151 research outputs found

    A Platform for Robot-Assisted Intracardiac Catheter Navigation

    Get PDF
    Steerable catheters are routinely deployed in the treatment of cardiac arrhythmias. During invasive electrophysiology studies, the catheter handle is manipulated by an interventionalist to guide the catheter's distal section toward endocardium for pacing and ablation. Catheter manipulation requires dexterity and experience, and exposes the interventionalist to ionizing radiation. Through the course of this research, a platform was developed to assist and enhance the navigation of the catheter inside the cardiac chambers. This robotic platform replaces the interventionalist's hand in catheter manipulation and provides the option to force the catheter tip in arbitrary directions using a 3D input device or to automatically navigate the catheter to desired positions within a cardiac chamber by commanding the software to do so. To accomplish catheter navigation, the catheter was modeled as a continuum manipulator, and utilizing robot kinematics, catheter tip position control was designed and implemented. An electromagnetic tracking system was utilized to measure the position and orientation of two key points in catheter model, for position feedback to the control system. A software platform was developed to implement the navigation and control strategies and to interface with the robot, the 3D input device and the tracking system. The catheter modeling was validated through in-vitro experiments with a static phantom, and in-vivo experiments on three live swines. The feasibility of automatic navigation was also veri ed by navigating to three landmarks in the beating heart of swine subjects, and comparing their performance with that of an experienced interventionalist using quasi biplane fluoroscopy. The platform realizes automatic, assisted, and motorized navigation under the interventionalist's control, thus reducing the dependence of successful navigation on the dexterity and manipulation skills of the interventionalist, and providing a means to reduce the exposure to X-ray radiation. Upon further development, the platform could be adopted for human deployment

    Accurate modelling and positioning of a magnetically-controlled catheter tip

    Get PDF
    This thesis represents the initial phase of a proposed operator and patient friendly method designed to semi-automate the positioning and directing of an intravascular catheter in the human heart using a variable electromagnetically induced field to control a catheter tip equipped with three tiny fixed magnets oriented in XYZ planes. Here we demonstrate a comprehensive mathematical model which accurately calculates the magnetic field generated by the electromagnet system, and the magnetic torques and forces exerted on a three-magnet tip catheter. From this we have developed an iterative predictive computer algorithm to show the displacement and deflection of the catheter tip. Using an eight variable power electromagnet system around a 250mm sphere of air we have proven the ability of this to accurately move the catheter tip from an initial position to a designated position within the field

    Modeling and Control of Steerable Ablation Catheters

    Get PDF
    Catheters are long, flexible tubes that are extensively used in vascular and cardiac interventions, e.g., cardiac ablation, coronary angiography and mitral valve annuloplasty. Catheter-based cardiac ablation is a well-accepted treatment for atrial fibrillation, a common type of cardiac arrhythmia. During this procedure, a steerable ablation catheter is guided through the vasculature to the left atrium to correct the signal pathways inside the heart and restore normal heart rhythm. The outcome of the ablation procedure depends mainly on the correct positioning of the catheter tip at the target location inside the heart and also on maintaining a consistent contact between the catheter tip and cardiac tissue. In the presence of cardiac and respiratory motions, achieving these goals during the ablation procedure is very challenging without proper 3D visualization, dexterous control of the flexible catheter and an estimate of the catheter tip/tissue contact force. This research project provides the required basis for developing a robotics-assisted catheter manipulation system with contact force control for use in cardiac ablation procedures. The behavior of the catheter is studied in free space as well in contact with the environment to develop mathematical models of the catheter tip that are well suited for developing control systems. The validity of the proposed modeling approaches and the performance of the suggested control techniques are evaluated experimentally. As the first step, the static force-deflection relationship for ablation catheters is described with a large-deflection beam model and an optimized pseudo-rigid-body 3R model. The proposed static model is then used in developing a control system for controlling the contact force when the catheter tip is interacting with a static environment. Our studies also showed that it is possible to estimate the tip/tissue contact force by analyzing the shape of the catheter without installing a force sensor on the catheter. During cardiac ablation, the catheter tip is in contact with a relatively fast moving environment (cardiac tissue). Robotic manipulation of the catheter has the potential to improve the quality of contact between the catheter tip and cardiac tissue. To this end, the frequency response of the catheter is investigated and a control technique is proposed to compensate for the cardiac motion and to maintain a constant tip/tissue contact force. Our study on developing a motion compensated robotics-assisted catheter manipulation system suggests that redesigning the actuation mechanism of current ablation catheters would provide a major improvement in using these catheters in robotics-assisted cardiac ablation procedures

    Motion Control of Cable-Driven Continuum Catheter Robot through Contacts

    Get PDF
    International audienceCatheter-based intervention plays an important role in minimally invasive surgery. For the closed-loop control of catheter robot through contacts, the loss of contact sensing along the entire catheter might result in task failure. To deal with this problem, we propose a decoupled motion control strategy which allows to control insertion and bending independently. We model the catheter robot and the contacts using the Finite Element Method. Then, we combine the simulated system and the real system for the closed-loop motion control. The control inputs are computed by solving a quadratic programming (QP) problem with a linear complementarity problem (LCP). A simplified method is proposed to solve this optimization problem by converting it into a standard QP problem. Using the proposed strategy, not only the control inputs but also the contact forces along the entire catheter can be computed without using force sensors. Finally, we validate the proposed methods using both simulation and experiments on a cable-driven continuum catheter robot for the real-time motion control through contacts

    Remote Navigation and Contact-Force Control of Radiofrequency Ablation Catheters

    Get PDF
    Atrial fibrillation (AF), the most common and clinically significant heart rhythm disorder, is characterized by rapid and irregular electrical activity in the upper chambers resulting in abnormal contractions. Radiofrequency (RF) cardiac catheter ablation is a minimally invasive curative treatment that aims to electrically correct signal pathways inside the atria to restore normal sinus rhythm. Successful catheter ablation requires the complete and permanent elimination of arrhythmogenic signals by delivering transmural RF ablation lesions contiguously near and around key cardiac structures. These procedures are complex and technically challenging and, even when performed by the most skilled physician, nearly half of patients undergo repeat procedures due to incomplete elimination of the arrhythmogenic pathways. This thesis aims to incorporate innovative design to improve catheter stability and maneuverability through the development of robotic platforms that enable precise placement of reproducibly durable ablation lesions. The first part of this thesis deals with the challenges to lesion delivery imposed by cardiorespiratory motion. One of the main determinants of the delivery of durable and transmural RF lesions is the ability to define and maintain a constant contact force between the catheter tip electrode and cardiac tissue, which is hampered by the presence of cardiorespiratory motion. To address this need, I developed and evaluated a novel catheter contact-force control device. The compact electromechanical add-on tool monitors catheter-tissue contact force in real-time and simultaneously adjusts the position of a force-sensing ablation catheter within a steerable sheath to compensate for the change in contact force. In a series of in vitro and in vivo experiments, the contact-force control device demonstrated an ability to: a) maintain an average force to within 1 gram of a set level; b) reduce contact-force variation to below 5 grams (2-8-fold improvement over manual catheter intervention); c) ensure the catheter tip never lost contact with the tissue and never approached dangerous force levels; and importantly, d) deliver reproducible RF ablation lesions regardless of cardiac tissue motion, which were of the same depth and volume as lesions delivered in the absence of tissue motion. In the second part of the thesis, I describe a novel steerable sheath and catheter robotic navigation system, which incorporates the catheter contact-force controller. The robotic platform enables precise and accurate manipulation of a remote conventional steerable sheath and permits catheter-tissue contact-force control. The robotic navigation system was evaluated in vitro using a phantom that combines stationary and moving targets within an in vitro model representing a beating heart. An electrophysiologist used the robotic system to remotely navigate the sheath and catheter tip to select targets and compared the accuracy of reaching these targets performing the same tasks manually. Robotic intervention resulted in significantly higher accuracy and significantly improved the contact-force profile between the catheter tip and moving tissue-mimicking material. Our studies demonstrate that using available contact-force information within a robotic system can ensure precise and accurate placement of reliably transmural RF ablation lesions. These robotic systems can be valuable tools used to optimize RF lesion delivery techniques and ultimately improve clinical outcomes for AF ablation therapy

    Challenges of continuum robots in clinical context: a review

    Get PDF
    With the maturity of surgical robotic systems based on traditional rigid-link principles, the rate of progress slowed as limits of size and controllable degrees of freedom were reached. Continuum robots came with the potential to deliver a step change in the next generation of medical devices, by providing better access, safer interactions and making new procedures possible. Over the last few years, several continuum robotic systems have been launched commercially and have been increasingly adopted in hospitals. Despite the clear progress achieved, continuum robots still suffer from design complexity hindering their dexterity and scalability. Recent advances in actuation methods have looked to address this issue, offering alternatives to commonly employed approaches. Additionally, continuum structures introduce significant complexity in modelling, sensing, control and fabrication; topics which are of particular focus in the robotics community. It is, therefore, the aim of the presented work to highlight the pertinent areas of active research and to discuss the challenges to be addressed before the potential of continuum robots as medical devices may be fully realised

    Shape Memory Alloy Actuators and Sensors for Applications in Minimally Invasive Interventions

    Get PDF
    Reduced access size in minimally invasive surgery and therapy (MIST) poses several restriction on the design of the dexterous robotic instruments. The instruments should be developed that are slender enough to pass through the small sized incisions and able to effectively operate in a compact workspace. Most existing robotic instruments are operated by big actuators, located outside the patient’s body, that transfer forces to the end effector via cables or magnetically controlled actuation mechanism. These instruments are certainly far from optimal in terms of their cost and the space they require in operating room. The lack of adequate sensing technologies make it very challenging to measure bending of the flexible instruments, and to measure tool-tissue contact forces of the both flexible and rigid instruments during MIST. Therefore, it requires the development of the cost effective miniature actuators and strain/force sensors. Having several unique features such as bio-compatibility, low cost, light weight, large actuation forces and electrical resistivity variations, the shape memory alloys (SMAs) show promising applications both as the actuators and strain sensors in MIST. However, highly nonlinear hysteretic behavior of the SMAs hinders their use as actuators. To overcome this problem, an adaptive artificial neural network (ANN) based Preisach model and a model predictive controller have been developed in this thesis to precisely control the output of the SMA actuators. A novel ultra thin strain sensor is also designed using a superelastic SMA wire, which can be used to measure strain and forces for many surgical and intervention instruments. A da Vinci surgical instrument is sensorized with these sensors in order to validate their force sensing capability
    • …
    corecore