5 research outputs found

    Model-based, event-driven programming paradigm for interactive web applications

    Get PDF
    Applications are increasingly distributed and event-driven. Advances in web frameworks have made it easier to program standalone servers and their clients, but these applications remain hard to write. A model-based programming paradigm is proposed that allows a programmer to represent a distributed application as if it were a simple sequential program, with atomic actions updating a single, shared global state. A runtime environment executes the program on a collection of clients and servers, automatically handling (and hiding from the programmer) complications such as network communication (including server push), serialization, concurrency and races, persistent storage of data, and queuing and coordination of events.National Science Foundation (U.S.) (Grant CCF-1138967)National Science Foundation (U.S.) (Grant CCF-1012759)National Science Foundation (U.S.) (Grant CCF-0746856

    Derailer: interactive security analysis for web applications

    Get PDF
    Derailer is an interactive tool for finding security bugs in web applications. Using symbolic execution, it enumerates the ways in which application data might be exposed. The user is asked to examine these exposures and classify the conditions under which they occur as security-related or not; in so doing, the user effectively constructs a specification of the application's security policy. The tool then highlights exposures missing security checks, which tend to be security bugs. We have tested Derailer's scalability on several large open-source Ruby on Rails applications. We have also applied it to a large number of student projects (designed with different security policies in mind), exposing a variety of security bugs that eluded human reviewers.National Science Foundation (U.S.) (Grant 0707612

    Evaluation of a multi-user requirements axiomatic design decision support tool for manufacturing process selection

    Get PDF
    Manufacturing process selection presents numerous challenges to designers, including product complexity, consideration of production volumes and part tolerances. This paper introduces a design support tool based on the axiomatic design model to systematically transform requirements into functions and technological capabilities. The results from an evaluation of the implemented prototype tool in the field of medical device design demonstrates its usefulness in selecting the most suitable candidate manufacturing process for a given artifact, while taking into account multiple user requirements.peer-reviewe

    Initial report on Object Spreadsheets

    Get PDF
    There is a growing demand for data-driven web applications that help automate organizational and business processes of low to medium complexity by letting users view and update structured data in controlled ways. We present Object Spreadsheets, an end-user development tool that combines a spreadsheet interface with a rich data model to help the process administrators build the logic for such applications themselves. Its all-in-one interface with immediate feedback has the potential to bring more complex tasks within reach of end-user developers, compared to existing approaches. Our data model is based on the structure of entity-relationship models and directly supports nested variable-size collections and object references, which are common in web applications but poorly accommodated by traditional spreadsheets. Object Spreadsheets has a formula language suited to the data model and supports stored procedures to specify the forms of updates that application users may make. Formulas can be used to assemble data in the exact structure in which it is to be shown in the application UI, simplifying the task of UI building; we intend for Object Spreadsheets to be integrated with a UI builder to provide a complete solution for application development. We describe our prototype implementation and several example applications we built to demonstrate the applicability of the tool

    An empirical comparative evaluation of gestUI to include gesture-based interaction in user interfaces

    Full text link
    [EN] Currently there are tools that support the customisation of users' gestures. In general, the inclusion of new gestures implies writing new lines of code that strongly depend on the target platform where the system is run. In order to avoid this platform dependency, gestUI was proposed as a model-driven method that permits (i) the definition of custom touch-based gestures, and (ii) the inclusion of the gesture-based interaction in existing user interfaces on desktop computing platforms. The objective of this work is to compare gestUI (a MDD method to deal with gestures) versus a code-centric method to include gesture-based interaction in user interfaces. In order to perform the comparison, we analyse usability through effectiveness, efficiency and satisfaction. Satisfaction can be measured using the subjects' perceived ease of use, perceived usefulness and intention to use. The experiment was carried out by 21 subjects, who are computer science M.Sc. and Ph.D. students. We use a crossover design, where each subject applied both methods to perform the experiment. Subjects performed tasks related to custom gesture definition and modification of the source code of the user interface to include gesture-based interaction. The data was collected using questionnaires and analysed using non-parametric statistical tests. The results show that gestUI is more efficient and effective. Moreover, results conclude that gestUI is perceived as easier to use than the code-centric method. According to these results, gestUI is a promising method to define custom gestures and to include gesture-based interaction in existing user interfaces of desktop-computing software systems. (C) 2018 Elsevier B.V. All rights reserved.This work has been supported by Department of Computer Science of the Universidad de Cuenca and SENESCYT of Ecuador, and received financial support from the Generalitat Valenciana under "Project IDEO (PROMETEOII/2014/039)" and the Spanish Ministry of Science and Innovation through the "DataMe Project (TIN2016-80811-P)".Parra-González, LO.; España Cubillo, S.; Panach Navarrete, JI.; Pastor López, O. (2019). An empirical comparative evaluation of gestUI to include gesture-based interaction in user interfaces. Science of Computer Programming. 172:232-263. https://doi.org/10.1016/j.scico.2018.12.001S23226317
    corecore