6,869 research outputs found

    A Model-Driven Simulation Study of World-Wide-Web Cache Policies.

    Get PDF
    The World-Wide-Web has experienced exponential growth in recent years. This growth has created a tremendous increase in network and server loads that have subsequently adversely affected user-response times. Among many viable and available approaches to reducing user-response time, Web caching appears to be one approach that has recently received considerable attention. In this dissertation we explore a new approach to the study of Web cache policies, namely model-driven simulation. We present a good model of Web-access user patterns based on sound theory and principles from the information sciences. This model is justified by the empirical web access data from several different web sites. The importance of removal policies in improving cache performance motivates us to propose a dynamic and robust removal policy which incorporates the characteristics of user access patterns. We show that our proposed removal policy performs rigorously well over a variety of parameters. In this research we take a model-driven simulation approach to evaluate the impact of different factors and policies on cache performance. The results indicate that cache size, user access patterns and removal policy are major factors affecting cache performance. Continuous removal method is a good and simple method. The increase of average document size, low comfort level (less than 50% cache size) and threshold policy would degrade web cache performance. Finally, we discuss the limitations of our current research and give some directions of future research

    Unravelling the Impact of Temporal and Geographical Locality in Content Caching Systems

    Get PDF
    To assess the performance of caching systems, the definition of a proper process describing the content requests generated by users is required. Starting from the analysis of traces of YouTube video requests collected inside operational networks, we identify the characteristics of real traffic that need to be represented and those that instead can be safely neglected. Based on our observations, we introduce a simple, parsimonious traffic model, named Shot Noise Model (SNM), that allows us to capture temporal and geographical locality of content popularity. The SNM is sufficiently simple to be effectively employed in both analytical and scalable simulative studies of caching systems. We demonstrate this by analytically characterizing the performance of the LRU caching policy under the SNM, for both a single cache and a network of caches. With respect to the standard Independent Reference Model (IRM), some paradigmatic shifts, concerning the impact of various traffic characteristics on cache performance, clearly emerge from our results.Comment: 14 pages, 11 Figures, 2 Appendice

    On the Intrinsic Locality Properties of Web Reference Streams

    Full text link
    There has been considerable work done in the study of Web reference streams: sequences of requests for Web objects. In particular, many studies have looked at the locality properties of such streams, because of the impact of locality on the design and performance of caching and prefetching systems. However, a general framework for understanding why reference streams exhibit given locality properties has not yet emerged. In this work we take a first step in this direction, based on viewing the Web as a set of reference streams that are transformed by Web components (clients, servers, and intermediaries). We propose a graph-based framework for describing this collection of streams and components. We identify three basic stream transformations that occur at nodes of the graph: aggregation, disaggregation and filtering, and we show how these transformations can be used to abstract the effects of different Web components on their associated reference streams. This view allows a structured approach to the analysis of why reference streams show given properties at different points in the Web. Applying this approach to the study of locality requires good metrics for locality. These metrics must meet three criteria: 1) they must accurately capture temporal locality; 2) they must be independent of trace artifacts such as trace length; and 3) they must not involve manual procedures or model-based assumptions. We describe two metrics meeting these criteria that each capture a different kind of temporal locality in reference streams. The popularity component of temporal locality is captured by entropy, while the correlation component is captured by interreference coefficient of variation. We argue that these metrics are more natural and more useful than previously proposed metrics for temporal locality. We use this framework to analyze a diverse set of Web reference traces. We find that this framework can shed light on how and why locality properties vary across different locations in the Web topology. For example, we find that filtering and aggregation have opposing effects on the popularity component of the temporal locality, which helps to explain why multilevel caching can be effective in the Web. Furthermore, we find that all transformations tend to diminish the correlation component of temporal locality, which has implications for the utility of different cache replacement policies at different points in the Web.National Science Foundation (ANI-9986397, ANI-0095988); CNPq-Brazi

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Federated and autonomic management of multimedia services

    Get PDF
    Over the years, the Internet has significantly evolved in size and complexity. Additionally, the modern multimedia services it offers have considerably more stringent Quality of Service (QoS) requirements than traditional static services. These factors contribute to the ever-increasing complexity and cost to manage the Internet and its services. In the dissertation, a novel network management architecture is proposed to overcome these problems. It supports QoS-guarantees of multimedia services across the Internet, by setting up end-to-end network federations. A network federation is defined as a persistent cross-organizational agreement that enables the cooperating networks to share capabilities. Additionally, the architecture incorporates aspects from autonomic network management to tackle the ever-growing management complexity of modern communications networks. Specifically, a hierarchical approach is presented, which guarantees scalable collaboration of huge amounts of self-governing autonomic management components
    • …
    corecore