14 research outputs found

    Probabilistic Bisimulations for PCTL Model Checking of Interval MDPs

    Full text link
    Verification of PCTL properties of MDPs with convex uncertainties has been investigated recently by Puggelli et al. However, model checking algorithms typically suffer from state space explosion. In this paper, we address probabilistic bisimulation to reduce the size of such an MDPs while preserving PCTL properties it satisfies. We discuss different interpretations of uncertainty in the models which are studied in the literature and that result in two different definitions of bisimulations. We give algorithms to compute the quotients of these bisimulations in time polynomial in the size of the model and exponential in the uncertain branching. Finally, we show by a case study that large models in practice can have small branching and that a substantial state space reduction can be achieved by our approach.Comment: In Proceedings SynCoP 2014, arXiv:1403.784

    Probabilistic Opacity in Refinement-Based Modeling

    Full text link
    Given a probabilistic transition system (PTS) A\cal A partially observed by an attacker, and an ω\omega-regular predicate φ\varphiover the traces of A\cal A, measuring the disclosure of the secret φ\varphi in A\cal A means computing the probability that an attacker who observes a run of A\cal A can ascertain that its trace belongs to φ\varphi. In the context of refinement, we consider specifications given as Interval-valued Discrete Time Markov Chains (IDTMCs), which are underspecified Markov chains where probabilities on edges are only required to belong to intervals. Scheduling an IDTMC S\cal S produces a concrete implementation as a PTS and we define the worst case disclosure of secret φ\varphi in S{\cal S} as the maximal disclosure of φ\varphi over all PTSs thus produced. We compute this value for a subclass of IDTMCs and we prove that refinement can only improve the opacity of implementations

    Robust Control of Uncertain Markov Decision Processes with Temporal Logic Specifications

    Get PDF
    We present a method for designing robust controllers for dynamical systems with linear temporal logic specifications. We abstract the original system by a finite Markov Decision Process (MDP) that has transition probabilities in a specified uncertainty set. A robust control policy for the MDP is generated that maximizes the worst-case probability of satisfying the specification over all transition probabilities in the uncertainty set. To do this, we use a procedure from probabilistic model checking to combine the system model with an automaton representing the specification. This new MDP is then transformed into an equivalent form that satisfies assumptions for stochastic shortest path dynamic programming. A robust version of dynamic programming allows us to solve for a ϵ\epsilon-suboptimal robust control policy with time complexity O(log1/ϵ)O(\log 1/\epsilon) times that for the non-robust case. We then implement this control policy on the original dynamical system

    On the complexity of computing maximum entropy for Markovian Models

    Get PDF
    We investigate the complexity of computing entropy of various Markovian models including Markov Chains (MCs), Interval Markov Chains (IMCs) and Markov Decision Processes (MDPs). We consider both entropy and entropy rate for general MCs, and study two algorithmic questions, i.e., entropy approximation problem and entropy threshold problem. The former asks for an approximation of the entropy/entropy rate within a given precision, whereas the latter aims to decide whether they exceed a given threshold. We give polynomial-time algorithms for the approximation problem, and show the threshold problem is in P CH3 (hence in PSPACE) and in P assuming some number-theoretic conjectures. Furthermore, we study both questions for IMCs and MDPs where we aim to maximise the entropy/entropy rate among an infinite family of MCs associated with the given model. We give various conditional decidability results for the threshold problem, and show the approximation problem is solvable in polynomial-time via convex programming

    On the complexity of computing maximum entropy for Markovian models

    Get PDF
    We investigate the complexity of computing entropy of various Markovian models including Markov Chains (MCs), Interval Markov Chains (IMCs) and Markov Decision Processes (MDPs). We consider both entropy and entropy rate for general MCs, and study two algorithmic questions, i.e., entropy approximation problem and entropy threshold problem. The former asks for an approximation of the entropy/entropy rate within a given precision, whereas the latter aims to decide whether they exceed a given threshold. We give polynomial-time algorithms for the approximation problem, and show the threshold problem is in P CH3 (hence in PSPACE) and in P assuming some number-theoretic conjectures. Furthermore, we study both questions for IMCs and MDPs where we aim to maximise the entropy/entropy rate among an infinite family of MCs associated with the given model. We give various conditional decidability results for the threshold problem, and show the approximation problem is solvable in polynomial-time via convex programmin

    Probabilistic Disclosure: Maximisation vs. Minimisation

    Get PDF
    We consider opacity questions where an observation function provides to an external attacker a view of the states along executions and secret executions are those visiting some state from a fixed subset. Disclosure occurs when the observer can deduce from a finite observation that the execution is secret, the epsilon-disclosure variant corresponding to the execution being secret with probability greater than 1 - epsilon. In a probabilistic and non deterministic setting, where an internal agent can choose between actions, there are two points of view, depending on the status of this agent: the successive choices can either help the attacker trying to disclose the secret, if the system has been corrupted, or they can prevent disclosure as much as possible if these choices are part of the system design. In the former situation, corresponding to a worst case, the disclosure value is the supremum over the strategies of the probability to disclose the secret (maximisation), whereas in the latter case, the disclosure is the infimum (minimisation). We address quantitative problems (comparing the optimal value with a threshold) and qualitative ones (when the threshold is zero or one) related to both forms of disclosure for a fixed or finite horizon. For all problems, we characterise their decidability status and their complexity. We discover a surprising asymmetry: on the one hand optimal strategies may be chosen among deterministic ones in maximisation problems, while it is not the case for minimisation. On the other hand, for the questions addressed here, more minimisation problems than maximisation ones are decidable

    Comparing Labelled Markov Decision Processes

    Get PDF
    A labelled Markov decision process is a labelled Markov chain with nondeterminism, i.e., together with a strategy a labelled MDP induces a labelled Markov chain. The model is related to interval Markov chains. Motivated by applications of equivalence checking for the verification of anonymity, we study the algorithmic comparison of two labelled MDPs, in particular, whether there exist strategies such that the MDPs become equivalent/inequivalent, both in terms of trace equivalence and in terms of probabilistic bisimilarity. We provide the first polynomial-time algorithms for computing memoryless strategies to make the two labelled MDPs inequivalent if such strategies exist. We also study the computational complexity of qualitative problems about making the total variation distance and the probabilistic bisimilarity distance less than one or equal to one

    Entropic Risk for Turn-Based Stochastic Games

    Get PDF
    Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic games with the total reward objective. This gives rise to an objective function that demands the control of systems in a risk-averse manner. We show that the resulting games are determined and, in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures that previously have been considered in the special case of Markov decision processes and that require randomization and/or memory. We provide several results on the decidability and the computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds a given threshold. In the most general case, the problem is decidable subject to Shanuel’s conjecture. If all inputs are rational, the resulting threshold problem can be solved using algebraic numbers, leading to decidability via a polynomial-time reduction to the existential theory of the reals. Further restrictions on the encoding of the input allow the solution of the threshold problem in NP∩coNP. Finally, an approximation algorithm for the optimal value of ERisk is provided
    corecore