99,668 research outputs found

    Pade-Type Model Reduction of Second-Order and Higher-Order Linear Dynamical Systems

    Full text link
    A standard approach to reduced-order modeling of higher-order linear dynamical systems is to rewrite the system as an equivalent first-order system and then employ Krylov-subspace techniques for reduced-order modeling of first-order systems. While this approach results in reduced-order models that are characterized as Pade-type or even true Pade approximants of the system's transfer function, in general, these models do not preserve the form of the original higher-order system. In this paper, we present a new approach to reduced-order modeling of higher-order systems based on projections onto suitably partitioned Krylov basis matrices that are obtained by applying Krylov-subspace techniques to an equivalent first-order system. We show that the resulting reduced-order models preserve the form of the original higher-order system. While the resulting reduced-order models are no longer optimal in the Pade sense, we show that they still satisfy a Pade-type approximation property. We also introduce the notion of Hermitian higher-order linear dynamical systems, and we establish an enhanced Pade-type approximation property in the Hermitian case

    Interpolation-based parameterized model order reduction of delayed systems

    Get PDF
    Three-dimensional electromagnetic methods are fundamental tools for the analysis and design of high-speed systems. These methods often generate large systems of equations, and model order reduction (MOR) methods are used to reduce such a high complexity. When the geometric dimensions become electrically large or signal waveform rise times decrease, time delays must be included in the modeling. Design space optimization and exploration are usually performed during a typical design process that consequently requires repeated simulations for different design parameter values. Efficient performing of these design activities calls for parameterized model order reduction (PMOR) methods, which are able to reduce large systems of equations with respect to frequency and other design parameters of the circuit, such as layout or substrate features. We propose a novel PMOR method for neutral delayed differential systems, which is based on an efficient and reliable combination of univariate model order reduction methods, a procedure to find scaling and frequency shifting coefficients and positive interpolation schemes. The proposed scaling and frequency shifting coefficients enhance and improve the modeling capability of standard positive interpolation schemes and allow accurate modeling of highly dynamic systems with a limited amount of initial univariate models in the design space. The proposed method is able to provide parameterized reduced order models passive by construction over the design space of interest. Pertinent numerical examples validate the proposed PMOR approach

    Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems

    Full text link
    Reduced basis methods are popular for approximately solving large and complex systems of differential equations. However, conventional reduced basis methods do not generally preserve conservation laws and symmetries of the full order model. Here, we present an approach for reduced model construction, that preserves the symplectic symmetry of dissipative Hamiltonian systems. The method constructs a closed reduced Hamiltonian system by coupling the full model with a canonical heat bath. This allows the reduced system to be integrated with a symplectic integrator, resulting in a correct dissipation of energy, preservation of the total energy and, ultimately, in the stability of the solution. Accuracy and stability of the method are illustrated through the numerical simulation of the dissipative wave equation and a port-Hamiltonian model of an electric circuit

    A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process

    Get PDF
    We discuss a Krylov-Schur like restarting technique applied within the symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. This allows to easily implement a purging and locking strategy in order to improve the convergence properties of the symplectic Lanczos algorithm. The Krylov-Schur-like restarting is based on the SR algorithm. Some ingredients of the latter need to be adapted to the structure of the symplectic Lanczos recursion. We demonstrate the efficiency of the new method for several Hamiltonian eigenproblems
    • …
    corecore