15 research outputs found

    Model-Based Dynamic Self-Righting Maneuvers for a Hexapedal Robot

    Get PDF
    We report on the design and analysis of a controller that can achieve dynamical self-righting of our hexapedal robot, RHex. Motivated by the initial success of an empirically tuned controller, we present a feedback controller based on a saggital plane model of the robot. We also extend this controller to develop a hybrid pumping strategy that overcomes actuator torque limitations, resulting in robust flipping behavior over a wide range of surfaces. We present simulations and experiments to validate the model and characterize the performance of the new controller

    A Modular Approach for a Family of Ground Mobile Robots

    Get PDF
    This paper deals with Epi.q, a family of mobile robots whose main characteristic is a wheel-legged hybrid locomotion. These multi-purpose robots can be successfully exploited for security and surveillance tasks. The document presents state of the art security robotics, the Epi.q mechanical architecture, the concept behind the robot driving unit, three prototypes and the design of a new on

    Toward a Vocabulary of Legged Leaping

    Get PDF
    As dynamic robot behaviors become more capable and well understood, the need arises for a wide variety of equally capable and systematically applicable transitions between them. We use a hybrid systems framework to characterize the dynamic transitions of a planar “legged” rigid body from rest on level ground to a fully aerial state. The various contact conditions fit together to form a topologically regular structure, the “ground reaction complex”. The body’s actuated dynamics excite multifarious transitions between the cells of this complex, whose regular adjacency relations index naturally the resulting “leaps” (path sequences through the cells from rest to free flight). We exhibit on a RHex robot some of the most interesting “words” formed by these achievable path sequences, documenting unprecedented levels of performance and new application possibilities that illustrate the value of understanding and expressing this vocabulary systematically. For more information: Kod*La

    DYNAMIC LEGGED MOBILITY | AN OVERVIEW

    Get PDF

    Sensor Data Fusion for Body State Estimation in a Hexapod Robot With Dynamical Gaits

    Get PDF
    We report on a hybrid 12-dimensional full body state estimator for a hexapod robot executing a jogging gait in steady state on level terrain with regularly alternating ground contact and aerial phases of motion. We use a repeating sequence of continuous time dynamical models that are switched in and out of an extended Kalman filter to fuse measurements from a novel leg pose sensor and inertial sensors. Our inertial measurement unit supplements the traditionally paired three-axis rate gyro and three-axis accelerometer with a set of three additional three-axis accelerometer suites, thereby providing additional angular acceleration measurement, avoiding the need for localization of the accelerometer at the center of mass on the robot’s body, and simplifying installation and calibration. We implement this estimation procedure offline, using data extracted from numerous repeated runs of the hexapod robot RHex (bearing the appropriate sensor suite) and evaluate its performance with reference to a visual ground-truth measurement system, comparing as well the relative performance of different fusion approaches implemented via different model sequences

    Adaptive control of a one-legged hopping robot through dynamically embedded spring-loaded inverted pendulum template

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent University, 2011.Thesis (Master's) -- Bilkent University, 2011.Includes bibliographical references leaves 92-96.Practical realization of model-based dynamic legged behaviors is substantially more challenging than statically stable behaviors due to their heavy dependence on second-order system dynamics. This problem is further aggravated by the dif- ficulty of accurately measuring or estimating dynamic parameters such as spring and damping constants for associated models and the fact that such parameters are prone to change in time due to heavy use and associated material fatigue. In the first part of this thesis, we present an on-line, model-based adaptive control method for running with a planar spring-mass hopper based on a once-per-step parameter correction scheme. Our method can be used both as a system identifi- cation tool to determine possibly time-varying spring and damping constants of a miscalibrated system, or as an adaptive controller that can eliminate steady-state tracking errors through appropriate adjustments on dynamic system parameters. We use Spring-Loaded Inverted Pendulum (SLIP) model, which is the mostly used, effective and accurate descriptive tool for running animals of different sizes and morphologies, to evaluate our algorithm. We present systematic simulation studies to show that our method can successfully accomplish both accurate tracking and system identification tasks on this model. Additionally, we extend our simulations to Torque-Actuated Dissipative Spring-Loaded Inverted Pendulum (TD-SLIP) model towards its implementation on an actual robot platform. In the second part of the thesis, we present the design and construction of a onelegged hopping robot we built to test the practical applicability of our adaptive control algorithm. We summarize the mechanical, electronics and software design of our robot as well as the performed system identification studies to calibrate the unknown system parameters. Finally, we investigate the robot’s motion achieved by a simple torque-actuated open loop controller.Uyanık, İsmailM.S
    corecore