2,077 research outputs found

    Seismic geometric attribute analysis for fracture characterization: New methodologies and applications

    Get PDF
    In 3D subsurface exploration, detection of faults and fractures from 3D seismic data is vital to robust structural and stratigraphic analysis in the subsurface, and great efforts have been made in the development and application of various seismic attributes (e.g. coherence, semblance, curvature, and flexure). However, the existing algorithms and workflows are not accurate and efficient enough for robust fracture detection, especially in naturally fractured reservoirs with complicated structural geometry and fracture network. My Ph.D. research is proposing the following scopes of work to enhance our capability and to help improve the resolution on fracture characterization and prediction.;For discontinuity attribute, previous methods have difficulty highlighting subtle discontinuities from seismic data in cases where the local amplitude variation is non-zero mean. This study proposes implementing a gray-level transformation and the Canny edge detector for improved imaging of discontinuities. Specifically, the new process transforms seismic signals to be zero mean and helps amplify subtle discontinuities, leading to an enhanced visualization for structural and stratigraphic details. Applications to various 3D seismic datasets demonstrate that the new algorithm is superior to previous discontinuity-detection methods. Integrating both discontinuity magnitude and discontinuity azimuth helps better define channels, faults and fractures, than the traditional similarity, amplitude gradient and semblance attributes.;For flexure attribute, the existing algorithm is computationally intensive and limited by the lateral resolution for steeply-dipping formations. This study proposes a new and robust volume-based algorithm that evaluate flexure attribute more accurately and effectively. The algorithms first volumetrically fit a cubic surface by using a diamond 13-node grid cell to seismic data, and then compute flexure using the spatial derivatives of the built surface. To avoid introducing interpreter bias, this study introduces a new workflow for automatically building surfaces that best represent the geometry of seismic reflections. A dip-steering approach based on 3D complex seismic trace analysis is implemented to enhance the accuracy of surface construction and to reduce computational time. Applications to two 3D seismic surveys demonstrate the accuracy and efficiency of the new flexure algorithm for characterizing faults and fractures in fractured reservoirs.;For robust fracture detection, this study presents a new methodology to compute both magnitude and directions of most extreme flexure attribute. The new method first computes azimuthal flexure; and then implements a discrete azimuth-scanning approach to finding the magnitude and azimuth of most extreme flexure. Specially, a set of flexure values is estimated and compared by substituting all possible azimuths between 0 degree (Inline) and 180 degree (Crossline) into the newly-developed equation for computing azimuthal flexure. The added value of the new algorithm is demonstrated through applications to the seismic data set from Teapot Dome of Wyoming. The results indicate that most extreme flexure and its associated azimuthal directions help reveal structural complexities that are not discernible from conventional coherence or geometric attributes.;Given that the azimuth-scanning approach for computing maximum/minimum flexure is time-consuming, this study proposes fracture detection using most positive/negative flexures; since for gently-dipping structures, most positive is similar to maximum flexure while most negative flexure to minimum flexure. After setting the first reflection derivatives (or apparent dips) to be zero, the localized reflection is rotated to be horizontal and thereby the equation for computing azimuthal flexure is significantly simplified, from which a new analytical approach is proposed for computing most positive/negative flexures. Comparisons demonstrate that positive/negative flexures can provide quantitative fracture characterization similar to most extreme flexure, but the computation is 8 times faster than the azimuth-scanning approach.;Due to the overestimate by using most positive/negative flexure for fracture characterization, 3D surface rotation is then introduced for flexure extraction in the presence of structural dip, which makes it possible for solving the problem in an analytical manner. The improved computational efficiency and accuracy is demonstrated by both synthetic testing and applications to real 3D seismic datasets, compared to the existing discrete azimuth-scanning approach.;Last but not the least, strain analysis is also important for understanding structural deformation, predicting natural fracture system, and planning well bores. Physically, open fractures are most likely to develop in extensional domains whereas closed fractures in compressional ones. The beam model has been proposed for describing the strain distribution within a geological formation with a certain thickness, in which, however, the extensional zone cannot be distinguished from the compression one with the aid of traditional geometric attributes, including discontinuity, dip, and curvature. To resolve this problem, this study proposes a new algorithm for strain reconstruction using apparent dips at each sample location within a seismic cube

    Seismic Applications of Interactive Computational Methods

    Get PDF
    Effective interactive computing methods are needed in a number of specific areas of geophysical interpretation, even though the basic algorithms have been established. One approach to raise the quality of interpretation is to promote better interaction between human and the computer. The thesis is concerned with improving this dialog in three areas: automatic event picking, data visualization and sparse data imaging. Fully automatic seismic event picking methods work well in relatively good conditions. They collapse when the signal-to-noise ratio is low and the structure of the subsurface is complex. The interactive seismic event picking system described here blends the interpreter's guidance and judgment into the computer program, as it can bring the user into the loop to make subjective decisions when the picking problem is complicated. Several interactive approaches for 2-D event picking and 3-D horizon tracking have been developed. Envelope (or amplitude) threshold detection for first break picking is based on the assumption that the power of the signal is larger than that of the noise. Correlation and instantaneous phase pickers are designed for and better suited to picking other arrivals. The former is based on the cross-correlation function, and a model trace (or model traces) selected by the interpreter is needed. The instantaneous phase picker is designed to track spatial variations in the instantaneous phase of the analytic form of the arrival. The picking options implemented into the software package SeisWin were tested on real data drawn from many sources, such as full waveform sonic borehole logs, seismic reflection surveys and borehole radar profiles, as well as seven of the most recent 3-D seismic surveys conducted over Australian coal mines. The results show that the interactive picking system in SeisWin is efficient and tolerant. The 3-D horizon tracking method developed especially attracts industrial users. The visualization of data is also a part of the study, as picking accuracy, and indeed the whole of seismic interpretation depends largely on the quality of the final display. The display is often the only window through which an interpreter can see the earth's substructures. Display is a non-linear operation. Adjustments made to meet display deficiencies such as automatic gain control (AGC) have an important and yet ill-documented effect on the performance of pattern recognition operators, both human and computational. AGC is usually implemented in one dimension. Some of the tools in wide spread use for two dimensional image processing which are of great value in the local gain control of conventional seismic sections such as edge detectors, histogram equalisers, high-pass filters, shaded relief are discussed. Examples are presented to show the relative effectiveness of various display options. Conventional migration requires dense arrays with uniform coverage and uniform illumination of targets. There are, however, many instances in which these ideals can not be approached. Event migration and common tangent plane stacking procedures were developed especially for sparse data sets as a part of the research effort underlying this thesis. Picked-event migration migrates the line between any two points on different traces on the time section to the base map. The interplay between the space and time domain gives the interpreter an immediate view of mapping. Tangent plane migration maps the reflector by accumulating the energy from any two possible reflecting points along the common tangent lines on the space plane. These methods have been applied to both seismic and borehole-radar data and satisfactory results have been achieved

    Seismic Applications of Interactive Computational Methods

    Get PDF
    Effective interactive computing methods are needed in a number of specific areas of geophysical interpretation, even though the basic algorithms have been established. One approach to raise the quality of interpretation is to promote better interaction between human and the computer. The thesis is concerned with improving this dialog in three areas: automatic event picking, data visualization and sparse data imaging. Fully automatic seismic event picking methods work well in relatively good conditions. They collapse when the signal-to-noise ratio is low and the structure of the subsurface is complex. The interactive seismic event picking system described here blends the interpreter's guidance and judgment into the computer program, as it can bring the user into the loop to make subjective decisions when the picking problem is complicated. Several interactive approaches for 2-D event picking and 3-D horizon tracking have been developed. Envelope (or amplitude) threshold detection for first break picking is based on the assumption that the power of the signal is larger than that of the noise. Correlation and instantaneous phase pickers are designed for and better suited to picking other arrivals. The former is based on the cross-correlation function, and a model trace (or model traces) selected by the interpreter is needed. The instantaneous phase picker is designed to track spatial variations in the instantaneous phase of the analytic form of the arrival. The picking options implemented into the software package SeisWin were tested on real data drawn from many sources, such as full waveform sonic borehole logs, seismic reflection surveys and borehole radar profiles, as well as seven of the most recent 3-D seismic surveys conducted over Australian coal mines. The results show that the interactive picking system in SeisWin is efficient and tolerant. The 3-D horizon tracking method developed especially attracts industrial users. The visualization of data is also a part of the study, as picking accuracy, and indeed the whole of seismic interpretation depends largely on the quality of the final display. The display is often the only window through which an interpreter can see the earth's substructures. Display is a non-linear operation. Adjustments made to meet display deficiencies such as automatic gain control (AGC) have an important and yet ill-documented effect on the performance of pattern recognition operators, both human and computational. AGC is usually implemented in one dimension. Some of the tools in wide spread use for two dimensional image processing which are of great value in the local gain control of conventional seismic sections such as edge detectors, histogram equalisers, high-pass filters, shaded relief are discussed. Examples are presented to show the relative effectiveness of various display options. Conventional migration requires dense arrays with uniform coverage and uniform illumination of targets. There are, however, many instances in which these ideals can not be approached. Event migration and common tangent plane stacking procedures were developed especially for sparse data sets as a part of the research effort underlying this thesis. Picked-event migration migrates the line between any two points on different traces on the time section to the base map. The interplay between the space and time domain gives the interpreter an immediate view of mapping. Tangent plane migration maps the reflector by accumulating the energy from any two possible reflecting points along the common tangent lines on the space plane. These methods have been applied to both seismic and borehole-radar data and satisfactory results have been achieved

    Structure Segmentation and Transfer Faults in the Marcellus Shale, Clearfield County, Pennsylvania: Implications for Gas Recovery Efficiency and Risk Assessment Using 3D Seismic Attribute Analysis

    Get PDF
    The Marcellus Shale has become an important unconventional gas reservoir in the oil and gas industry. Fractures within this organic-rich black shale serve as an important component of porosity and permeability useful in enhancing production. Horizontal drilling is the primary approach for extracting hydrocarbons in the Marcellus Shale. Typically, wells are drilled perpendicular to natural fractures in an attempt to intersect fractures for effective hydraulic stimulation. If the fractures are contained within the shale, then hydraulic fracturing can enhance permeability by further breaking the already weakened rock. However, natural fractures can affect hydraulic stimulations by absorbing and/or redirecting the energy away from the wellbore, causing a decreased efficiency in gas recovery, as has been the case for the Clearfield County, Pennsylvania study area. Estimating appropriate distances away from faults and fractures, which may limit hydrocarbon recovery, is essential to reducing the risk of injection fluid migration along these faults. In an attempt to mitigate the negative influences of natural fractures on hydrocarbon extraction within the Marcellus Shale, fractures were analyzed through the aid of both traditional and advanced seismic attributes including variance, curvature, ant tracking, and waveform model regression. Through the integration of well log interpretations and seismic data, a detailed assessment of structural discontinuities that may decrease the recovery efficiency of hydrocarbons was conducted. High-quality 3D seismic data in Central Pennsylvania show regional folds and thrusts above the major detachment interval of the Salina Salt. In addition to the regional detachment folds and thrusts, cross-regional, northwest-trending lineaments were mapped. These lineaments may pose a threat to hydrocarbon productivity and recovery efficiency due to faults and fractures acting as paths of least resistance for induced hydraulic stimulation fluids. These lineaments may represent major transfer faults that serve as pathways for hydraulic fluid migration. Detection and evaluation of fracture orientation and intensity and emphasis on the relationship between fracture intensity and production potential is of high interest in the study area as it entails significant time and cost implications for both conventional and unconventional hydrocarbon exploration and production

    Seismic and structural characterization of fluid escape pipes using 3D and partial stack seismic from the Loyal field (UK) : A multiphase and repeated intrusive mechanism

    Get PDF
    Acknowledgements We thank an anonymous reviewer for the several constructive comments. The seismic interpretation and image processing was carried out in the SeisLab facility at the University of Aberdeen (sponsored by BG BP and Chevron). Seismic imaging analysis was performed using GeoTeric® (ffA), and analysis of seismic amplitudes was performed in Petrel® 2016 (Schlumberger). We would like to thank the Tuscany PhD Regional program and the Erasmus+exchange for funding the Aberdeen permanence of one of us (D.M.). Gazprom for supporting A.J PhD., BP for the release of the Loyal field seismic dataset utilized in this research paper and also N.Vanden Beukel (BP) and M. Gorling (BP) and his colleagues for their assistance.Peer reviewedPostprin
    • …
    corecore