83 research outputs found

    Distributed Real-time Systems - Deterministic Protocols for Wireless Networks and Model-Driven Development with SDL

    Get PDF
    In a networked system, the communication system is indispensable but often the weakest link w.r.t. performance and reliability. This, particularly, holds for wireless communication systems, where the error- and interference-prone medium and the character of network topologies implicate special challenges. However, there are many scenarios of wireless networks, in which a certain quality-of-service has to be provided despite these conditions. In this regard, distributed real-time systems, whose realization by wireless multi-hop networks becomes increasingly popular, are a particular challenge. For such systems, it is of crucial importance that communication protocols are deterministic and come with the required amount of efficiency and predictability, while additionally considering scarce hardware resources that are a major limiting factor of wireless sensor nodes. This, in turn, does not only place demands on the behavior of a protocol but also on its implementation, which has to comply with timing and resource constraints. The first part of this thesis presents a deterministic protocol for wireless multi-hop networks with time-critical behavior. The protocol is referred to as Arbitrating and Cooperative Transfer Protocol (ACTP), and is an instance of a binary countdown protocol. It enables the reliable transfer of bit sequences of adjustable length and deterministically resolves contest among nodes based on a flexible priority assignment, with constant delays, and within configurable arbitration radii. The protocol's key requirement is the collision-resistant encoding of bits, which is achieved by the incorporation of black bursts. Besides revisiting black bursts and proposing measures to optimize their detection, robustness, and implementation on wireless sensor nodes, the first part of this thesis presents the mode of operation and time behavior of ACTP. In addition, possible applications of ACTP are illustrated, presenting solutions to well-known problems of distributed systems like leader election and data dissemination. Furthermore, results of experimental evaluations with customary wireless transceivers are outlined to provide evidence of the protocol's implementability and benefits. In the second part of this thesis, the focus is shifted from concrete deterministic protocols to their model-driven development with the Specification and Description Language (SDL). Though SDL is well-established in the domain of telecommunication and distributed systems, the predictability of its implementations is often insufficient as previous projects have shown. To increase this predictability and to improve SDL's applicability to time-critical systems, real-time tasks, an approved concept in the design of real-time systems, are transferred to SDL and extended to cover node-spanning system tasks. In this regard, a priority-based execution and suspension model is introduced in SDL, which enables task-specific priority assignments in the SDL specification that are orthogonal to the static structure of SDL systems and control transition execution orders on design as well as on implementation level. Both the formal incorporation of real-time tasks into SDL and their implementation in a novel scheduling strategy are discussed in this context. By means of evaluations on wireless sensor nodes, evidence is provided that these extensions reduce worst-case execution times substantially, and improve the predictability of SDL implementations and the language's applicability to real-time systems

    Contents

    Get PDF

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Security-Driven Software Evolution Using A Model Driven Approach

    Get PDF
    High security level must be guaranteed in applications in order to mitigate risks during the deployment of information systems in open network environments. However, a significant number of legacy systems remain in use which poses security risks to the enterprise’ assets due to the poor technologies used and lack of security concerns when they were in design. Software reengineering is a way out to improve their security levels in a systematic way. Model driven is an approach in which model as defined by its type directs the execution of the process. The aim of this research is to explore how model driven approach can facilitate the software reengineering driven by security demand. The research in this thesis involves the following three phases. Firstly, legacy system understanding is performed using reverse engineering techniques. Task of this phase is to reverse engineer legacy system into UML models, partition the legacy system into subsystems with the help of model slicing technique and detect existing security mechanisms to determine whether or not the provided security in the legacy system satisfies the user’s security objectives. Secondly, security requirements are elicited using risk analysis method. It is the process of analysing key aspects of the legacy systems in terms of security. A new risk assessment method, taking consideration of asset, threat and vulnerability, is proposed and used to elicit the security requirements which will generate the detailed security requirements in the specific format to direct the subsequent security enhancement. Finally, security enhancement for the system is performed using the proposed ontology based security pattern approach. It is the stage that security patterns derived from security expertise and fulfilling the elicited security requirements are selected and integrated in the legacy system models with the help of the proposed security ontology. The proposed approach is evaluated by the selected case study. Based on the analysis, conclusions are drawn and future research is discussed at the end of this thesis. The results show this thesis contributes an effective, reusable and suitable evolution approach for software security

    Distributed product development approaches and system for achieving optimal design.

    Get PDF
    The research in this dissertation attempts to provide theoretic approaches and design systems to support engineers who are located in different places and belong to different teams or companies to work collaboratively to perform product development.The second challenge is addressed by developing a collaborative design process modeling technique based on Petri-net. Petri-net is used to describe complex design processes and to construct different design process alternatives. These alternative Petri-net models are then analyzed to evaluate design process alternatives and to select the appropriate process.In this dissertation, three major challenges are identified in realization of a collaborative design paradigm: (i) development of design method that supports multidisciplinary xi design teams to collaboratively solve coupled design problems, (ii) development of process modeling techniques to support representation and improve complex collaborative design process, and (iii) implementation of a testbed system that demonstrates the feasibility of enhancing current design system to satisfy with the needs of organizing collaborative design process for collaborative decision making and associated design activities.New paradigms, along with accompanying approaches and software systems are necessary to support collaborative design work, in a distributed design environment, of multidisciplinary engineering teams who have different knowledge, experience, and skills. Current research generally focuses on the development of online collaborative tools, and software frameworks that integrate and coordinate these tools. However, a gap exists between the needs of a distributed collaborative design paradigm and current collaborative design tools. On one side, design methodologies facilitating engineering teams' decision making is not well developed. In a distributed collaborative design paradigm, each team holds its own perspective towards the product realization problem, and each team seeks design decisions that can maximize the design performance in its own discipline. Design methodologies that coordinate the separate design decisions are essential to achieve successful collaboration. On the other side, design of products is becoming more complex. Organizing a complex design process is a major obstacle in the application of a distributed collaborative design paradigm in practice. Therefore, the principal research goal in this dissertation is to develop a collaborative multidisciplinary decision making methodology and design process modeling technique that bridges the gap between a collaborative design paradigm and current collaborative design systems.To overcome the first challenge, decision templates are constructed to exchange design information among interacting disciplines. Three game protocols from game theory are utilized to categorize the collaboration in decision makings. Design formulations are used to capture the design freedom among coupled design activities.The third challenge, implementation of collaborative design testbed, is addressed by integration of existing Petri-net modeling tools into the design system. The testbed incorporates optimization software, collaborative design tools, and management software for product and process design to support group design activities.Two product realization examples are presented to demonstrate the applicability of the research and collaborative testbed. A simplified manipulator design example is used for explanation of collaborative decision making and design process organization. And a reverse engineering design example is introduced to verify the application of collaborative design paradigm with design support systems in practice

    Tagungsband Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme 2005

    Get PDF

    Structural brain imaging and cognitive function in individuals at high familial risk of mood disorders

    Get PDF
    Bipolar disorder (BD) and major depressive disorder (MDD) are characterised by a fundamental disturbance of mood, with strong support for overlapping causal pathways. Structural brain and neurocognitive abnormalities have been associated with mood disorders, but it is unknown whether these reflect early adverse effects predisposing to mood disorders or emerge as a consequence of illness onset. The Bipolar Family Study is well-suited to examine the origin of structural brain and neuropsychological abnormalities in mood disorders further. The volumes of subcortical brain regions, cortical thickness and surface area measures of frontal and temporal regions of interest and neuropsychological performance over a two-year time interval was compared at baseline and longitudinally between three groups: young individuals at high risk of mood disorders who subsequently developed MDD during the follow-up period (HR-MDD), individuals at high risk of mood disorders who remained well (HR-well), and healthy control subjects (HC). The longitudinal analysis of cortical thickness revealed significant group effects for the right parahippocampal and right fusiform gyrus. Cortical thickness in both of these brain regions across the two time points was reduced in both high-risk groups relative to controls, with the HR-MDD group displaying a thinner parahippocampus gyrus than the HR-well group. Moreover, a significant interaction effect was observed for the left inferior frontal and left precentral gyrus. The HR-well subjects had progressive thickness reductions in these brain regions relative to controls, while the HR-MDD group showed cortical thickening of these areas. Finally, longitudinal analyses of neuropsychological performance revealed a significant group effect for long delay verbal memory and extradimensional set-shifting performance. Reduced neurocognitive performance during both tasks across the two time points was found in the HR-well group relative to controls, with the HR-MDD group displaying decreased extradimensional set-shifting abilities as compared to the HC group only. These findings indicate, that reduced left parahippocampal and fusiform thickness constitute a familial trait marker for vulnerability to mood disorders and may thus form potential neuroanatomic endophenotypes. Particularly strong thickness reductions of the parahippocampal gyrus appear be linked to an onset of MDD. Moreover, progressive thickness reductions in the left inferior frontal and precentral gyrus in early adulthood form a familial trait marker for vulnerability to mood disorders, potentially reflecting early neurodegenerative processes. By contrast, an absence of cortical thinning of these brain regions in early adulthood appears to be linked to the onset of MDD, potentially reflecting a lack or delay of normal synaptic pruning processes. Reduced long delay verbal memory and extradimensional set-shifting performance across time constitute a familial trait marker for vulnerability to mood disorders, likely representing disturbances of normal brain development predisposing to illness. These findings advance our understanding of the origin of structural brain and neurocognitive abnormalities in mood disorders
    • 

    corecore