5,579 research outputs found

    Non-normal modalities in variants of Linear Logic

    Get PDF
    This article presents modal versions of resource-conscious logics. We concentrate on extensions of variants of Linear Logic with one minimal non-normal modality. In earlier work, where we investigated agency in multi-agent systems, we have shown that the results scale up to logics with multiple non-minimal modalities. Here, we start with the language of propositional intuitionistic Linear Logic without the additive disjunction, to which we add a modality. We provide an interpretation of this language on a class of Kripke resource models extended with a neighbourhood function: modal Kripke resource models. We propose a Hilbert-style axiomatization and a Gentzen-style sequent calculus. We show that the proof theories are sound and complete with respect to the class of modal Kripke resource models. We show that the sequent calculus admits cut elimination and that proof-search is in PSPACE. We then show how to extend the results when non-commutative connectives are added to the language. Finally, we put the logical framework to use by instantiating it as logics of agency. In particular, we propose a logic to reason about the resource-sensitive use of artefacts and illustrate it with a variety of examples

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor.Comment: Full version of article previously presented at LICS 2017 (see arXiv:1602.04860v4 or doi: 10.1109/LICS.2017.8005089

    Reasoning about Knowledge in Linear Logic: Modalities and Complexity

    No full text
    In a recent paper, Jean-Yves Girard commented that ”it has been a long time since philosophy has stopped intereacting with logic”[17]. Actually, it has no

    Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA

    Full text link
    Modal formulae express monadic second-order properties on Kripke frames, but in many important cases these have first-order equivalents. Computing such equivalents is important for both logical and computational reasons. On the other hand, canonicity of modal formulae is important, too, because it implies frame-completeness of logics axiomatized with canonical formulae. Computing a first-order equivalent of a modal formula amounts to elimination of second-order quantifiers. Two algorithms have been developed for second-order quantifier elimination: SCAN, based on constraint resolution, and DLS, based on a logical equivalence established by Ackermann. In this paper we introduce a new algorithm, SQEMA, for computing first-order equivalents (using a modal version of Ackermann's lemma) and, moreover, for proving canonicity of modal formulae. Unlike SCAN and DLS, it works directly on modal formulae, thus avoiding Skolemization and the subsequent problem of unskolemization. We present the core algorithm and illustrate it with some examples. We then prove its correctness and the canonicity of all formulae on which the algorithm succeeds. We show that it succeeds not only on all Sahlqvist formulae, but also on the larger class of inductive formulae, introduced in our earlier papers. Thus, we develop a purely algorithmic approach to proving canonical completeness in modal logic and, in particular, establish one of the most general completeness results in modal logic so far.Comment: 26 pages, no figures, to appear in the Logical Methods in Computer Scienc

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure

    Topic-Sensitive Epistemic 2D Truthmaker ZFC and Absolute Decidability

    Get PDF
    This paper aims to contribute to the analysis of the nature of mathematical modality, and to the applications of the latter to unrestricted quantification and absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority and relation between epistemic mathematical modality and metaphysical mathematical modality. The discrepancy between the modal systems governing the parameters in the two-dimensional intensional setting provides an explanation of the difference between the metaphysical possibility of absolute decidability and our knowledge thereof. I also advance an epistemic two-dimensional truthmaker semantics, if hyperintenisonal approaches are to be preferred to possible worlds semantics. I examine the relation between epistemic truthmakers and epistemic set theory

    Remarks on logic for process descriptions in ontological reasoning: A Drug Interaction Ontology case study

    Get PDF
    We present some ideas on logical process descriptions, using relations from the DIO (Drug Interaction Ontology) as examples and explaining how these relations can be naturally decomposed in terms of more basic structured logical process descriptions using terms from linear logic. In our view, the process descriptions are able to clarify the usual relational descriptions of DIO. In particular, we discuss the use of logical process descriptions in proving linear logical theorems. Among the types of reasoning supported by DIO one can distinguish both (1) basic reasoning about general structures in reality and (2) the domain-specific reasoning of experts. We here propose a clarification of this important distinction between (realist) reasoning on the basis of an ontology and rule-based inferences on the basis of an expert’s view

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    Modalities in homotopy type theory

    Full text link
    Univalent homotopy type theory (HoTT) may be seen as a language for the category of ∞\infty-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a "localization" higher inductive type. This produces in particular the (nn-connected, nn-truncated) factorization system as well as internal presentations of subtoposes, through lex modalities. We also develop the semantics of these constructions

    Ontology of sentential moods

    Get PDF
    In this paper ontological implications of the Barcan formula and its converse will be discussed at the conceptual and technical level. The thesis that will be defended is that sentential moods are not ontologically neutral since the rejection of ontological implications of Barcan formula and its converse is a condition of a possibility of the imperative mood. The paper is divided into four sections. In the first section a systematization of semantical systems of quantified modal logic is introduced for the purpose of making explicit their ontological presuppositions. In this context Jadacki's ontological difference between being and existence is discussed and analyzed within the framework of hereby proposed system of quantified modal logic. The second section discusses ontological implications of the Barcan formula and its converse within the system accommodating the difference between being and existence. The third section presents a proof of incompatibility of the Barcan formula and its converse with the use of imperatives. In the concluding section, a thesis on logical pragmatics foreclosing the dilemma between necessitism and contingentism is put forward and defended against some objections
    • …
    corecore