the upper one including the space-

craft and called the space segment) and the ground part (made up

of antennas for communication and the mission control system)

called the ground segment.

The current paper is only concerned with the command and

control system in charge of operations (bottom-left icon in the

diagram). This control system is in charge of maintaining the

spacecraft in operation and is thus heavily dependent of the

spacecraft software and hardware infrastructure.

4.2. Operational procedures as partly automated systems

Satellites and spacecraft are monitored and controlled via ground

segment applications in control centres with which satellite opera-

tors implement operational procedures. A procedure contains

instructions such as sending telecommands (TC), checking telemea-

sures (TM), waiting, providing required values for parameters, etc.

The definition of operational procedures may be found in the

ECSS-E-70-32A standard (European Cooperation for Space Stand-

ardization, 2006) defines the elements that an operational procedure

must contain (declaration of the local events raised within the

procedure, a set of preconditions, instructions that fulfill the goal of

the procedure …).

Procedures are the main mechanism used by control room

operators to control and test the spacecraft during both test and

operations phases. Independently from the language used to

describe operational procedures, it is not current practice to reuse

them from one mission to another, because manipulated elements

(TM and TC) are mission specific and their description is at a too

low level of abstraction.

As we mentioned along this article, supporting notation and

tools for user task and system behaviour are needed to handle

usability within large-scale systems. We then used two modell-

ing notations with associated software tools: one for operator

task modelling and the other for system modelling. HAMSTERS

(Human-centred Assessment and Modelling to Support Task

Engineering for Resilient Systems) is a task modelling notation

designed for representing the decomposition of human goals into

activities (perceptive, cognitive, motor, interactive …). Its asso-

ciated software tool (also called HAMSTERS) enables to edit task

models and simulate their execution. ICO (Interactive Cooperative

Object) is a formal notation to describe and model system′s

behaviour and user interactions with the system. It is Petri nets

based and associated to a supporting tool, Petshop, which enables

to edit application behavioural models and to connect them to the

presentation part of the user interface (graphical widgets and

frames for example). It also enables to execute the application with

the underlying behavioural models.

For the TORTUGA and ALDABRA projects purpose, these two

software tools have been integrated in a development environ-

ment supporting:

(7) Correspondence matching between the two types of models.

(8) Co-execution of the very high-fidelity prototype with the

underlying system and task models.

Further information about these tools and their integration has

been described in previous work (Barboni et al., 2010).

Model-based design processes are particularly well adapted to

command and control systems and their operations as the list of

operators’ tasks are typically complex and involve possible cata-

strophic consequences. Due to that complexity, model-based

approaches are particularly well suited as they make it possible

to designers to describe in a complete and unambiguous way both

behavioural and data aspects. Indeed, as they provide a more

abstract description of the system than the implementation code

they also provide a unique opportunity for various stakeholders

(designers, users, developers …) to comment and propose mod-

ifications on the system under design.

In the human–computer interaction community many research-

ers have described user interface elements by means of models.

However, dealing only with the system side of socio-technical

system is not enough. Typically, tasks evolve when the system is

modified and thus altering one of these two components has an

impact on the other one that has to be updated accordingly.

Procedures are a third artefact to be dealt with in this iterative

cycle. This artefact is designed by the satellite manufacturer and

addresses very detailed management aspects of the satellite. For

instance, a procedure can be a set of activities to be performed by

the operator to test the battery level of the satellite. It can be

composed of tasks that are executed by the on-board system, by

the operator or by another member of the team. Procedures

provide precise guidance to the operators on how to achieve both

for routine and failure recovery actions. Thus, as for the task-

system cycle, procedures are a different artefact from task model

but their design and evaluation heavily depends on both the

identified tasks of the operators and the command and control

system.

Fig. 9. The satellite application domain in a nutshell.

4 TORTUGA: A research project funded by CNES on tasks, operations, reliability

& training for users of ground applications (http://www.irit.fr/recherches/ICS/

projects/tortuga/index.php).
5
dALDABRA A research project funded by CNES on architecture and language

for dynamic and behaviourally rich interactive application (http://www.irit.fr/

recherches/ICS/projects/aldabra/).

Lastly, training program is also another artefact that has to be

designed and assessed according to the identified user tasks the

interactive system as well as the defined procedures for operating

it (more details may be found in Martinie et al. (2012). Modifica-

tions in any of these artefacts require consistent adjustment in the

other three ones. Fig. 10 presents this iterative process including

the four artefacts and their co-evolution as well as the compat-

ibility assessment activity to be carried out which aims at ensuring

conformance and compatibility of the artefacts produced.

Most of the part of this interconnection of models has already

been studied in Barboni et al. (2010), Martinie et al. (2012). With

the current case study we highlight how to support the distribu-

tion of interface for the operators, providing a particular focus on

the design of procedures and the generation of interactive means

to control the automation.

4.3. A detailed example of application of the process for ground

segments

The case study presented in this section is an excerpt of the

ground segment of the PICARD satellite launched by CNES in June

2010 dedicated to solar observation, for which we only present

the small part making it possible to demonstrate the use of the

approach presented in this paper. Amongst the various ground

segment applications that are used to manage the satellite plat-

form, we focus on the ones that are used by controllers to ensure

that the platform is functional. The platform has to be functional

so that the mission (for which the satellite has been designed and

developed) can be completed. The controllers of the PICARD

satellite are taking turn in the command and control room (there

is only one on duty at a time). Controllers have several applications

(with their corresponding displays) for the monitoring activities

and dedicated applications to manage the telecommand plans.

Fig. 11 shows a picture of a controller in the command and control

room. The display in the upper part of Fig. 11 is presenting the

status of terrestrial antennas for monitoring communications

between the satellite and the ground segment. The display in

the middle of the lower part of Fig. 11 is presenting parts of the

current satellite parameters statuses (these windows are called

synoptics and are detailed in the next paragraphs). The display in

the right of the lower part of Fig. 11 (in front of the controller)

presents part of a telecommand plan management application.

Other ground segment applications (such as the display in the left

of the lower part of Fig. 11) aim at handling satellite trajectory or

performing various local configurations.

Controllers are in charge of two main activities: observing

periodically (i.e. monitoring) the vital parameters of the satellite

and performing maintenance operations when a failure occurs.

Depending on the satellite between a couple of thousands and

tens of thousands parameters have to be monitored. The more

frequent and relevant monitoring activities include observing:

satellite mode, Telemetry (measures coming from the satellite),

Sun array drivers statuses, error parameters for the platform, error

parameters for the mission, power voltage (energy for the satel-

lite), ground station communication status, and on board compu-

ter main parameters.

Controllers are in charge of two main activities: observing

periodically (i.e. monitoring) the vital parameters of the satellite

and performing maintenance operations when a failure occurs.

Depending on the satellite between a couple of thousands and

tens of thousands parameters have to be monitored. The more

frequent and relevant monitoring activities include observing:

satellite mode, Telemetry (measures coming from the satellite),

Sun array drivers statuses, error parameters for the platform, error

parameters for the mission, power voltage (energy for the satel-

lite), ground station communication status, and on board compu-

ter main parameters. Fig. 12 presents the task model of the main

operators’ goals. It describes that operators may have to lead

concurrent activities such as monitoring satellite state and para-

meters (“satellite monitoring” task on the left-hand side of Fig. 12),

Fig. 10. Verification and conformance phase between models. Fig. 11. Satellite ground segment controller.

detecting failures and recovering from them (“Failure detection

and recovery” task on the right-hand side of Fig. 12), preparing and

following up TeleCommand plans (“TC plan management” task in

the middle at the bottom of Fig. 12). If a failure is not detected

rapidly enough by the operator, the satellite will change its mode

itself (using an On-Board Control Procedure (OBPC)) to a survival

mode and the mission will be delayed and the satellite possibly

lost (very seldom case).

Fig. 13 depicts the task model of the satellite monitoring sub-

goal, describing the different interactive tasks that operators may

achieve in an order independent way.

To support the task of failure detection and recovery, the

operation ground systems is made up of two relatively uncon-

nected components. Amongst the interactive systems used within

the control room of PICARD, synoptics (see Fig. 14) represent an

important support to the operators’ activities. Synoptics gather a

set of parameters to propose a general overview of them, these

parameters being used by the operators to monitor the state of the

satellite. The PICARD operation control centre uses more than 50

synoptics containing around 10 000 parameters (parameters may

be battery status, communication link status …), and the number

of procedures for possible maintenance operations goes beyond

the hundred. As illustrated in Fig. 14, synoptics may contain

graphical representation of parameters, but most of them repre-

sent parameters as a simple text (such as the central part of

Fig. 14).

Another important part of the operational ground segment

system is the procedure manager which aims at triggering tele-

commands, i.e. allowing the operator to upload commands onto

the board system in order to change its current configuration and

make the parameters evolve (see Fig. 15).

When operating a satellite (for instance when executing a

particular procedure), such a quantity of screens and density of

information makes it difficult for the operators to find a particular

parameter navigating amongst the synoptics. This activity may be

critical when the operator tries to solve a satellite failure, where

he/she has to precisely analyse the relevant parameters. The

complexity of a satellite makes it difficult to design a dedicated

synoptic for each kind of failure, so that when an unexpected

event occurs, dedicated procedures must be redesigned, but not

the interactive system itself which remains the same (and is thus

design as generic as possible).

The main idea we illustrate with this case study is how to take

benefits from the model-based work done within the TORTUGA

project to support the generation of customizable interactive

synoptics, while keeping the original interfaces (synoptics and

procedure manager) that are required to support most of the

activities of the operators.

The targeted platform (due to the project requirements) is Java

and more specifically the Java technology called JavaFX (http://

javafx.com) which allows the description of the graphical part of

an interactive application with an XML file (called FXML) and

which allows customisation of the graphical rendering using CSS

styling (http://www.w3.org/Style/CSS/), while it supports interna-

tionalisation. The generation process presented in Fig. 8 has been

instantiated for the case study, as illustrated in Fig. 16.

The principle of generation of interactive synoptics presented

in Fig. 16 is based on a sequential flow of manual and automatic

transformations that supports several customisation means:

(1) The starting point of the process (top-left part of Fig. 16) is

the original operational procedure from which we manually

produce an ICO model (and a Hamsters model that is not

represented here). This first step is related to the particular

case study on which the paper is based and should disappear

in a fully model-based approach for space operations where

procedures would only be represented by the ICO and Ham-

sters models. This is why modifications on procedures are

performed on the ICO model (and on the Hamsters model)

following the design process of Tortuga project (see Fig. 10)

and the initial generation process (see Fig. 8). Recommender

system and guidelines are not presented in this case study as

we intend to focus on the UI generation steps

(2) The ICO procedure is thus the behaviour of the being gener-

ated interactive synoptic and the modifications performed on

it introduces iteration in the generation process.

(3) The ICO procedure is automatically analysed with a Petri net

pattern detector, associated to a collection of patterns descrip-

tions, which embed algorithms to detect the basic bricks that

constitute a procedure such as parameter update, checking of

these parameters, messages and choices proposed to opera-

tors… The result of this pattern extraction is a logical structure

of the synoptic in form of a list of instantiated patterns (with

the list of monitored parameters and a list of elements of the

control flow of the procedure).

(4) A JavaFX component is then associated to each of this

instantiated patterns, using a predefined mapping. These

components are then integrated within a generic synoptic

canvas, producing a JavaFX application (with no behaviour, the

behaviour being provided by the ICO model in the next step).

The customisation of the JavaFX components, generic canvas

and produced JavaFX application is additionally supported by

the use of CSS styling to precisely adjust graphical attributes of

the generated synoptic.

(5) Lastly, the JavaFX synoptic and the ICO procedure are put

together to provide the final interactive synoptic.Fig. 12. Task model of the operators’ main tasks.

Fig. 13. Task model of the operators’ sub-goal satellite monitoring.

The following sections describe more precisely each of these

steps using the example of a simple procedure to allow their

presentation in a paper. While working on the Tortuga and Aldabra

projects, more complex procedures have been experimented,

providing the same kind of results.

4.3.1. Step 0: From procedures to models

Procedures are usually described using a programming lan-

guage with basics constructs that allows sending telecommands,

checking telemeasures, asking operators for confirmation or

choice… Another interesting use of the procedure description is

the use of comments that provides the operators with more

information about the tasks to perform depending on the context.

An important part of the work done within the project TORTUGA

was to build two types of models from the procedural descrip-

tions: one type describing the user activity, modelled using the

HAMSTERS notation (shown by Fig. 17), and the other type

describing the part of the system behaviour dedicated to this

procedure, modelled using the ICO formal description technique

(shown by Fig. 18).

Fig. 17 describes activities that have to be led by operators when

encountering a Sun Array Driver issue. This task model gathers

information about operator′s activities (interactive and cognitive

tasks) in case of such event while executing a particular procedure,

“Switch on SADA2”, to activate the redundant Sun Array Driver.

System functions are also represented in this task model (“Check

SADA2 is OFF”, “Send TC STOPSADA2” … in Fig. 17) as they support

understanding of operators’ tasks w.r.t. system′s behaviour.

Fig. 17 shows the resulting task model to switch from a failing

SADA to the backup SADA. Concerning the performance measure,

an operator is required to ensure the satellite integrity and has

then to switch to the redundant SADA as soon as it is detected that

the running SADA is failing. This task model makes explicit the

relationship between the tasks and the procedure. Indeed,

the main goal in that model (top of the hierarchy) is to setup the

backup SADA. The first task of the ground operator in order to

reach this goal is to select the procedure ‘SWITCH ON SADA2 lite’

and then to trigger that procedure on the procedure manager

interface (see Fig. 15). The task model also describes the activities

the operator has to perform in interaction with the procedure

execution such as deciding to confirm stopping the rotation of the

Fig. 14. Examples of textual and graphical synoptic.

redundant SADA (operator is prompted for confirmation by the

system). That choice is represented by the right-hand side of the

task model. The operator can decide then to send a telecommand

(TC), which is represented by the ‘system’ icon in the task model

(labelled ‘Send TC STOPSADA2’ at the bottom of the model).

The system′s behavioural part of the “Switch on SADA2”

procedure is described using the ICO notation and is presented

in Fig. 18 (“Set up Backup SADA” ICO model). This ICO model

contains the sequence of steps which will be executed by the

ground segment system depending on triggered events.

In order to perform this kind of failure recovery activities, an

operator must use the procedure manager (see Fig. 15) to execute

and control the execution of the procedure, and must use the

synoptics application to monitor the concerned parameters (in our

case, the operator has to monitor the state of the two SADAs,

distributed in several synoptics according to the required level of

detail monitoring, amongst the fifty ones available in the applica-

tion). We then investigated how to generate a unique graphical

interface (an interactive synoptic) allowing both monitoring con-

cerned parameters and controlling the procedure execution.

If in most of the cases it is possible to design this kind of

interfaces beforehand, when the procedures are already prede-

signed, we propose a solution to adapt these interfaces when

procedures are customized or created in particular operational

situations (unexpected problems or failures, new mission goals …)

which were not planned at user interface design time.

4.3.2. Step1: Behavioural patterns detection

The basic principle of our approach is that the ICO specification

of the procedure provides the behavioural part of the generated

interactive synoptic. This behaviour may be divided into two main

parts:

(1) A subpart of the Petri net is dedicated to update the set of

satellite parameters that must be monitored during the

procedure execution

(2) The other subpart is the execution flow of the procedure with

both automatic behaviour and interactive means to control the

execution.

This decomposition of the ICO model is illustrated by Fig. 19 for

the particular procedure that set up the SADA2:

(3) Part 1 represents the two parameters that must be monitored

by the operator (the state of SADA2 and the current battery

power level).

(4) Part 2 represents a non-interactive part of the procedure that

automatically checks the state of the SADA2 within a pre-

defined time frame.

(5) Part 3 represents an interactive part of the procedure that

allows the user to answer to a particular question (held by the

content of the place MessageStop) to control the execution

Fig. 15. Procedure manager.

flow of the procedure (here, the operator must decide whether

to stop the SADA2 or not).

The pattern detection step is based on distributed simple

algorithms applied while browsing the Petri net. These algorithms

firstly detect naming patterns of Petri net items (mainly transi-

tions) to identify one part of the pattern and then try to find other

related items to point out all constituting elements of the pattern.

For instance, when using the detection algorithm on the “Check

parameter” pattern (part 2 of Fig. 19), the detector will firstly

identify one of the two constituting transitions (the name pattern

is checkXXX_YYY where YYY is OK or TimeOut). When one transi-

tion corresponding to this name pattern is found, the next step is

identifying the other transition of the pattern (for instance, if the

name detected is checkSSADM2_isOFF_OK, the algorithm will try to

find a transition checkSSADM2_isOFF_TimeOut) in the set of transi-

tion sharing a same input place (in the example, the place is

Proc_Ready). The result (as illustrated by Fig. 20) is an instantiated

pattern (or Abstract UI component using the UsiXML terminology)

with attributes that allow the instantiation of the corresponding

JavaFX component and the link with the ICO behavioural model (in

the example of the Check parameter pattern, these attributes are

the two corresponding transitions checkSSADM2_isOFF_OK and

checkSSADM2_isOFF_TimeOut and the name of the checked para-

meter/value SSADM2_isOFF).

Applying the pattern detection step to the ICO model enables the

construction of an abstract description of the required user interface

in terms of displayed satellite parameters and in terms of interactive

components, providing the basis for the generation of the graphical

interface. Fig. 21 summarizes these two aspects of the graphical

Fig. 16. Generation process of interactive synoptic.

Fig. 17. Task model of the procedure to switch on the redundant solar panel driver (SADA2).

Fig. 18. Procedure model “Set up Backup SADA”.

Fig. 19. Detailed ICO specification of the procedure “Set up Backup SADA”.

interface in a tree. The collection of abstract interactive components

is ordered in the same way they appear in the Petri net, and the

collection of parameters is alphabetically ordered by default.

4.3.3. Step 2: JavaFX synoptic generation

From the AUI it is possible to generate the graphical layout of the

representation of the synoptic. To do that, it is necessary to provide

the synoptic generator with a collection of graphical components

that corresponds to the set of patterns (described within a mapping)

and to put these components into a canvas, resulting in a CUI model

(expressed in Java FXML for these case study).

Fig. 22 presents an example of JavaFX synoptic component

described using the FXML language.

This XML description contains the definition of:

(1) A circle (XML tag oCircle/4) used to create a light for the

Check parameter component where the colour corresponds to

the checking status (green when the parameter is correctly

checked, red when it is not the case and black when checking

is not used). The colour is defined by the xml attribute style,

changed at runtime, and defined within a CSS.

(2) A label (XML tag oLabel/4) used to display the checked

parameter name. The value is set using a property definition

when all JavaFX components are put into correspondence with

AUI components (see next paragraph).

(3) A controller (attribute fx:controller of the XML tag oHBox/4)

used to provide a Java class responsible in adding behaviour to

the JavaFX application described with FXML. In our approach,

this Java class is used to handle runtime property changes and

event triggering by the component.

It is thus possible to map this component to the corresponding

AUI component as illustrated in Fig. 23.

The FXML description in Fig. 23 corresponds to the result of the

mapping:

(1) The XML tag ofx:include/4 allows to embed another FXML

description within an FXML description, defining the corre-

sponding source file (attribute source).

(2) The component is associated to a particular style class (attri-

bute styleClass set to the default value “future-task”) used to

highlight this component at runtime. Three style classes are

Fig. 20. Example of pattern detection.

Fig. 21. Example of produced AUI by the pattern detector.

available: previous-task when the corresponding action within

the procedure already occurred, current-task when the proce-

dure is executing the corresponding part and future-task for

the other cases.

(3) Additional properties may be defined (XML tag oproperties/4),

handled by the controller of the component. In the case of the

Check parameter, a first property defines the name of the

checked parameter (the value comes from the AUI component

corresponding attributes) and the second property defines the

light status (off, ok or ko) with a default value, as it is set at

runtime.

To compose the set of CUI components, the JavaFX synoptic

generator uses a generic template such as the one presented in

Fig. 24. The corresponding FXML description is provided in Annexe

section.

Additionally to the mapping between components, Fig. 25

illustrates the mapping between AUI structure and CUI model:

(1) A mapping of the root abstract container of the AUI with the

root of the produced FXML description (in our example it is

mapped with a oBorderPane/4). This mapping is based on

the definition of the generic canvas.

(2) A mapping of the two abstract containers (interactive compo-

nents and parameters) with the corresponding JavaFX container.

This mapping is based too on the generic canvas where two

dedicated containers are defined with special identifiers (for

instance attribute id¼”component” of the XML tag oVBox/4

in Fig. 25).

Fig. 25 presents a partial result of the JavaFX synoptic genera-

tion with only the component used as an example in the previous

paragraphs. An example of the generated interface with a CSS style

sheet is presented in Fig. 26.

In Fig. 26, surrounded items (1–3) match the surrounded

behavioural patterns in the ICO model in Fig. 19, in order to

illustrate the correspondence between the procedure patterns and

the corresponding graphical elements.

4.3.4. Step 3: Interactive synoptic finalisation

To finalise the interactive synoptic, last step is to describe the link

between the produced CUI model and the corresponding ICO beha-

vioural description. This is quite direct as ICO embeds mechanisms to

describe this relation: the activation and the rendering functions.

With the example of the check component, such component

being not interactive, the link to the ICO behavioural description is

fully described by the rendering function presented by Fig. 27.

The rendering is defined in the same way for each CUI

components but is not detailed here due to space constraints.

4.3.5. Modification/tuning of the procedure

When generated, an interactive synoptic may be adjusted to

the operators’ practices. For instance, even if it is not directly

related to the procedure, an operator may decide to monitor some

other parameters in a particular context because the satellite is in

a particular state where the execution of the procedure may

impact these non-related parameters. In the case study, it may

be the case of the battery power level. While moving the sun array,

the battery is not refilled but its energy is needed by the SADA. In a

usual state, it may not lead to a dangerous situation, but if other

equipment is using a lot of electric power, it would be very

different. The modifications done on the procedure (represented

<?xml version="1.0" encoding="UTF 8"?>

<?import java.lang.*?>

<?import javafx.geometry.*?>

<?import javafx.scene.*?>

<?import javafx.scene.chart.*?>

<?import javafx.scene.control.*?>

<?import javafx.scene.effect.*?>

<?import javafx.scene.layout.*?>

<?import javafx.scene.paint.*?>

<?import javafx.scene.shape.*?>

<HBox fx:id="checkComponent" fillHeight="false" spacing="10.0" styleClass="check component" xmlns:fx="http://javafx.com/fxml"

fx:controller="fr.irit.aldabra.fxml.components.CheckComponent">

<children>

<Circle fx:id="light" radius="5.0" style="lightnotchecked">

<effect>

<Lighting fx:id="lighting" />

</effect>

</Circle>

<Label fx:id="label" text="Parameter name"/>

</children>

<padding>

<Insets left="10.0" top="10.0" />

</padding>

</HBox>

Fig. 22. The JavaFX Check parameter component described using FXML.

Parameter name:

SSADM2_isOFF

Initial place:

Proc_Ready

Main transition:

checkSSADM2_isOFF_OK

Twin transition:

checkSSADM2_isOFF_TimeOut

Pattern

Check <fx:includeid="check1" source=" CheckComponent.fxml" styleClass="future-task">

 <properties checkedParameter=" SSADM2_isOFF" lightStatus="off" />

</fx:include>

Fig. 23. Example of mapping of AUI component to CUI component.

in Fig. 28) are the following one:

(1) Introduction of a confirmation message before switching off

SADA1 and switching on SADA2 (because the operation is

safety critical).

(2) Introduction of two parameters:

○ Battery power level to verify if the power level is sufficient

enough, as switching from the current SADA to the redun-

dant one requires energy, low power level may cause the

satellite entering its survival mode.

○ Satellite mode to both ensure that the satellite is in a

correct mode for such operation and that the operation did

not cause the satellite entering an incorrect mode.

As represented in Fig. 28, the introduction of these modifica-

tions consists in adding Petri nets patterns to the existing ICO

model:

1. The top-left pattern corresponds to a confirmation message

where the operator has the choice in starting or not the

procedure.

2. The bottom-left pattern corresponds to the two sub Petri nets

updating the two new parameters.

Following the process defined in the previous section, we firstly

generate the AUI model using the ICO behavioural description,

illustrated in Fig. 29.

Following the rest of the process, the interactive synoptic is

generated. It is presented in Fig. 30, where the newly introduced

graphical elements are surrounded.

5. Evaluation and lessons learned

The user interface presented in Fig. 30 consists in the User

Interface addition to the ground segment workstation that has

been described at the beginning of section 0. There are several

elements to consider:

$ Such user interface window is only generated from the proce-

dure description that has been designed by operators to handle

unexpected event on the satellite space segment (i.e. the actual

satellite).

$ Such unexpected events on the satellite space segment are rare

(not more than once a month on micro satellites such as

PICARD).

$ The number of operators is low about 4 per ground segment

thus limiting the number of users that can be involved in

testing. These operators are (for most of them) experts with

long term experience on the ground segment of the satellite

itself in addition to experience on other ground segments.

$ The user interface of the ground segment is thus enriched with

several user interface windows that are either triggered (if

already used) or generated (when such adverse event occursFig. 24. FXML synoptic generic canvas.

Fig. 25. Example of mapping of AUI structure to CUI model.

for the first time and a procedure for handling it has to be

designed).

According to these elements, evaluation of the user interface of

the ground segment requires considering the following:

1. The usability of the generated user interface itself

2. The usability of the ground segment enriched with the gener-

ated user interface

3. The scalability aspect i.e. the usability of the ground segment

when more and more additional user interface windows

are added.

It is important to note that the fact that operators are experts,

that they have produced the procedure describing the sequence of

action to be performed in order to solve the undesired situation

on the space segment, usability of the final user interface has not

been a major activity of the project and thus, even though the

generation has been done considering ergonomic rules and

operators’ tasks, usability has only been considered in an informal

way (both at design time and at operation time). However, the

following sections address usability issues raised in the list

presented above.

5.1. Usability of the generated user interface

As for the design aspects, we have presented in section how

task models described in HAMSTERS could be exploited for

ensuring the mapping between the operators’ tasks and the

ground segment. However, as can be seen on Fig. 6 the task

models are not used in the process. The reason for that lays in the

fact that the process targets at unexpected events and thus the

description of such information in the task model remains at a

very high level of abstraction namely: identify the occurrence of

the unexpected event, prepare a procedure for the handling of the

event, (optionally) exploit the generated user interfaces to execute

the procedure. This is also a significant difference with respect to

the Cameleon framework that targets at generating user interfaces

for nominal activities of users for which tasks can be identified and

described precisely.

As stated at the end of the requirements Section 3.1 it is

important that the generation time does not add delays in the

handling of the adverse event. With the current environment and

the process described above, the generation time (for the many

procedures tested) was always below one second. This is due to

the fact that the procedures are usually not very complicated (as

shown in the example represented in Fig. 19). There was thus no

difference (for the operator between opening an existing window

and triggering the generation of a new one).

Another important aspect for enforcing the usability of the

generated user interface would have been to include ergonomic

rules and heuristics. This is done informally in the UI component

data repository presented in Fig. 6 where information about user

interface components include the use according to their type, and

how they are grouped (for instance a label being always positioned

on the left of a text box in which a value has to be entered.

We have performed informal testing with the current operators

of the ground segment operators and received very positive

feedback who agreed that an additional user interface provides a

synthetic and complementary view.

5.2. Usability of the enriched ground segment

One of the concerns that arose during the development of this

work was the possible disturbance produced by the generated user

interface. Indeed, the generation process results in a different user

Fig. 26. Example of the generated interactive synoptic according to the ICO procedure described by Fig. 18.

ObCS event Rendering method

Transition

Transition

ObCSNode name

Place Proc_Ready token_enters showAsCurrentTask()

checkSSADM2_isOFF_OK transition_fired showParameterOK()

checkSSADM2_isOFF_TimeOut transition_fired showParameterKO()

Fig. 27. Rendering function of the Check parameter component.

interface (with one additional window) that might have a negative

impact on how operators perform their tasks with the ground

segment. Several options were considered including merging

the generated user interface with the current ground segment

user interface. However, during prototyping meetings with opera-

tors such solutions were discarded in order to leave the ground

segment as is. It was then decided that the generated user

interface will be separated and only accessed on a voluntary basis

by the operators. Such decision has an impact on the articulatory

task required from operators i.e. to switch from the windows

corresponding to the ground segment to the additional window

generated. Here again, informal validation with the operators of

the ground segment was very positive especially as the generated

user interfaces rarely need to be used, they remain at a low level

Fig. 28. Modification of the procedure to correspond to the operator’s practice.

Fig. 29. AUI produced by the pattern detector for the modified procedure.

of complexity (as they cover only one operational procedure) and

as the original ground segment remains unchanged.

5.3. Usability and scalability

One of the issues raised by the approach is related to scalability.

Indeed, over time, more and more interfaces will be generated

resulting in multiple add-ons to the original ground segment. This

issue is not addressed with the work presented here. Indeed, how to

solve this issue depends heavily on the expected life time of the

satellite. Some of them have a short term period of use and thus

a limited of user interfaces will be generated. Indeed, some of the

earth observation satellites at managed by CNES have very different

exploitation durations. For instance, SPOT 2 was launched in 1990

and deorbited in 2009 (while the planned duration of exploita-

tion was 4 years) and SPOT 3 was launched in 1993 and stopped

functioning in 1997 meeting exactly the mission objectives of 4 years.

Our proposal to address the challenge of multiple additional

windows is though re-design of the ground segment after a long

term use. This re-design will embed the additional procedures and

their related user interface in the design of the ground segment.

Such re-design will be accompanied with specific training activ-

ities that are affordable due to the fact that the number of

operators is limited and that they operate a ground segment over

a long period of time.

We have worked on ways of ensuring compatibility between

ground segment training, ground segment system, operational

procedures and tasks (Martinie et al., 2012). Such work could be

reused to identify raining needs when procedures for handling

unexpected events will be integrated in the ground segment itself.

The critical system nature of the application domain requires

fulfilling requirements defined by regulatory authorities prior to

development and deployment in operational satellite ground seg-

ment (such as the ones defined in ECSS requirements (European

Cooperation for Space Standardization, 2008)). Such work is being

undertaken and lead by CNES via ISIS (Initiative for Space Innova-

tive Standards) targeting at standard, generic and innovative ground

segments (http://www.iafastro.net/iac/archive/browse/IAC-09/B4/7/

4801/).

6. Discussions and conclusion

This article has presented how model-based approaches can

be used for the generation of contextual user interfaces and

how they can support their distribution in order to provide

operators of ground segments with focus and context informa-

tion. This approach exploits a formal behavioural description

technique (the ICO notation (Navarre et al., 2009)) for the

description of both the operational procedures and thus the

behaviour of the generated user interface. The graphical pre-

sentation is produced using an XML dialect called FXML which

belongs to the JavaFX technology and is close to the CUI

(Concrete User Interface) in accordance with the CAMELEON

framework (Demeure and Sottet, 2008). This contribution

presents a unique case study where the generation of user

interfaces provides important benefits for operators of critical

interactive systems. Furthermore, the distribution of generated

user interface across another display guarantees segregation

with the standard command and control system thus

Fig. 30. Resulting modified interactive synoptic.

preventing possible fault propagation to the ground segment.

In the presented case study, the generated user interface is displayed

on the same screen as the ground segment command and control

application but it could be easily shifted to another screen using for

instance CORBA (Object Management Group, 1998a) middleware,

which is already supported by ICO and Petshop (Bastide et al., 2000).

The current work corresponds to the final contribution of the

research project ALDABRA and is under consideration for inclusion

in the next generation of ground segment operations. It is part of a

more ambitious research programme aiming at defining processes,

methods and tools for the design and development of safety

critical interactive systems. While function allocation is critical

for most (partly-) autonomous systems, the current paper only

referred to a context of automation where allocation is previously

defined and does not evolve. Future work intends to extend

previous work on automation design (Martinie et al., 2011) and

aims at exploiting the tasks models to identify potential migra-

tions and to assess the impact of such migrations on operations’

performance.

Acknowledgements

This work was partly sponsored by CNES (French National

Space Studies Center) R&T Tortuga R-S08/BS-0003-029 and Alda-

bra ETS-CT-R&T_TTGA-196-CN as well as Airbus under contract

CIFRE PBO D08028747-788/2008.

Annexe. FXML description of the synoptic generic canvas

o?xml version¼“1.0” encoding¼“UTF-8”?4

o?import java.lang.*?44

o?import java.net.*?4

o?import javafx.geometry.*?4

o?import javafx.scene.*?4

o?import javafx.scene.control.*?4

o?import javafx.scene.image.*?4

o?import javafx.scene.layout.*?4

o?import javafx.scene.shape.*?4

oBorderPane id¼“AnchorPane” xmlns:fx¼“http://javafx.com/

fxml”4

ocenter4

oAnchorPane id¼“anchorPane1”4

ochildren4

oLabel id¼“componentsHeader”

alignment¼“CENTER” styleClass¼“componentsHeader”

text¼“Procedure execution control” AnchorPane.

leftAnchor¼“0.0” AnchorPane.rightAnchor¼“0.0”

AnchorPane.topAnchor¼“0.0” /4

oVBox id¼“components” prefWidth¼“316.0”

AnchorPane.leftAnchor¼“0.0” AnchorPane.

rightAnchor¼“0.0” AnchorPane.topAnchor¼“20.0”/4

oAnchorPane id¼“anchorPane1” AnchorPane.

bottomAnchor¼“0.0” AnchorPane.leftAnchor¼“0.0”

AnchorPane.rightAnchor¼“0.0”4

ochildren4

oLabel id¼“label1”

alignment¼“CENTER_RIGHT” contentDisplay¼“RIGHT”

text¼“Close Synoptic” AnchorPane.bottomAnchor¼“0.0”

AnchorPane.leftAnchor¼“0.0” AnchorPane.

rightAnchor¼“56.0” /4

oButton id¼“button1” disable¼“true”

text¼“Close” AnchorPane.bottomAnchor¼“0.0” AnchorPane.

rightAnchor¼“0.0” /4

o/children4

o/AnchorPane4

oLine id¼“separator” endX¼“110.0”

endY¼“118.29289245605469” startX¼“110.0” startY¼“-

225.0” AnchorPane.bottomAnchor¼“-100.0” AnchorPane.

rightAnchor¼“-10.0” AnchorPane.topAnchor¼“0.0” /4

o/children4

opadding4

o Insets bottom¼“10.0” left¼“10.0” right¼“10.0”

top¼“10.0” fx:id¼“x1” /4

o/padding4

o/AnchorPane4

o/center4

oright4

oAnchorPane id¼“anchorPane1”4

ochildren4

oLabel id¼“componentsHeader”

alignment¼“CENTER” styleClass¼“componentsHeader”

text¼“Parameters Monitoring” AnchorPane.

leftAnchor¼“0.0” AnchorPane.rightAnchor¼“0.0”

AnchorPane.topAnchor¼“0.0” /4

oVBox id¼“parameters” padding¼“$x1”

styleClass¼“parameters” AnchorPane.bottomAnchor¼“0.0”

AnchorPane.leftAnchor¼“0.0” AnchorPane.

rightAnchor¼“0.0” AnchorPane.topAnchor¼“20.0”/4

o/children4

oBorderPane.margin4

o Insets bottom¼“10.0” left¼“10.0” right¼“10.0”

top¼“10.0” fx:id¼“x1” /4

o/BorderPane.margin4

o/AnchorPane4

o/right4

ostylesheets4

oURL value¼“@defaultStyleSheet.css” /4

o/stylesheets4

otop4

oVBox id¼“header” styleClass¼“header”4

ochildren4

oBorderPane4

obottom4

oHBox id¼“progress”4

ochildren4

ofx:include

id¼“progressTrackerComponent”

source¼“ProgressTrackerComponent.fxml”

prefHeight¼“23.0” prefWidth¼“657.0”4

oproperties current¼“6” max¼“10” /4

o/fx:include4

o/children4

o/HBox4

o/bottom4

ocenter4

oHBox id¼“title”4

ochildren4

ofx:include id¼“title”

source¼“TitleComponent.fxml”4

oproperties

procedureName¼“Destocking_Storage_SADA2” /4

o/fx:include4

o/children4

o/HBox4

o/center4

o left4

o ImageView4

o image4

o Image url¼“@logo.png”

preserveRatio¼“false” smooth¼“false” 4

o/Image4

o/image4

o/ImageView4

o/left4

o/BorderPane4

o/children4

o/VBox4

o/top4

o/BorderPane4

References

Barboni, E, Ladry, J-F, Navarre, D, Palanque, P, Winckler, M. Beyond modelling: an
integrated environment supporting co-execution of tasks and systems models.
In: ACM SIGCHI Conference Engineering Interactive Computing Systems
(EICS 2010). ACM SIGCHI, 19/06/2010–23/06/2010 2010, Berlin, Germany,
pp. 143–152.

Bastide, R., Sy, O., Palanque, P., 2000. A formal notation and tool for the engineering
of CORBA systems. Concurrency—Practice and Experience 12 (14), 1379–1403.

Boy G. Cognitive function analysis for human-centered automation of safety-critical
systems. In: Procceedings of ACM SIGCHI Conference on Human Factors for
Computing Systems. 1998, pp. 265–272.

Calvary, G., Coutaz, J., Thévenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.,
2003. A unifying reference framework for multi-target user interfaces. Inter-
acting with Computers 15 (3), 1. (1).

Carver, Liz, Turoff, Murray, 2007. Human–computer interaction: the human and
computer as a team in emergency management information systems. Commu-
nications of the ACM 50 (3), 33–38.

Clerkx, T., Vandervelpen, C., Coninx, K. Task-based design and runtime support for
multimodal user interface distribution. In: Proceedings of Engineering Inter-
active Systems 2007, EHCI-HCSE-DSVIS, 2007.

Demeure, A., Sottet, J.S., Calvary, G., Coutaz, J., Ganneau, V., Vanderdonckt, J. The 4C
reference model for distributed user interfaces. In: Proceedings of the Interna-
tional Conference on Autonomic and Autonomous Systems. IEEE Explore,
Piscataway, 2008, pp. 61–69.

Elmqvist, N., 2011. Distributed user interfaces: state of the art. In: Gallud, J.A., et al.
(Eds.), Distributed User Interfaces: Designing Interfaces for the Distributed
Ecosystem, Human–Computer Interaction Series, 2011. Springer-Verlag, pp. 1–12.

European Cooperation for Space Standardization, Space Engineering, Test and
Operations Procedure Language, ECSS-E70-32A. 2006.

European Cooperation for Space Standardization, Space Engineering, Ground
Systems and Operations, ECSS-E-70C, 31 July 2008.

Fang Chen, Eric H.C. Choi, Natalie Ruiz, Yu Shi, Ronnie Taib. 2005. User interface
design and evaluation for control room. In: Proceedings of the 17th Australia
conference on Computer–Human Interaction: Citizens Online: Considerations
for Today and the Future (OZCHI ‘05). Computer–Human Interaction Special
Interest Group (CHISIG) of Australia, Narrabundah, Australia, Australia, pp. 1–4.

Fitts, P.M. (Ed.), 1951. National Research Council, Washington, DC.
Feuerstack, S., Blumendorf, M., Schwartze, V., Albayrak, S. Model-based layout

generation. In: Proceedings of the Working Conference on Advanced Visual
Interfaces. AVI 2008, 2008, ACM New York, pp. 217–224.

Fröberg, A., Eriksson, H., Berglund, E., 2011. Developing a DUI based operator
control station: a case study of the Marve framework. In: Gallud, J.A., et al.
(Eds.), Distributed User Interfaces: Designing Interfaces for the Distributed
Ecosystem, Human–Computer Interaction Series. Springer-Verlag, pp. 1–12.

Harrison, M., Johnson, P., Wright, P., 2002. Automating functions in multi-agent
control systems: supporting the decision process. In: Redmill, F, Anderson, T.
(Eds.), Proceedings of the Tenth Safety-Critical System Symposium. Springer,
Southampton, pp. 93–106.

Hofstede, A.H.M., Ter, Y.A.W.L, 2005. yet another workflow language. Information
Systems 30, 245–275.

Jean, Vanderdonckt, 1998. Automatic Generation of a User Interface for Highly
Interactive Business-Oriented Applications. Morgan Kaufmann, San Francisco,
pp. 516–520.

Kjeldsen, R., Levas, A., Pinhanez, C. Dynamically reconfigurable vision-based user
interfaces. In: Third International Conference on Vision Systems (ICVS’03). April
2003, Graz, Austria.

Kontogiannis, Tom, 2010. Adapting plans in progress in distributed supervisory
work: aspects of complexity, coupling, and control. Cognition Technology and
Work 12 (2), 103–118.

Laprie, J-C., Arlat, J., Béounes, C., Kanoun, K., 1990. Definition and analysis of hardware
and software fault-tolerant architectures. IEEE Computer 23 (7), 39–51.

Limbourg, Q., Vanderdonckt, J. (2004). UsiXML: A User Interface Description Language
Supporting Multiple Levels of Independence. ICWE Workshops, pp. 1–1.

Liu F., Zuo M., Zhang P. Human–machine function allocation in information
systems: a comprehensive approach. In: Proceedings of the 15th Pacific Asia
Conference on Information Systems (PACIS 2011), July 2011, Brisbane, Australia.

Manca, M., Paterno, F., 2011. Extending MARIA to support distributed user
interfaces. In: Gallud, J.A., et al. (Eds.), Distributed User Interfaces: Designing
Interfaces for the Distributed Ecosystem, Human–Computer Interaction Series.
Springer-Verlag, pp. 1–12.

Martinie, C., Palanque, P., Winckler, M., 2012. Structuring and composition mechan-
isms to address scalability issues in task models. In: Proceedings of the
13th IFIP TC 13 International Conference on Human–computer Interaction—
Volume Part III (INTERACT’11), Vol. Part III. Springer-Verlag, Berlin, Heidelberg,
pp. 589–609.

Martinie, C., Palanque, P., Barboni, E., Ragosta, M., 2011. Task-model based assess-
ment of automation levels: application to space ground segments. In: IEEE SMC
Conference, IEEE Explore, 3267-3273.

Martinie, C., Palanque, P., Navarre, D., Barboni, E., 2012. A Tool-Supported Training
Framework for Improving Operators’ Dependability Confronted with Faults and
Errors. Probabilistic Safety Assessment (PSAM11 & ESREL 2012). Taylor &
Francis Group, Helsinki, Finland.

Martinie, C., Palanque, P., Navarre, D., Poupart, E. A systematic approach to training
for ground segment using tasks and scenarios: application to PICARD satellite.
In: 12th International Conference on Space Operations (Space Ops 2012), June
11–15th, 2012, Stockholm, Sweden.

Martinie, C., Palanque, P., Navarre, D., Barboni, E., 2012. A Development Process for
Usable Large Scale Interactive Critical Systems: Application to Satellite Ground
Segments. In: Fourth IFIP International Conference on Human-Centred Soft-
ware Engineering (HCSE), Springer Verlag, LNCS.

Melchior, J., Grolaux, D., Vanderdonckt, J., Van Roy, P. A toolkit for peer-to-peer
distributed user interfaces: concepts, implementation, and applications. In:
Proceedings of the 1st ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS 2009), 2009, ACM New York, pp. 69–78.

Melchior, J., Vanderdonckt, J., Van Roy, P. A model-based approach for distributed user
interfaces. In: Proceedings of the Third ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS 2011), 2011, ACM New York, pp. 11–20.

Navarre, D., Palanque, P., Ladry, J.F., Basnyat, S., 2008a. An architecture and a formal
description technique for the design and implementation of reconfigurable
user interfaces. In: Proceedings of the 15th International Workshop on Inter-
active Systems. Design, Specification, and Verification (DSV-IS 2008), LNCS
5136, pp. 208-224, Springer-Verlag Berlin Heidelberg.

Navarre, D., Palanque, P., Basnyat, S., 2008b. Usability service continuation through
reconfiguration of input and output devices in safety critical interactive
systems. In: The 27th International Conference on Computer Safety, Reliability
and Security (SAFECOMP 2008). M.D. Harrison, M.-A. Sujan (Eds.), LNCS,
pp. 373–386, 5219© Springer-Verlag Berlin Heidelberg 2008.

Norman, D., Draper, S. (Eds.), 1986. Lawrence Erlbaum Associates$, Hillsdale, NJ.
Navarre, D., Palanque, P., Ladry, J-F, Barboni, E, 2009. ICOs: a model-based user

interface description technique dedicated to interactive systems addressing
usability, reliability and scalability. ACM Transactions on Computer–Human
Interaction 16 (4).

Nichols J., Duen Horng Chau, Brad A. Myers. 2007. Demonstrating the viability of
automatically generated user interfaces. In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI ‘07). ACM, New York, NY,
USA, pp. 1283–1292.

Norman, D., 1998. The Design of Everyday Things. MIT press p. 1998.
Object Management Group. The Common Object Request Broker: Architecture and

Specification. CORBA IIOP 2.2 /98-02-01. Framingham, MA: 1998a.

Palmer, E. Oops, it didn′t arm.—a case study of two automation surprises. In: Eighth
International Symposium on Aviation Psychology, Ohio State University, 1995.

Parasuraman, R., Sheridan, T.B., Wickens, C.D., 2000. A model for types and levels of
human interaction with automation. IEEE Transactions on Systems, Man, and
Cybernetics Part A: Systems and Humans 30 (no.3), 286–297.

Rohn J. Petersen, William W. Banks, David I. Gertman. 1982. Performance-based
evaluation of graphic displays for nuclear power plant control rooms. In:
Proceedings of the 1982 Conference on Human Factors in Computing Systems
(CHI ‘82). ACM, New York, NY, USA, pp. 182–189.

Reason, J., 1990. Human Error. Cambridge University Press.
Roscher, D., Lehmann, G., Schwartze, V., Blumendorf, M., Albayrak, S., 2011.

Dynamic distribution and layouting of model-based user interfaces in smart
environments. In: Hussman, H., et al. (Eds.), Model-Driven Development of
Advanced User Interfaces, Volume 340 of Studies in Computational Intelligence.
Springer-Verlag, Berlin Heidelberg, pp. 171–197.

Seminara, J.L., Gonzalez, W.R., Parsons, S. 0., 1977. Human Factor Review of Nuclear
Power Plant Control Room Design (NP-309). Electric Power Research Institute,
Palo Alto, CA.

Tankeu-Choitat A., Fabre J.-C., Palanque P., Navarre D., Deleris Y., Fayolas C. Self-
checking components for dependable interactive cockpits using formal descrip-
tion techniques. In: 17th Pacific Rim Dependable Computing Conference (PRDC
2011), Pasadena, US, IEEE, 12–15th December 2011.

Vanderdonckt, J., 2010. Distributed user interfaces: how to distribute user interface
elements across users, platforms, and environments. In: Proceedings of XIth
Congreso Internacional de Interacción Persona-Ordenador Interacción’2010
(Valencia, 7–10 September 2010), Garrido, J.L., Paterno, F., Panach, J., Benghazi,
K., Aquino, N. (Eds.), AIPO, Valencia, 2010, pp. 3-14, Keynote address.

Yau, S.S., Cheung, R.C. 1975. Design of self-checking software. In: Proceedings of the
International Conference on Reliable Software, Los Angeles, CA, USA, IEEE
Computer Society Press, pp. 450–457.

