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ABSTRACT 
 

Structure Segmentation and Transfer Faults in the Marcellus Shale, Clearfield 

County, Pennsylvania: Implications for Gas Recovery Efficiency and Risk Assessment 

Using 3D Seismic Attribute Analysis 

 
Emily D. Roberts 

 

 The Marcellus Shale has become an important unconventional gas reservoir in the oil 

and gas industry. Fractures within this organic-rich black shale serve as an important 

component of porosity and permeability useful in enhancing production. Horizontal 

drilling is the primary approach for extracting hydrocarbons in the Marcellus Shale. 

Typically, wells are drilled perpendicular to natural fractures in an attempt to intersect 

fractures for effective hydraulic stimulation. If the fractures are contained within the shale, 

then hydraulic fracturing can enhance permeability by further breaking the already 

weakened rock. However, natural fractures can affect hydraulic stimulations by absorbing 

and/or redirecting the energy away from the wellbore, causing a decreased efficiency in 

gas recovery, as has been the case for the Clearfield County, Pennsylvania study area. 

Estimating appropriate distances away from faults and fractures, which may limit 

hydrocarbon recovery, is essential to reducing the risk of injection fluid migration along 

these faults. In an attempt to mitigate the negative influences of natural fractures on 

hydrocarbon extraction within the Marcellus Shale, fractures were analyzed through the 

aid of both traditional and advanced seismic attributes including variance, curvature, ant 

tracking, and waveform model regression. Through the integration of well log 

interpretations and seismic data, a detailed assessment of structural discontinuities that 

may decrease the recovery efficiency of hydrocarbons was conducted. High-quality 3D 

seismic data in Central Pennsylvania show regional folds and thrusts above the major 

detachment interval of the Salina Salt. In addition to the regional detachment folds and 

thrusts, cross-regional, northwest-trending lineaments were mapped. These lineaments 

may pose a threat to hydrocarbon productivity and recovery efficiency due to faults and 

fractures acting as paths of least resistance for induced hydraulic stimulation fluids. These 

lineaments may represent major transfer faults that serve as pathways for hydraulic fluid 

migration. Detection and evaluation of fracture orientation and intensity and emphasis on 

the relationship between fracture intensity and production potential is of high interest in 

the study area as it entails significant time and cost implications for both conventional and 

unconventional hydrocarbon exploration and production. 
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1. INTRODUCTION 

 
1.1 Fractures and Hydrocarbon Recovery Implications 

Present technological advances in geophysics, particularly in the field of seismic 

imaging, has allowed geoscientists to identify both major and minor scale structures that 

are buried deep beneath the surface and lack surface expression. However, the benefits of 

seismic imaging go far beyond creating a visual image of the subsurface. Technological 

advances, an improved understanding of seismic wave propagation, and enhanced 

attribute analysis has led to increasingly more reliable and geologically significant 

interpretations of seismic scale and sub-seismic scale features such as fracture swarms or 

fracture sweet spots. (Hart, Pearson, and Rawling, 2002) 

Current economic demands for clean energy alternatives, along with increasing 

advancements in drilling technologies, have made the Marcellus Shale a leader in natural 

gas plays. Several fracture sets are consistent throughout the Marcellus Shale and serve as 

an important component for enhancing production (Engelder, Lash, and Uzcategui, 2009). 

However, connecting faults and fractures have the potential to hinder gas recovery in the 

study area if hydraulic injection fluids are directed away from the target formation and 

wellbore.  

1.2 Objectives and Approach 

The purpose of this study is to determine if both major and minor structures, such 

as faults and fractures, fracture swarms or networks, can be located within the Marcellus 

Shale through the use of complex seismic attribute analysis.  An emphasis on the 

relationship between fractures and faults, particularly strike-slip faults with deep 
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penetration and steep dip are of great importance and high interest, as they may have the 

greatest potential for fluid migration. Better imaging of the deep, near-vertical faults and 

fractures is critical to economic and environmental risk assessment. Estimating 

appropriate distances away from such faults and fractures with high fluid migration 

potential is essential to the success of well-bore planning and hydraulic fracture 

stimulation.  

To achieve these objectives, this study analyzed a 3D seismic volume in Clearfield 

County, Pennsylvania using Schlumberger’s Petrel 2012 software (Figure 1). Several 

datasets were derived to better define the structural variation within the reservoir. These 

include: geologic subsurface structure maps and thickness maps generated from horizon 

picking and well log tops, cross-sections throughout the seismic volume, synthetic well-ties 

to determine resolution limits within the seismic data, and maps and cross sections 

obtained from the analysis of four attributes: waveform model regression, curvature, 

variance, and ant tracking from variance.  

Local geological structure and fracture geometries were compared to regional scale 

observations to address the structural complexities that exist within the Appalachian basin. 

Fitting the local structural variation within the context of regional-scale geology not only 

increases our geologic interpretation reliability of the study area but it may also provide 

clues into the basin’s intricacies as a whole. Moreover, it can aid in advancing our 

understanding of the hydrocarbon recovery potential and implications, as well as, assist in 

well planning and hydraulic fracture stimulation.  
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Figure 1: Paleogeography in the Middle Devonian (385Ma). Approximate location of study area 

indicated by yellow box. (Modified from Blakey, 2008) 

 

2. FRACTURES AND MECHANISMS OF FRACTURE DEVELOPMENT 
 

2.1 Introduction 
 

To establish a framework for understanding the fracture systems within the 

Appalachian basin and the Marcellus Shale, it is necessary to define fractures and discuss 

their mechanisms for development. In geology, the term fracture is generally used to refer 

to two main groups of structural features: joints and faults (Van der Pluijm and Marshak, 

2004). Typically, joints and faults form in sets or groups, referred to as fracture swarms or 

fracture networks. These fracture swarms are important to hydrocarbon recovery because 

they can provide conduits for subsurface fluid migration or, if cemented or mineralized, can 

compartmentalize reservoirs by forming impenetrable barriers to fluid flow (Hsieh et al., 
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1993). The primary focus of this study is on the identification of such fracture swarms or 

fracture networks through seismic attribute analysis to aid in the enhancement of 

hydrocarbon recovery efficiency. 

2.2 Fracture Types 

2.2.1 Joints 

A joint, or extensional fracture, occurs when a rock exhibits no major shear 

displacement. Joints are important because they can profoundly affect rock strength, 

influence permeability, as well as, provide information about the history of stress and 

strain in a region (Van der Pluijm and Marshak, 2004). Although the basic definition of a 

joint is not entirely agreed on, the majority of geologists consider joints to be fractures that 

form perpendicular to the σ3 trajectory and parallel to the principal plane of stress that 

contains σ1 and σ2 directions (e.g., Van der Pluijm and Marshak, 2004). 

Several types and generations of joints and faulting can develop concurrently. A 

joint set, which will be discussed in more detail throughout this paper, is a group of 

systematic joints, in which younger joints often overprint older joints. Systematic joints are 

planar joints that trend parallel or sub-parallel to each other, while maintaining a relatively 

uniform spacing. Nonsystematic joints do not exhibit these traits, but rather, form with 

irregular spatial distribution, tend to be non-planar, may terminate at other joints, and do 

not parallel one another (Van der Pluijm and Marshak, 2004).  
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2.2.2 Faults 

Faults are fractures along which shear displacement has occurred. Faults may be 

associated with either extensional or contractional strain and include dip slip faulting, such 

as normal faulting, reverse faulting or thrust faulting (a low angle reverse fault), and strike-

slip faulting (Figure 2).  The shear sense of faulting is described on a dip-slip fault with 

reference to a horizontal line on the fault by describing the movement as either hanging-

wall up  (reverse or thrust faulting) or hanging-wall down (normal faulting) with respect to 

the footwall. When the shear sense is parallel to the fault strike and the line representing 

slip direction has a rake (pitch) in the fault plane of less than 10 degrees, we consider this 

to be a strike-slip fault. Strike-slip faults tend to be steeply dipping to vertical (Van der 

Pluijm and Marshak, 2004). 

Anderson (1951) defines normal faults as fractures associated with extension and a 

vertical σ1 orientation and reverse faults as fractures associated with compression and a 

horizontal σ1 orientation.  He characterizes strike-slip faults as fractures associated with 

lateral displacement or block rotation with σ1 and σ3 being horizontal. Oblique slip 

faulting occurs when both dip-slip and strike-slip displacement is a result of inclined stress 

axes or the inhomogeneity of strength or elastic properties (Bott, 1959).  
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Figure 2: Block diagram sketches showing the different types of faults. (From Van der Pluijm and Marshak, 2004) 

 

2.2.3 Fracture Swarms  

Olsen (2004) describes fracture swarms as groups of tightly-spaced fractures that 

are considered the exception to the widely accepted rule that fracture spacing in 

sedimentary rocks is proportional to the mechanical layer thickness. Such fracture swarms 

occur in areas experiencing regional tectonic stresses. Fracture swarms are also thought to 

occur in local stress field interactions which may cause propagating fractures to 

communicate (Olsen, 2004).   

 Cooke and Underwood (2000) suggest that rather than mechanical drivers alone, 

stress fields associated around a propagating fracture tip represent the point of maximum 

tension and are more likely to influence the direction of the fractures’ continuing 

propagation. As a result, the fracture tip will likely be attracted toward another fracture 

since this will be a zone of preexisting weakness, than to continue to propagate through an 

unfractured zone.  Fracture swarms may significantly enhance hydrocarbon recovery in the 
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Marcellus Shale, since it has been suggested that fractures can increase permeability when 

hydraulically stimulated. 

2.3 Mechanism of Fracture Development 

 Faults and joints represent the response of rock to the effects of stress and strain 

being applied to the rock. In the event that the elastic strain on a surface or plane reaches 

or exceeds the critical value, the rock will fail and a fracture will form (Van der Pluijm and 

Marshak, 2004). Several parameters will influence whether a fault or joint will develop. 

Such parameters include the orientation of the principal stress axes (σ1, σ2 andσ3), 

surface planarity of the fracture, rock brittleness, and the magnitude of shear strains being 

accommodated by the surface undergoing stress (Van der Pluijm and Marshak, 2004).  

 Faulting only occurs when the differential stress is not equal to zero (σ1=σ2=σ3). A 

relationship between fault orientations and the trajectories of principal stresses during a 

tectonic event can be made because the shear-stress magnitude on a plane will change as a 

function of the plane’s orientation with respect to principal stresses (Van der Pluijm and 

Marshak, 2004). This relationship is important for understanding paleo-stresses and their 

influence on fault trends, which will be discussed in chapter 7.  

2.4 Fault Damage/Deformation Zones 

To better define the types of structures observed in this study and the vocabulary 

that will be used to describe them, it is important to distinguish between faults and fault 

damage zones. For the purpose of this study, fault damage zones are considered to be zones 

of deformation around major faults, in which greater fracture density occurs relative to the 
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area surrounding it. Chapter 7 will provide examples of potential damage/deformation 

zones in our study area.  

Shipton and Cowie (2003) consider fault damage zones to contain “subsidiary 

structures” that occur for a number of reasons, including bedding flexure, repeated fault 

slip, and enhanced stress and strain from zones of adjacent faults and fault connectivity. 

The systematic geometries of damage zones may aid in the prediction of sub-seismic fault 

distribution, as well as, fluid migration pathways.  Thus, it is imperative that fault damage 

zones can play a huge role in interpreting the geology and structural complexity of the 

Clearfield, Pennsylvania study area (Figure 1) and the potential influence of fault damage 

zones.  

2.5 Regional and Local Stresses 

One of the primary objectives for this work included a qualitative comparison 

between regional stresses and their influence on the local stresses and the role they have 

on the formation of geologic structures observed within our study area. Stearns and 

Friedman (1972) related the regional structural style of joints and faults to inferred local 

stress regimes expected during faulting and folding. However, it is inevitable that 

comparisons between local and regional stresses will not always prove to be consistent, 

but rather, may vary significantly depending on the structural regime and variation of local 

stress throughout the basin (i.e. location), among other factors. Still, it is noteworthy to 

take into account these comparisons, as they only lend further insight into the factors 

influencing the local geology of the dataset.   
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3.  SEISMIC ATTRIBUTES 
 

3.1 Introduction  

Seismic attributes contain fundamental pieces of information within a recorded 

seismic trace that can be used to enhance subsurface visualization and interpretation 

(Chopra and Marfurt, 2007). Seismic attributes serve as a useful tool for petroleum 

industry exploration and field development. Attributes analysis includes the assessment of 

structures such as faults and folds (traps), stratigraphy, including lateral variation in 

lithology and thickness, and reservoir properties, such as porosity and permeability and 

hydrocarbon indicators.  

In order to perform a 3D seismic attribute analysis, attributes most readily 

prevalent to structural analysis were used. Since the main objective of this study centered 

on assessing fracture locations, orientations, intensities, and connectivity of fracture 

networks, waveform model regression (WMR), curvature, variance, and ant tracking 

structural attributes were used. This allowed for a more reliable interpretation of the 

subsurface, including fault and fracture network delineation, to address issues of fluid 

migration potential and hydrocarbon recovery efficiency.  

3.2 Attributes Defined 
 

A seismic attribute is a quantitative measure of a seismic data property or 

properties that can be measured along a single seismic trace or multiple traces at one 

instant in time (time slice) or summed over a time interval (interpreted horizon/surface,  

cross-section) (Schlumberger, 2013). Attributes can be divided into several categories, 
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including pre-stack or post-stack attributes, instantaneous attributes, wavelet attributes, 

physical attributes, geometrical attributes, reflective attributes and transmissive attributes 

(Brown, 2004, 2001, 1996; Taner, 2001).  

Attributes applied to the 3D seismic survey in this study include curvature, variance 

and waveform model regression. Ant tracking, Schlumberger’s automated discontinuity 

attribute, was applied to trace faults and fractures from the variance attribute.  All of the 

aforementioned attributes are considered geometrical (or structural) attributes, and will 

be detailed in the following sections.  

 3.2.1 Curvature 

 The curvature attribute is a measure of the reflector geometry of a given seismic 

trace and is defined in two dimensions as the radius of a circle tangent to a curve, 

independent of bulk rotations and translations of the reflector (Chopra and Marfurt, 2007). 

Thus, positive and negative curvature values are inferred to be anticlines and synclines, 

respectively. Zero curvature values represent areas along the curve associated with 

straight lines (Figure 3). 

Curvature has been found to serve as a useful attribute for delineating faults, 

fracture swarms, and folds. Chopra and Marfurt (2007) suggest that curvature maps 

accurately depict the present-day subsurface structure, particularly faults and zones of 

flexure (i.e. fracture swarms). Most positive and most negative values are thought to be the 

most unambiguous of the curvature measurements in highlighting faults and folds.  
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Figure 3: 2D representation of curvature. Anticlinal structures have positive curvatures, synclinal structures have negative 
curvature and dipping planes (or linear features along the curve) have zero curvature. (From Chopra and Marfurt, 2007) 

 

 3.2.2 Variance 

 The variance attribute, which is the opposite of the coherency attribute, measures 

lateral variations between neighboring seismic traces by representing the trace-to-trace 

variability of a particular sample interval (Chopra and Marfurt, 2007). Therefore, it can be 

used to interpret lateral changes in acoustic impedance. Similar traces result in low 

variance coefficients, whereas discontinuities, or variation among traces, will exhibit high 

coefficients. Since faults may cause lateral changes in lithology, subsequent variation 

between seismic traces should become detectable in 3D seismic volumes.  

 3.2.3 Ant Tracking from Variance 

 Ant tracking is an advanced computing algorithm in Schlumberger’s Petrel software 

that can be used to extract faults from a pre-processed seismic volume. The processed 

volume can be seismic-discontinuity attributes like variance or chaos combined with 

structural smoothing. The algorithm can enhance edge detection of fault features using a 
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discriminative and iterative process that replicates natural ant behaviors (Chopra and 

Marfurt, 2007).  

The ant tracking workflow consists of a number of independent steps. First, a pre-

conditioned (structurally smoothed) seismic volume with an edge detection algorithm 

applied (e.g. variance) needs to be generated. Structural smoothing will help to reduce the 

noise in the seismic data while the algorithm will enhance the spatial discontinuities. Then, 

the ant tracking attribute can be applied to the variance seismic volume and faults can be 

extracted. Faults must then be validated and edited for erroneous faults, which may have 

been an artifact from noise or correlate with reflection events, rather than faults. Also, 

horizontal features associated with stratigraphy can be filtered out to further increase 

accuracy for modeling fault interpretations.  

There are several benefits to using the ant tracking attribute. Ant tracking can 

increase structural accuracy and detail providing unbiased, repeatable mapping of 

discontinuities. Furthermore, the algorithm can produce highly detailed fault 

interpretations, which must be quality controlled, but allow for the interpreter to efficiently 

enhance the detail of the fault interpretation. Ant tracking is also useful for checking the 

accuracy with which faults have been interpreted, thus enhancing the interpreter’s 

confidence. For this reason, interpreted fault surfaces may be compared to fault surfaces 

that had been tracked by the automated process as a form of secondary calibration (Chopra 

and Marfurt, 2007).  
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3.2.4 Waveform Model Regression 

 A new and advanced attribute called a constant-phase waveform model regression 

WMR) was applied to the 3D seismic volume to better highlight structural features within 

the dataset. The WMR algorithm applies a linear least-squares regression to adjust 

similarity between a wavelet model and seismic data (Gao, 2013, 2012a, 2004, 2002; 

Donahoe and Gao, 2012; Donahoe, 2011). The WMR attribute is evaluated at each sample 

located along each wiggle trace and converts the regular wiggle trace into a structurally-

enhanced attribute. The waveform frequency is then increased through waveform to 

constant phase correlation and by calculating the absolute correlation coefficient (Gao, 

2013, 2012a, 2004, 2002; Donahoe and Gao, 2012; Donahoe, 2011). The signal to noise 

ratio is then enhanced by the linear least-squares regression, in turn, allowing for 

improved visualization and mapping of structural features such as faults and folds.  

The WMR attribute can be used to characterize structures, facies and reservoir 

properties from seismic data that might not be easily recognizable from regular seismic 

amplitude data alone (Gao, 2013, 2012a, 2004, 2002; Donahoe and Gao, 2012; Donahoe, 

2011). In this study, the constant-phase WMR attribute was applied to the seismic data to 

better visualize and interpret structures in both map view and cross-sectional view. 

Structural analysis, including fault locations, extent, and connectivity is more robust by 

using this advanced, seismic waveform-based attribute. A more detailed and accurate 

interpretation was possible through the use of the WMR attribute in this 3D survey. 
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4.  GEOLOGIC SETTING 

4.1 Introduction 

 Most structures throughout Pennsylvania can be genetically related to four main 

tectonic orogenic episodes in the Appalachian foreland basin. These four events include the 

Grenville, Taconic, Acadian, and Allegheny orogenies, which initiated during the Ordovician 

and extended throughout the Pennsylvanian, dominantly controlling the derivation of the 

central Appalachian basin. Prior to the foreland basin orogenesis, extension in 

Precambrian-Cambrian brought about a major rift system, known as the Rome trough that 

extends throughout the area of interest (Kulander and Ryder, 2005; Edmonds, 2004; 

Hibbard, 2004; Gao, Shumaker, and Wilson, 2000; Wilson, 2000; Gao and Shumaker, 1996; 

Shumaker and Wilson, 1996; Kulander and Dean, 1986, 1980). 

The overprinting of these events has complicated the structural style and history of 

the basin. Both the Cambrian basement-involved rift structure and the post Silurian (post-

salt) detachment structures are complicated by regional and cross-regional lineaments. 

The regional lineaments are trending to the northeast, whereas the cross-regional 

lineaments trend in variable directions (Gao et al., 2000; Gao and Shumaker, 1996). Some 

cross-regional lineaments are reported to be orthogonal to the strike of the regional 

structures called cross-strike discontinuities (Shultz, 1999; Wheeler, 1980; Wilson, 1980). 

Some are oblique to the regional trend such as the 38th parallel, the Burning-Mann, and the 

40th parallel lineaments (Gao et al., 2000). These cross-regional lineaments, oblique or 

orthogonal, basement-involved or detached, make the Rome trough and the foreland basin 

structures variable along the regional trend (Gao et al., 2000; Gao and Shumaker, 1996). 
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Such along-axis variation and segmentation have important implications for tectonics, 

sedimentation, and hydrocarbon accumulation in the foreland basin (Gao et al., 2000). In 

unconventional shale-gas exploration, an understanding of the polyhistory of the basin, as 

well as structure and stratigraphy associated with it, is necessary for evaluating potential 

for fracture development and reactivation and movement along pre-existing faults and 

zones of weakness. Thus, detecting regional and cross-regional faults and fractures and 

unraveling their polyhistory is fundamental to the success for both conventional and 

unconventional energy exploration and production. 

4.2 Tectonic History 

 The Grenville Orogeny occurred during the late Precambrian and is expressed by 

complex deformation, including primary flow foliation, gneissic structures, and recumbent 

isoclinal folds (Shultz, 1999) (Figure 4). Few large-scale structures have been observed or 

documented from this orogeny. However, low angle faulting in basement rock has been 

observed from seismic data in the Appalachian Plateau region (Shultz, 1999). These 

features may contribute minimally to structural deformation in overlying strata throughout 

the region. 

The Appalachian cycle of deformation and sedimentation largely began in the late 

Precambrian (about 750 Ma) era when rifting associated with extension created the 

Iapetus Ocean and the Rome trough. Rifting that occurred throughout the Early-Middle 

Cambrian brought about a series of grabens that extend throughout western Pennsylvania 

(Figure 4) (Kulander and Ryder, 2005; Edmonds, 2004; Hibbard, 2004; Gao et al., 2000; 

Wilson, 2000; Gao and Shumaker, 1996; Shumaker and Wilson, 1996; Kulander and Dean, 
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1986, 1980). Several lineaments, particularly step down normal faulting to the east, are 

associated with these rifting events and have been observed in Precambrian basement rock 

from seismic data (Hibbard, 2004). 

 Following these rifting events, a brief period of thermal subsidence and passive 

margin tectonics persisted (Shultz, 1999) up until the Late Ordovician when the Taconic 

Orogeny initiated (Figure 4). This orogeny marked the beginning of the structural 

deformation seen within the Appalachian basin today. The Taconic orogeny resulted from 

the collision of continental arcs with the eastern margin of Laurentia, causing plate 

subduction. This orogeny created several pronounced structures throughout the basin, 

including overlapping recumbent folds in southeast Pennsylvania and southeast-dipping 

monoclinal flexures in western Pennsylvania (Shultz, 1999).  

Effects of the Taconic Orogeny continued into the Early Silurian, when subduction 

halted and the erosion of the newly-formed orogenic belt (Taconic mountains from 

recycled Iapetus Terrane) began (Figure 4). As the Taconic mountains eroded throughout 

the Late Silurian, the sea transgressed eastward, allowing for clastic and carbonate 

deposition. Marine shelf environments and tectonically inactive conditions persisted into 

the Early Devonian, depositing shale, carbonate, and evaporite (Shultz, 1999).  

From the Devonian to Early Mississippian, the Acadian Orogeny governed the 

evolution of the central Appalachian basin (Shultz, 1999) (Figure 4). A second influx of 

detrital sediment was introduced into the basin from orogenic highlands created by the 

Acadian Orogeny, which allowed for Middle Devonian rock units, including the Onondaga 

Limestone and Hamilton Group (includes Marcellus Shale), to accumulate in basinal marine 

environments (Shultz, 1999).  
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The Late Devonian Acadian Orogeny produced only minor structures in the 

Pennsylvania, such as upfaulted blocks of the Precambrian basement complex and fracture 

cleavage in some rock units. However, small anticlinal structures resulted from the 

extension in the Appalachian Plateau that mobilized rock salt of the Silurian Salina Group 

along Taconic monoclines. These structures are similar to those observed within this study.   

The Appalachian cycle of deformation and sedimentation climaxed during the 

Permian with the Allegheny Orogeny. This orogeny began in late Mississippian and 

extended throughout the Early Permian. Complex deformation resulted from the collision 

of Gondwana and the Peri-Gondwana continents, ultimately leading to the assembly of the 

supercontinent Pangea (Shultz, 1999) (Figure 4). 

 Of particular significance is the non-emergent decollement in the Upper Cambrian 

section that allowed tectonic transport of all the rock units in the southeast part of the 

basin to the northwest (Shultz, 1999), thus contributing to crustal shortening throughout 

the basin. The great curving arc of major anticlines observed throughout Pennsylvania 

formed as a result of the Allegheny Orogeny.  The Allegheny Front marks the location 

where the decollement climbed stratigraphically into the Silurian Salina Group. Rootless 

duplex structures formed as anticlinoriums developed along high-angle splay faults and 

Taconic nappes advanced along bounding thrust faults (Shultz, 1999). 

The Taconic Orogeny is well preserved in the northern part of the basin but strongly 

overprinted in the south by the Allegheny Orogeny. Hibbard (2004) suggests that accretion 

in the northern Appalachians during the Middle and Late Paleozoic involved a strike-slip 

component and areas of intense Silurian and Acadian deformation may be the result of 

localized collisions where strike-slip motion was impeded by promontories.  Hibbard’s 
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ideas signify the importance of understanding the tectonic history and evolution of the 

basin in order to interpret its’ geology, especially in relation to the study area of this work.  

 

 

Figure 4: The tectonic evolution of the Appalachian basin over the past ~1 billion years of geologic 
time. (Bentley, 2013) 



 

20 

 

4.3 Stratigraphy 

The Marcellus Shale is an organic-rich black shale that lies beneath the Mahantango 

Formation. Together, these two formations make up what is referred to as the Hamilton 

Group (Figure 5). The Hamilton Group is made up of shallow-marine deposits that include 

intertonguing limestone, sandstones, coal, and shale (Zagorski, Bowman, Emery, and 

Wrightstone, 2011). Above the Hamilton Group is the Tully Limestone and below, rests the 

Onondaga Limestone and Oriskany Sandstone, respectively. 

These sequences have been complicated by the nature of their deposition during 

advances and retreats of a shallow epicontinental seaway (Figure 6).  These transgressive-

regressive cycles may attribute to build-up and pinch-out sequences commonly observed 

throughout the basin’s stratigraphy (Lash and Engelder, 2011). Boyce (2010) suggests 

variations within sequences are a combination of short transgressive-regressive cycles that 

were complicated by local structural highs and lows during time of deposition.  
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Figure 5: Modified Stratigraphic column showing the Middle Devonian Interval from Tully Limestone to Marcellus Shale with 

upper and lower stratigraphic members. (Modified from Milici and Swezey, 2006) 

 

 
Figure 6: Tectonically controlled paleo-depostional environments in the Middle 

Devonian. (Modified from Babarsky, 2012) 
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4.4 Structure 

The depth of the Marcellus Shale has been estimated from observing depths to the 

top of the Onondaga Limestone, the formation that immediately underlies the Marcellus 

Shale (Figure 5). Figure 7 illustrates the structural elevation of the top of the Onondaga 

Limestone formation. Marcellus shale thickness ranges from about 100 feet average gross 

in southwestern Pennsylvania to more than 250 feet average gross thickness in north-

central Pennsylvania (Durham, 2011) (Figure 8).  

Marcellus shale in northeast Pennsylvania is considered a dry gas play; whereas the 

southwest Pennsylvania core area is a natural gas liquid (NGL) and dry gas play (Zagorski 

et al., 2011). Northeast Pennsylvania has a different set of fairways, pressure gradients, 

thicknesses, and fracturing characteristics, compared to the southwest region of 

Pennsylvania (Zagorski et al., 2011). Figure 9 illustrates the change in deposition as a result 

of depositional transgression and regression cycles.  Zagorski et al. (2011) suggest the 

changing thicknesses are a result of differences in sedimentation rates during depositional 

periods. For this reason, the southwest region is thicker but has less concentrated organics, 

and the northeast region is thinner but more concentrated in terms of organics (Durham, 

2011).  

Fractures within this organic-rich black shale, serve as an important component of 

porosity with fracture permeability useful in enhancing production (Engelder et al., 2009). 

Several sets of planar systematic joints have been identified in the Marcellus Shale. Two 

joint sets (J1 and J2) are consistent throughout the basin and considered important to 

natural gas production (Engelder et al., 2009). Other sets (J0 and J3) are of only minor or 

localized distribution (Engelder et al., 2009). These natural fractures are attributed to 
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tectonic stresses, uplift and erosional forces, and mechanical compaction of the rocks, at 

local and regional scales (Bruner and Smosna, 2011). 

J1 joint set orientations have a characteristic ENE orientation with a consistent 

strike between 60-75 degrees. This set is thought to be the primary joint set, having formed 

prior to Allegheny folding. J1 joints are more closely spaced and cross-cut by the J2 joints. 

J2 joint set orientations are oriented NNW and consistently strike between 315-345 

degrees. The J2 joints formed during the Allegheny folding. As a result, they cross-cut the 

earlier J1 joint set orientations. J2 joint set orientations also differ from the J1 joints, in that, 

they are less closely spaced (Engelder et al., 2009). 

Aside from joint sets mapped throughout the basin, other major structural features 

in the study area include the rift and thrust faults and cross-regional 40th parallel lineament 

(Gao et al., 2000; Shultz, 1999; Shumaker and Wilson, 1996). These features may 

contribute to the structure within the Clearfield County 3D seismic survey (Figure 10-12). 

In particular, the Tyrone Mount Union lineament, which strikes to the N45W and is just 

south of the 3D seismic survey (Figure 10), may be related to cross-strike lineaments 

observed in this study.   

Several surface lineaments have been mapped throughout Clearfield County, 

Pennsylvania (Figure 11). Shultz (1999) reports divergent northwestward movements in 

the Valley and Ridge province which created a zone of NE-SW extension, leading to a 

cluster of strike-slip, transverse faults (Figure 11). He suggests this conjugate array of 

faults formed at the juncture between northeast-trending folds to the northeast and more 

northerly trending folds to the southwest (Figure 12).  
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It is apparent that structures observed in this dataset are complex and can 

significantly influence the production potential of the reservoir. Estimating appropriate 

distances away from faults and fractures which may limit hydrocarbon recovery is 

essential to reducing the risk of injection fluid migration and loss of stimulation energy 

along these faults. An understanding of all potentially influential structures, including 

regional and local, can improve the seismic interpretation of this study. Thus, previously 

reported surface and subsurface lineaments and structures have been taken into account 

when interpreting this dataset.  
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Figure 7: Structural contours on top of Onondaga Limestone; Base of Marcellus Shale 

Formation. (From Wrightstone, 2008) 

 

 
Figure 8: Thickness map of Marcellus Shale. (King, nd)
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Figure 9: Generalized stratigraphic cross-section across western Pennsylvania and eastern Ohio. (Bruner and Smosna, 2011) 

 

 

 

 

 
Figure 10: Major lineaments as observed from gravity anomalies throughout Pennsylvania. Dashed lines indicate structure-

parallel features; solid lines mark major cross-structural lineaments. The Tyrone Mount Union lineament is labeled TMU. 
(Shultz, 1999)
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Figure 11: Regional (A) and local (B) structure maps showing previously mapped lineaments from gravity anomaly 
and surface data. Red box indicates study area (Modified from Pennsylvania DCNR, 2009) 
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Figure 12: Divergent northwestward movements in the Valley and Ridge province which created a zone of northeast-southwest extension leading to a cluster of strike-slip, 
transverse faulting that formed at the juncture between northeast-trending folds to the northeast and more northerly trending folds to the southwest. The structure contour 

map over the area shows detailed strike-slip, transverse faulting. (Shultz, 1999) 
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5. PREVIOUS WORK 
 

 

Increasing interest in the Marcellus Shale has enabled knowledge of the Appalachian 

basin unconventional reservoirs to advance at a rapid rate and made seismic data more 

readily available. However, work pertaining to attribute analysis of 3D seismic data has 

escalated due to the activity surrounding the basin’s natural gas industry. Similar studies, 

including more recent 3D seismic work in southwest Pennsylvania by Donahoe and Gao 

(2012), Babarsky and Gao (2012), and Zhu (2013) focused on detection of faults and 

fractures in the Marcellus Shale using 3D seismic attributes and will be used for 

comparison of this research.  

A structural analysis was carried out in Greene County, Pennsylvania using seismic 

multi-attribute analysis as an aid in hydrocarbon exploration (Donahoe and Gao, 2012; 

Donahoe, 2011). This work focused largely on structural fabrics, such as faults and folds, 

using both traditional and advanced attributes. These attributes include volumetric 

curvature, ant-tracking, and waveform model regression. Donahoe (2011) found the WMR 

attribute to significantly improve visualization of subtle structural and stratigraphic 

features. In particular, he noted three major northeast-trending reverse faults with 

accompanying anticlinal and synclinal features, small faults and/or a combination of 

shallow and deep faults surrounding the three major reverse faults.  He found the structure 

is dominated by the regional folds and thrusts, whereas cross-regional lineaments are 

weakly imaged in that 3D survey, although they reported the existence of several oblique 

discontinuities across the regional folds and thrusts. 
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A second study (Babarsky and Gao, 2012; Babarsky, 2012) in Greene and 

Washington counties, Pennsylvania, attempted to delineate faults and fractures within the 

Marcellus Shale interval using conventional (first derivative, ant-tracking, phase, curvature, 

and variance) and advanced attributes such as spectral decomposition. Spectral 

decomposition (iso-frequency) amplitude analysis identified relationships between 

spectrally decomposed amplitude attributes and fracture intensity of the reservoir, which 

could potentially enhance the quality of seismic interpretation for unconventional gas-

shale reservoir characterization (Babarsky and Gao, 2012; Babarsky, 2012).  However, they 

found that the cross-regional lineaments are still poorly imaged in the Washington County 

3D seismic survey although the northwest-trending features are mapped from detailed 

seismic structure and attribute maps. 

Zhu (2013) used 3D seismic curvature, variance, ant-tracking attributes and well 

logs in Taylor County, West Virginia to delineate structural trends. He observed a 

northeast-southwest synclinal fold to the north and a parallel partial anticlinal fold near the 

southern part of the dataset.  Moreover, he observed a N45W discontinuity in the seismic 

data. However, in that data set, the cross-strike lineaments are still relatively weak as 

shown in the 3D seismic amplitude and seismic attribute images. 

This work compliments the observations from the previously mentioned studies 

with contrasting structural complexities and deformational intensity observed in Clearfield 

County, Pennsylvania. Few seismic dataset analyses have been reported in central 

Pennsylvania. Therefore, comparisons of the current 3D seismic study, with those 

discussed above, can reveal spatial variation throughout the Appalachian basin that may 

lead to a more definite geologic understanding of the basin structure.  
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6. DATA AND METHODOLOGY 

 

6.1 Well Log Analysis 

Thirteen well logs were provided by Energy Corporation of America (ECA) for this study. 

These well interpretations have been integrated into the interpretation of the 3-D seismic 

data over the area. In particular, formation top and base picks from well logs were used to 

pick horizons in the seismic dataset for the generation of structure and isochron thickness 

maps. Cross sections of well logs in the study area were produced for correlation of 

stratigraphic markers between wells and for comparison with the 3D seismic data (Figure 

13). Through the coupling of well log interpretations and seismic data, interpretations 

provide a more detailed and accurate understanding of the mechanical reservoir properties 

that may influence the structural and stratigraphic complexities affecting faults and 

fractures within the reservoir.  
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Figure 13: Six well logs from study area showing Gamma Ray log and stratigraphic correlation.

SW                   NE 
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6.2 Seismic Attribute Analysis 

A 30 mi2 3D seismic survey in Clearfield County, Pennsylvania was provided by 

Energy Corporation of America (ECA) for this study. The quality of the dataset has much 

potential for seismic interpretation of fracture location and intensity. Curvature attributes 

were used to identify larger structural bends and folds, in cross section (inline, crossline) 

and in map view (time slice). Variance attributes, which measure lateral variations 

between neighboring traces by representing the trace-to-trace variability of a particular 

sample interval, were useful for edge detection. Ant tracking, an automated discontinuity 

attribute, was applied to trace faults and fractures (Refer to chapter 3 for additional 

attribute information).  

Sufficient offsets or changes in impedance may pinpoint fractures and faults in areas 

of high discontinuity and areas where the curvature is also highest. A visual correlation of 

incoherent (high variance) areas with high curvature was determined through comparison 

of variance images matched with curvature images. Ant tracking, an automated 

discontinuity attribute, was also applied to trace faults and fractures. All three attributes 

were assessed in both cross sectional view (inline, crossline) and map view (time slice), 

with vertical variation of discontinuities being of primary interest.  

From these attributes, features of faults and fractures were highlighted in the data 

to localize areas of high fracture potential, while edge detection attributes were used to 

illustrate the extent of faults. This characterization is especially important in the aid of 

determining which faults and fractures pose the most risk for hydraulic fracturing 

interference. Petrel software was used to make interpretations of faults, especially those 

considered to be detrimental migration pathways for hydrocarbon recovery. 
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 6.3 Seismic Well Tie 

In order to couple both seismic and wells, a synthetic seismogram was generated. 

Wells were then converted to time in order to correlate with the seismic dataset.  The 

synthetic seismogram was generated using 2011 OpendTect software.  Interpreted well 

tops were used as calibration of the synthetic and to produce a better fit between the 

synthetic seismogram and seismic trace. Below are figures illustrating the density and 

sonic logs used as input for the synthetic and the subsequent trace that was produced 

(Figures 14-16). Stretching of the synthetic increased the match between the original 

(before) trace and the stretched (after) trace (Figure 15). 

 

 

.  

Figure 14: Well with sonic log used to make synthetic seismogram from well API3703322279 
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Figure 16: Example of well log and seismic data after time depth conversion from synthetic seismogram. 

Note surface of Onondaga Limestone match well with well top picks for that formation.

Amount of 

offset 

Before                        After 

Figure 15: Synthetic seismogram from well API3703322279. 
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7. RESULTS 

7.1 Geologic Structure and Stratigraphy Interpretations 
 

Figure 17 depicts the Middle Devonian interval for this study and the associated 

horizons. Several surfaces were generated throughout the seismic volume to observe 

structural variations with depth. The first three surfaces are of particular importance, as 

they are situated within the Middle Devonian interval and include the Tully Limestone, 

Marcellus Shale and Onondaga Limestone, respectively. The Tully Limestone has a 

distinctive high amplitude trace. As a result, it was used to estimate the horizons for the 

underlying Marcellus Shale, Onondaga Limestone, Oriskany Sandstone, and Salina Salt 

stratigraphic units. Additional surfaces were picked below the Middle Devonian interval to 

observe any lower structures that may have influenced deformation. 

From crossline and inline examination, major seismic-scale faults and folds within 

the Middle Devonian interval were identified. Stratigraphic units, including the Marcellus 

Shale, Onondaga Limestone, and Oriskany Sandstone were structurally more susceptible to 

compressional stresses associated with orogenic activity because they overly the Silurian 

Salina Salt that is mechanically weak and serves as the primary detachment horizon. As a 

result, this interval is deformed significantly more than the layers above and below, leading 

to a distinctive detached structural style that contrast strongly with the underlying pre-salt 

basement-involved rift-sag basins. Since these structural components have become 

increasingly important for unconventional hydrocarbon extraction, it was necessary to 

delineate their locations, distribution, connectivity, and orientation within the study area.  
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 Figures 18 shows the surface of the Marcellus Shale and the major structural 

components influencing the area, with cooler colors representing deeper time structures 

and warmer colors representing shallower two-way travel (TWT) time  structures. 

Observations from the Marcellus surface indicate predominant lows to the west-southwest, 

interpreted to be opposite-vergent thrusts (Figure 17). A cross-strike NW-trending 

lineament, determined to be a major transfer fault, lays to the north-central region cross-

cutting the regional NE-trending folds and thrusts (Figure 18). This structural high is 

observed throughout the Middle Devonian interval and is a major structural component of 

the field.  Several NE- and NW-trending lineaments are present at both the Marcellus and 

Oriskany structural levels (Figure 18).  

 Although the suggested major transfer fault continues onto the Oriskany surface, the 

opposite-vergent thrusts become less evident with depth and it is difficult to discern 

whether or not they penetrate the overlying Tully surface. Observations of structure maps 

generated from interpreted horizons indicate similar trends, with lows in the southwest 

transitioning to highs in the central northeast but eventually less discernible near the 

deepest surface (Figures 19-22). Thus, the vertical relief and penetration of both regional 

folds and thrust are mostly restricted to the Devonian interval, however, cross-strike 

transfer faults continue with depth. 

Once surfaces were generated, isopach maps were produced to observe changes in 

thickness with depth (Figure 23-26). Little variation was observed in the upper 

stratigraphic intervals containing the Marcellus Shale. However, the dominant central 

northeast high has greatest thicknesses along the Salina Salt surface, indicating a regional 

thickening as a result of movement along the salt detachment surface (Figure 26).  
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Figure 17: Inline 48 showing structure and stratigraphy throughout study area. 

 

 

Figure 18: Structure map of Onondaga surface with wells (TWT). 

 

NW            SE 
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Figure 19: Structure time map of Tully Limestone (TWT). 
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Figure 20: Structure time map of Marcellus Shale (TWT). 
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Figure 21: Structure time map of Oriskany Sandstone (TWT). 
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Figure 22: Structure time map on Salina Salt (TWT). 
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Figure 23: Tully Limestone isochron thickness map (TWT). 
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Figure 24: Marcellus Shale isochron thickness map (TWT). 
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Figure 25: Oriskany Sandstone isochron thickness map (TWT). 
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Figure 26: Salina Salt isochron thickness map (TWT).
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7.2 Structural Attribute Analysis 

Attribute-assisted structural analysis can help to identify fault and fracture 

networks that were not easily identified within the raw seismic amplitude data. For 

example, through the aid of variance, curvature, and ant tracking, significant breaks in 

discontinuity may be highlighted along specific horizons to reveal faults and possible 

fracture swarm locations. These observations are important for enhancing hydrocarbon 

exploration and gas recovery within the Middle Devonian interval (Figure 17).   

The waveform model regression (WMR) attribute was applied to the 3D seismic 

volume to better highlight structural features within the dataset. Figures 27-32 show both 

along-strike and cross-strike displays throughout the seismic dataset. Discontinuities were 

initially interpreted from this attribute, while stepping through the seismic volume.  

Cross-strike structural variation using the WMR attribute (Figures 27-30) revealed 

high angle reverse faults that were interpreted to detach within the salt interval. Opposite-

verging thrust faults extend throughout the study area and appear to merge together 

towards the center of the dataset (Figure 27-30, cross-section A1-A3). Note the bright 

marker associated with the Tully Limestone has been significantly displaced along these 

high angle reverse faults. Similar structures have been observed from seismic datasets 

within Clearfield County have been published (Shultz, 1999). 

Along-strike structural variation was also assessed using the waveform model 

regression attribute. Numerous high angle faults, interpreted to be fracture damage zones 

were mapped. Stepping through the volume from cross-section B1 to B2, a major fault 

damage zone begins in the north-central part of the dataset and separates into two damage 

zones towards the southeast. Comparisons between cross-sections B1 and B2 in figure 31 
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and 32 best illustrates this change in intensity of deformation throughout the seismic 

volume.  

The WMR attribute significantly enhances the structure within the 3D seismic 

volume by highlighting opposing thrust geometries and flower structures, as well as, near-

vertical faults with a possible strike-slip component. Although major faults were apparent 

from regular amplitude data, the WMR attribute appears to highlight structural features 

with greater detail. As a result, it was possible to interpret structures that may be related to 

faults or fault damage zones (Figures 27-32).  

Several near-vertical faults were interpreted to extend throughout Ordovician to 

Devonian intervals. Fracture swarms and fault damage zones may surround many of these 

major interpreted faults. These zones serve as the greatest risk for well planning and 

hydraulic fracture stimulation since they may interconnect and thus communicate with one 

another.  Moreover, if these fracture swarms are associated with a transpressional, strike-

slip shearing component, an additional amount of risk should be considered since fractures 

could have a greater potential for fluid migration as a result of shearing potential and 

interconnectivity.  

The attribute anomalies discussed in this paper are most readily apparent when 

most positive curvature and most extreme curvature values are derived from the seismic 

data volume. The red colors indicate positive curvature areas, while blue colors represent 

less positive/negative curvature values. These locations highlight areas of most intensive 

folding, potentially identifying local bending (anticlinal and synclinal structures) associated 

with faulting and fracturing.  
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Three well developed trends are identified in the curvature data for the Middle 

Devonian intervals and are shown in Figures 33-40 below. A time slice was observed at 

975ms and lies within the Tully Limestone formation (Figure 33 and 37). The curvature 

attribute enhances visualization of the ENE trending lineaments, indicated with a red 

arrow for orientation. These structures have similar orientations as the J1 set orientation 

commonly seen throughout the Marcellus.  

Figures 34 and 38 show time slices at 1058ms for the Marcellus Shale interval. In 

these time slices, the ENE trending lineaments are still observed but a second set, similar to 

the J2 set orientation, is easily discernible with the NNW orientation indicated by a blue 

arrow. These regularly occurring ENE and NNW trending linear curvature anomalies are 

observed in all horizons throughout the Middle Devonian interval and likely enhance fluid 

migration. 

Aside from the ENE and NNW trending lineaments, a third set of lineaments striking 

to the NW, is observed. Figures 33-40 illustrate these cross-regional lineaments with a 

yellow arrow. This trend is believed to represent lineaments which may be the dominant 

fluid migration pathways. Near-vertical strike-slip faults could potentially allow 

transportation of hydraulic fracturing fluids, thus decreasing efficiency in recovering 

hydrocarbons.  

 Similar observations are observed to continue with increasing depth. Positive 

curvature is also observed near the top of the Salina Salt, with several orientations 

apparent. This chaotic pattern may likely associate with movement along the Silurian 

Salina Salt detachment surface and to some degree influenced by increases in seismic noise 

(Figure 36 and 40).  
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Two additional attributes (variance and ant tracking) were applied for the 

enhancement of discontinuities within the dataset. The variance attributes is useful for 

edge detection because it represents the trace-to-trace variability of amplitude. Areas of 

high variance are shaded with warmer colors (red-yellow), whereas areas of low variance 

are shaded in gray with whites having the least variation among neighboring wiggle traces 

(Figures 41-44).  

Variance values obtained from the seismic amplitude volume are viewed at the 

same horizons as the curvature attribute. Similar trends were identified with those detailed 

in the curvature attribute analysis, although J2 set orientations, trending NNW (indicated 

by blue arrow) and cross regional NW lineament (indicated by yellow arrow) were 

somewhat difficult to discern (Figure 41-42) but the regularly occurring ENE trending 

lineaments were apparent throughout the Marcellus and Oriskany surfaces (Figure 42-43, 

indicated by red arrow). Below the Middle Devonian interval, variance anomalies were 

minimal.  

One notable difference was observed when viewing surfaces near the Tully 

Limestone with the variance attribute, that was not obvious from the curvature attribute 

alone. The NNW-trending lineaments (indicated by blue arrow) and cross-strike NW-

lineaments (indicated by yellow arrow) are still observed; however, ENE-trending faults 

(indicated by red arrow) were not seen to penetrate the Tully surface (Figure 41). This may 

prove to be of great importance, since the vertical extent of these faults above the Tully 

Limestone could be detrimental to hydraulic stimulation if fluids were to travel above this 

depth. 
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The ant tracking attribute was applied to the variance volume for better edge 

enhancement. Then ant tracking was recomputed using the new volume generated from 

the ant tracking on variance, to further enhance visualization. Again, regularly occurring 

ENE, NNW and cross-strike NW trending lineaments were observed. Figures 45-50 show 

the results of this seismic attribute, with the respective colored arrows representing the 

three lineament trends.  

From the ant-tracking attribute, a possible transpressional strike-slip shearing style 

may be expressed in the Middle Devonian interval near the Marcellus Shale formation 

(Figure 45-50). The dominant WNW-trending lineament to the north was not identified in 

either the curvature or variance attribute (Figure 46). This lineament is thought to be 

below seismic resolution. Since there was a component of shortening during the time of 

deformation for these intervals, oblique shearing could have occurred. This particular fault 

(indicated by yellow arrow orientation) appears to directly connect to the main NW-

trending lineament, further complicating the structural complexity of the area. In the event 

that this shear fault exists, it would prove to have great influence on hydraulic fluid 

transportation and gas recovery. Open-mode fractures and faults associated with this 

particular style may act as fluid migration pathways, thus hindering gas recovery in the 

area of interest.  

 Comparison of structures observed from the WMR attribute compared to seismic 

attribute maps (time slice) from curvature, variance, and ant tracking have a good 

correlation. Areas with greater fracture intensity observed in cross-sectional view matched 

with areas of greatest curvature and variance. A structural feature located in the south-

central portion of the study area was not easily discernible from regular amplitude data. 
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However, the WMR attribute showed near vertical faults in this area which were in 

agreement with attribute maps (Figure 31-32).  

 Two ages of faulting were observed from vertical observations of the seismic data. 

Faults trending to the northeast are likely associated with the Acadian Orogeny which 

occurred between the Middle Devonian to Early Mississippian. This orogeny was the result 

of the micro-continent of Avalon colliding with the eastern margin of Laurentia.  As a result, 

extension in the Allegheny Plateau region mobilized the Silurian Salina Salt (Shultz, 1999). 

Northeastern trending faults in the dataset extend only to the uppermost Middle Devonian 

interval and terminate along the Salina Salt detachment, making their age congruent with 

that of the Acadian Orogeny.    

 Faults trending to the northwest are likely associated with the Allegheny Orogeny. 

This orogeny occurred from the Late Mississippian to Early Permian in which complex 

deformation resulted from the collision of Gondwana and the Peri-Gondwana continents 

(Shultz, 1999). Several northwest trending faults in the dataset extend well above the 

Mississippian interval and into the stratigraphic members of Permian age. Thus, northwest 

trending faults are consistent with the timing of deformation during the Allegheny 

Orogeny.  
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A1 A2 
A3 

Figure 27: Above: WMR attribute showing time slice through the Marcellus Shale and Onondaga Limestone intervals with along strike and cross-strike cross-sections. Right: 
Uninterpreted inline A1 showing Middle Devonian structure. The WMR attribute significantly enhanced the structure within the 3D seismic volume by highlighting opposing 

thrust geometries associated with compressional stresses.  
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Figure 28: Above: WMR attribute showing time slice through the Marcellus Shale and Onondaga Limestone intervals with along strike and cross-strike cross-sections. Right: 
Interpreted inline A1 showing Middle Devonian structure. The WMR attribute significantly enhanced the structure within the 3D seismic volume by highlighting opposing 

thrust geometries associated with compressional stresses. Interpreted faulting is highlighted by red lines. 
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Figure 29: Uninterpreted inlines A2 and A3 showing Middle Devonian structure. The WMR attribute significantly 

enhanced the structure within the 3D seismic volume by highlighting opposing thrust geometries associated 
with compressional stresses.  
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Figure 30: Interpreted inlines A2 and A3 showing Middle Devonian structure. The WMR attribute significantly 
enhanced the structure within the 3D seismic volume by highlighting opposing thrust geometries associated with 
compressional stresses. Interpreted faulting is highlighted by red lines. Solid lines indicate apparent faults while 

dashed lines indicate ambiguous features that may represent faults or fault damage zones. 
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A1 

 B2 

B2 

B1 

A1 A2 
 

A3 

Figure 31: WMR attribute showing time slice through the Marcellus Shale and Onondaga Limestone 
intervals with along strike and cross-strike cross-sections. Right:  Uninterpreted crosslines B1 and B2 
showing Middle Devonian structure. The WMR attribute significantly enhanced the structure within the 
3D seismic volume by highlighting opposing thrust geometries, potential flower structures and near-
vertical faults with a possible strike-slip component. 
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Figure 32: Above: WMR attribute showing time slice through the Marcellus Shale and Onondaga 
Limestone intervals with along strike and cross-strike cross-sections. Right:  Interpreted crosslines B1 
and B2 showing Middle Devonian structure. The WMR attribute significantly enhanced the structure 
within the 3D seismic volume by highlighting opposing thrust geometries and flower structures, as well 
as, near-vertical faults with a possible strike-slip component. Interpreted faulting is highlighted by red 
lines. Solid lines indicate apparent faults while dashed lines indicate ambiguous features that may 
represent faults or fault damage zones. Several near-vertical faults were interpreted to extend 
throughout Ordovician to Devonian intervals. Fracture swarms and fault damage zones may surround 
many of these major interpreted faults, increasing the risk of fluid migration and/or redirection of 
hydraulic stimulation energy away from wells. 
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Figure 33: Curvature attribute for time slice (~975ms) of the Tully Limestone.  Note prominent NNW striking lineaments, similar to the J2 set orientations commonly 

observed in the Middle Devonian interval. 
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Figure 34: Curvature attribute for time slice (~1058ms) of the Marcellus Shale.  Note ENE striking lineaments, similar to the J1 set orientations commonly observed in the 

Middle Devonian interval. 
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Figure 35: Curvature attribute for time slice (~1080ms) near the Oriskany Sandstone.  Note ENE striking lineaments, similar to the J1 set orientations commonly observed in 

the Middle Devonian interval. 



 

62 

 

 
Figure 36: Curvature attribute for time slice (~1150ms) above the Salina Salt structure.  Note prominent cross-regional NW striking lineaments, with possible strike-slip, 

transpressional shearing style. 
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Figure 37: Most extreme curvature attribute for time slice (~975ms) of the Tully Limestone.  Note prominent NNW striking lineaments, similar to J2 set orientations 

commonly observed in the Middle Devonian interval. 
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Figure 38:  Most extreme curvature attribute for time slice (~1058ms) of the Marcellus Shale.  Note ENE striking lineaments, similar to J1 set orientations commonly observed 

in the Middle Devonian interval. 
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Figure 39: Most extreme curvature attribute for time slice (~1080ms) near the Oriskany Sandstone.  Note ENE striking lineaments, similar to J1 set orientations commonly 

observed in the Middle Devonian interval. 
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Figure 40: Most extreme curvature attribute for time slice (~1150ms) above the Salina Salt structure.  Note prominent cross-regional NW striking lineaments, with possible 

strike-slip, transpressional shearing style. 
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Figure 41: Variance attribute for time slice (~974ms) of the Tully Limestone.  Note prominent NNW striking lineaments (yellow arrow), similar to the J2 set orientations 

commonly observed in the Middle Devonian interval. 
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Figure 42:  Variance attribute for time slice (~1058ms) near the Marcellus Shale.  Note ENE striking lineaments (red arrow), similar to the J1 set orientations commonly 

observed in the Middle Devonian interval. Possible cross-regional NW striking lineaments (blue arrow). 
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Figure 43: Variance attribute for time slice (~1080ms) near the Oriskany Sandstone.  Note ENE striking lineaments (red arrow), similar to the J1 set orientations commonly 

observed in the Middle Devonian interval. Possible cross-regional NW striking lineaments (blue arrow). 
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Figure 44: Variance attribute for time slice (~1150ms) above the Salina Salt structure. 
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Figure 45: Ant tracking attribute for time slice (~975ms) of the Tully Limestone.  Note prominent NNW striking lineaments, similar to the J2 set orientations commonly 

observed in the Middle Devonian interval. 
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Figure 46: Ant tracking attribute for time slice (~1058ms) of the Marcellus Shale.  Note ENE striking lineaments, similar to the J1 set orientations commonly observed in the 

Middle Devonian interval. Possible cross-regional NW striking lineaments indicative of transpressional strike slip shearing style. 
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Figure 47: Ant tracking attribute for time slice (~1080ms) near the Oriskany Sandstone.  Note ENE striking lineaments, similar to J1 set orientations commonly observed in 

the Middle Devonian interval. Possible cross-regional NW striking lineaments indicative of transpressional strike-slip shearing style. 
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Figure 48: Ant tracking attribute for time slice (~1150ms) above the Salina Salt structure. 
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Figure 49: Original seismic amplitude data for time slice (~1080ms) near the Oriskany Sandstone with ant tracking from variance overlain in blue. Note NW trending 
lineaments observed throughout the study area appear to show greatest amounts of ant tracking. These areas may have a greater potential for fluid migration, thus 

hindering gas recovery efficiency. 
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Figure 50: Variance attribute data for time slice (~1080ms) near the Oriskany Sandstone with ant tracking from variance overlain in blue. Note NW trending lineaments 
observed throughout the study area appear to show greatest amounts of ant tracking. These areas may have a greater potential for fluid migration, thus hindering gas 

recovery efficiency. 
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7.3 Correlation of Seismic Data with FMI Log Data 
 

 One well, located approximately 2 miles outside of the 3D seismic dataset, contained 

a formation microimager (FMI) log. This type of log determines real-time resistivity 

measurements by emitting a current throughout the rock adjacent to the borehole 

(Schlumberger, 2013). This logging tool is especially useful for fault and fracture analysis, 

as it generates a 360 degree resistivity image of the wellbore. This allows the interpreter to 

identify faults and fracture locations, dip, and azimuth. Since an FMI log was available and 

near the dataset, an opportunity to compare orientations and dips determined from the 

FMI log with fault orientations and dips determined by Petrel’s 2012 automatic fault 

extraction process was possible.  

 Figures 51 through 55 show the FMI log data and automatic faults extracted from 

Petrel 2012 (from ant tracking volume with variance as input) with their associated 

orientation and dip interpretations, respectively. Both datasets exhibit two primary 

orientations: northeast-southwest and northwest-southeast. Similar trends were observed 

through seismic attribute analysis of the 3D seismic dataset. 
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Figure 51: Formation Microimager log from a well outside of the 3D seismic dataset, with interpreted fractures shown. 
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Figure 52: Fault and fracture descriptions interpreted from the FMI log 

 

 

    

Figure 53: FMI log data was imported in to Petrel 2012 for direct comparisons of dip azimuth and dip angle with auto 
extracted fault dip azimuths and dip angles from the 3D seismic ant tracking volume. 
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Figure 54: Inline and crossline showing amplitude data and ant tracking attribute on the Marcellus Shale surface are shown 
with faults extracted from Petrel’s automatic fault extraction. Low angle "faults" have been removed since they likely are 

related to bedding/stratigraphy rather than structure. 

   

Figure 55: Automatic fault extraction data from Petrel 2012. Note NW and NE trends. Dip azimuth and dip angles from FMI 
log data were compared with auto extracted fault dip azimuths and dip angles from the 3D seismic ant tracking volume. 

Stereonet rotated 45 degrees to accommodate seismic data rotation. 
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7.4 Correlation of Seismic Data with Surface Fracture Orientations and 
Breakout Data 
 

In the Appalachian basin, numerous faults and fractures have been mapped along 

the surface (Bruner and Smosna, 2011; Durham, 2011; Lash and Engelder, 2011; Engelder 

et al., 2009). As discussed in chapter 2, several joint sets have been mapped. From these 

joint sets, tectonic paleo-stresses are inferred. Additional data, such as those shown in 

figure 56 are used to determine present-day stress relationships.  

Three dominant trends were observed throughout this 3D seismic dataset and 

include: 1.) NE-SW trending lineaments, which is possibly related to the previously 

reported J1 set orientation, and 2.) NNW-SSE trending and NW-SE trending lineaments, 

both of which are suggested to be related to the regular J2 set orientations commonly seen 

throughout the basin (Bruner and Smosna, 2011; Engelder et al., 2009). These three 

dominant trends correlate well with orientations from regional borehole breakout data, 

earthquake focal mechanism data and hydraulic fracture data observed in this area of the 

basin (Figure 56).  

These findings are significant for fault and fracture interpretations of the subsurface 

through the use of seismic attribute analysis. A strong correlation between fault and 

fracture orientations on the local and regional scale is clearly evident. Thus, a greater 

amount of confidence in the interpretation of these structural discontinuities can be taken 

as it provides a realistic representation of structures in the subsurface.  
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Figure 56: Map of present day stresses in relation to location of study area. Red, yellow, and blue lines indicate wellbore breakout data. Purple and green symbols include 

data from earthquake focal mechanism data and hydraulic fracture data. (Modified from Heidbach et al., 2008)
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8. CONCLUSIONS 
 
 

3D seismic analysis is a useful application for both conventional and unconventional 

reservoir exploration. Seismic data can provide valuable information over a large area that 

may not be easily observed from petrophysical analysis and well log correlation alone. The 

analysis of seismic attributes helps to better understand the structural and stratigraphic 

complexities in the subsurface that would typically fall below the resolution of traditional 

seismic amplitude data. Attributes examined in this study consist of curvature, variance, 

and ant tracking, but there is potential for applications of other attributes, such as spectral 

decomposition (Partyka, Gridley, and Lopez 1999 and wavelet spectral probing (Gao, 

2013).  

Three regularly occurring structural lineaments have been identified and mapped 

within the Middle Devonian interval. These include ENE-trending lineaments at 

approximately 50-60 degrees, NW-trending lineaments at approximately 315-345 degrees 

and a third possible NW-trending lineament set. This third set may have a more 

transpressional shearing component than the second one due to their orientation relative 

to the compressional stress σ 1. If these fractures are determined to be open natural 

fractures, they may intersect permeable and porous formations above or below the 

reservoir, and potentially cause the loss of injection fluids by means of absorption and/or 

redirection of energy along specific fault and fractures. 

The ENE trending faults may be associated with the regular J1 set orientations 

commonly observed throughout the basin, thus enhancing production (Bruner and Smosna, 

2011; Lash and Engelder, 2011; Durham, 2011; Engelder et al., 2009). These structures are 
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associated with forethrust and backthrust structures along the major Salina Salt 

detachment. The ENE trending faults did not appear to penetrate the upper Tully 

Limestone horizon. This may prove to be of great importance, since the vertical extent of 

these faults above the Tully Limestone could be detrimental to hydraulic stimulation if 

fluids were to travel above this depth. If the Tully Limestone in this study area can 

effectively act as a fracture barrier, enhanced hydrocarbon recovery may be expected. 

The NNW trending lineaments identified in the 3D seismic dataset are most 

apparent. This trend appears to correlate with the regular J2 fracture set orientation 

commonly observed throughout the basin and thus may enhance production (Bruner and 

Smosna, 2011; Lash and Engelder, 2011; Durham, 2011; Engelder et al., 2009). A major 

fault to the north-central part of the study area is oriented in this NNW direction. However, 

this fault is suggested to be made up of several interconnected vertical fractures which 

could potentially hinder gas recovery by redirecting stimulation energy away from wells. A 

slightly different fracture set, striking to the NW, is thought to represent lineaments which 

may be the dominant fluid migration pathways since these near-vertical strike-slip faults 

could potentially allow transportation of hydraulic fracturing fluids, thus decreasing 

efficiency in recovering hydrocarbons.   

Along-strike structural variation was also assessed using the waveform model 

regression attribute. The WMR attribute significantly enhances the structure within the 3D 

seismic volume by highlighting opposing thrust geometries and flower structures, as well 

as, near-vertical faults with a possible strike-slip component. Numerous high-angle faults 

are interpreted to be surrounded by fracture damage zones. A major fault damage zone 
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begins in the north-central part of the dataset and separates into two damage zones 

towards the southeast. 

Although some major faults were apparent from regular amplitude data, the WMR 

attribute appears to highlight structural features with greater detail. As a result, it was 

possible to interpret structures that may be related to faults or fault damage zones. In 

particular, comparison of structures observed from the WMR attribute compared to 

seismic attribute maps (time slice) from curvature, variance, and ant tracking have a good 

correlation. Areas with greater fracture intensity observed in cross-sectional view matched 

with areas of greatest curvature and variance.  

A structural feature located in the south-central portion of the study area was not 

easily discernible from regular amplitude data. However, the WMR attribute showed near 

vertical faults in this area which were in agreement with attribute maps from curvature, 

variance, and ant tracking. These zones serve as the greatest risk for well planning and 

hydraulic fracture stimulation since they may interconnect and thus communicate with one 

another.  Moreover, if these fracture swarms are associated with a transpressional, strike-

slip shearing component, an additional amount of risk should be considered since fractures 

could have a greater potential for fluid migration as a result of shearing potential and 

interconnectivity.  

Through the integration of well logs and 3D seismic data, useful information on the 

relationship between structural (faults/fractures/folds), stratigraphic (well log analyses of 

depositional facies) and reservoir properties may provide valuable insight for hydrocarbon 

extraction and well design. These observations may potentially aid in the enhancement of 
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hydrocarbon extraction within the area and prevent hydraulic fluid migration from faults 

which may act as fluid conduits.  

Since a formation microimager (FMI) log was readily available and near the dataset, 

an opportunity to compare orientations and dips determined from the FMI log with fault 

orientations and dips determined by Petrel’s 2012 automatic fault extraction process was 

possible. One well, located approximately 2 miles outside of the 3D seismic dataset, 

contained an FMI log. This logging tool is especially useful for fault and fracture analysis, as 

it generates a 360 degree resistivity image of the wellbore allowing the interpreter to 

identify faults and fracture locations, dip, and azimuth. 

The three dominant trends were not only observed throughout the Clearfield 

County seismic dataset, but are also the same orientations as that of regional borehole 

breakout data and earthquake focal mechanism data and hydraulic fracture data. These 

findings are significant for fault and fracture interpretations of the subsurface through the 

use of seismic attribute analysis. A strong correlation between fault and fracture 

orientations on the local and regional scale is clearly evident. Thus, a greater amount of 

confidence in the interpretation of these structural discontinuities can be taken as it 

provides a realistic representation of structures in the subsurface.  

The structural style and intensity, particularly those related to the cross-regional 

lineaments, contrast strongly with those in other portions across the Appalachian basin. 

Such basin-wide contrast indicates along-axis structural variation and segmentation caused 

by the cross-regional transfer faults (Gao et al., 2000) associated with basement-involved 

rifting and subsequent post-salt detachment folding and thrusting. Such along-axis 

structure variation and segmentation associated with the cross-regional transfer faults 
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have been commonly observed and widely published in rift and foreland basins and 

passive margin settings (e.g. Steel, 1988; Van der Pluijm, 2004, Konstantopoulos and 

Maravelis, 2013; Gao, 2012a, 2012b, 2013) around the world; whereas their economic and 

environmental implications in both conventional and unconventional hydrocarbon 

exploration and production remain to be further investigated. 
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