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Abstract

This paper aims to contribute to the analysis of the nature of math-

ematical modality, and to the applications of the latter to unrestricted

quantification and absolute decidability. Rather than countenancing the

interpretational type of mathematical modality as a primitive, I argue that

the interpretational type of mathematical modality is a species of epis-

temic modality. I argue, then, that the framework of multi-dimensional

intensional semantics ought to be applied to the mathematical setting.

The framework permits of a formally precise account of the priority and re-

lation between epistemic mathematical modality and metaphysical math-

ematical modality. The discrepancy between the modal systems governing

the parameters in the multi-dimensional intensional setting provides an

explanation of the difference between the metaphysical possibility of ab-

solute decidability and our knowledge thereof. I demonstrate, finally, how

the duality axioms of the epistemic logic for the semantics can be availed

of, in order to defuse the paradox of knowability.

1 Introduction

This essay aims to contribute to the analysis of the nature of mathematical

modality, and to the applications of the latter to unrestricted quantification

and absolute decidability. I argue that mathematical modality falls under at

least three types; the interpretational, the metaphysical, and the logical. The

interpretational type of mathematical modality has traditionally been taken to

concern the interpretation of the quantifiers (cf. Linnebo, 2009, 2010, 2013;

Studd, 2013); the possible reinterpretations of the intensions of the concept of

set (Uzquiano, 2015); and the possibility of reinterpreting the domain over which

the quantifiers range, in order to avoid inconsistency (cf. Fine, 2005, 2006, 2007).
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The metaphysical type of modality concerns the ontological profile of abstracta

and mathematical truth. Abstracta are thus argued to have metaphysically

necessary being, and mathematical truths hold of metaphysical necessity, if at

all (cf. Fine, 1981; Williamson, 2016). Instances, finally, of the logical type of

mathematical modality might concern the properties of consistency (cf. Field,

1989: 249-250, 257-260; Rayo, 2013: 50; Leng: 2007; 2010: 258), and can

perhaps be further witnessed by the logic of provability (cf. Boolos, 1993) and

the modal profile of forcing (cf. Kripke 1965; Hamkins and Löwe, 2008).

The significance of the present contribution is as follows. (i) Rather than

countenancing the interpretational type of mathematical modality as a prim-

itive, I argue that the interpretational type of mathematical modality is a

species of epistemic modality.1 (ii) I argue, then, that the framework of multi-

dimensional intensional semantics ought to be applied to the mathematical set-

ting. The framework permits of a formally precise account of the priority and

relation between epistemic mathematical modality and metaphysical mathemat-

ical modality. I target, in particular, the modal axioms that the respective in-

terpretations of the modal operator ought to satisfy. The discrepancy between

the modal systems governing the parameters in the multi-dimensional inten-

sional setting provides an explanation of the difference between the metaphysi-

cal possibility of absolute decidability and our knowledge thereof. (iii) Finally,

I examine the application of the mathematical modalities beyond the issues of

1A precedent to the current approach is Parsons (1979-1980; 1983: p. 25, chs.10-11; 2008:
176), who argues that intuition is both a species of the imagination and can be formalized
by a mathematical modality. The mathematical modality is governed by S4.2, and concerns
possible iterations of the successor operation in arithmetic and possible extensions of the set-
theoretic cumulative hierarchy. Among the differences between Parsons’ approach and the one
here outlined is (i) that, by contrast to the current proposal, Parsons notes that his notion of
mathematical modality is not epistemic (2008: 81fn1); and (ii) that Parsons (1997: 348-351;
2008: 98-100) suggests that the intuitional mathematical modality concerning computable
functions is an idealization insensitive to distinctions such as those captured by computational
complexity theory, rather than being defined relative to an epistemic modal space comprising
the computational theory of mind. (See Author, ms, for further discussion.)
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unrestricted quantification and indefinite extensibility. As a test case for the

multi-dimensional approach, I investigate the interaction between the epistemic

and metaphysical mathematical modalities and large cardinal axioms. The

multi-dimensional intensional framework permits of a formally precise means of

demonstrating how the metaphysical possibility of absolute decidability and the

continuum hypothesis can be accessed by their epistemic-modal-mathematical

profile. The logical mathematical modalities – of consistency, provability, and

forcing – provide the means for discerning whether mathematical truths are

themselves epistemically possible. I argue that, in the absence of disproof,

large cardinal axioms are epistemically possible, and thereby provide a suffi-

cient guide to the metaphysical mathematical possibility of determinacy claims

and the continuum hypothesis.

In Section 2, I define the formal clauses and modal axioms governing the epis-

temic and metaphysical types of mathematical modality. In Section 3, I discuss

how the properties of the epistemic mathematical modality and metaphysical

mathematical modality converge and depart from previous attempts to delin-

eate the contours of similar notions. Section 4 extends the multi-dimensional

intensional framework to the issue of mathematical knowledge; in particular, to

the modal profile of large cardinal axioms and to the absolute decidability of

the continuum hypothesis. In Section 5, I discuss the relevance of the Principle

of Knowability to the issue of absolute decidability, and provide a novel, non-

revisionary solution to the Knowability Paradox via suitable axioms of a normal

epistemic logic. Section 6 provides concluding remarks.
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2 Mathematical Modality

2.1 Metaphysical Mathematical Modality

A formula is a logical truth if and only if the formula is true in an intended model

structure, M = <W, D, R, V>, where W designates a space of metaphysically

possible worlds; D designates a domain of entities, constant across worlds; R

designates an accessibility relation on worlds; and V is an assignment function

mapping elements in D to subsets of W. A formula in M is a modal truth if and

only if a faithful interpretation maps the formula to a metaphysically universal

proposition (cf. Williamson, 2013.: 106). A formula satisfies conditions on

metaphysically universality if and only if the formula is true on its universal

generalization (cf. Williamson, op. cit.: 93). The language of the model may

be understood as an idealized language of thought, rather than a mathematical

language such as arithmetic or set theory, where the semantics for the language

concerns the modalized states of information and representations of an agent.

2.2 Epistemic Mathematical Modality

In order to accommodate the notion of epistemic possibility, we enrich M with

the following conditions: M = <C, W, D, R, V>, where C, a set of epistemically

possibilities, is constrained as follows:

Let JφKc ⊆ W;

(φ is a formula encoding a state of information at an epistemically possible

world).

-pri(x) = λw.JxKw,w ;

(the two parameters relative to which x – a propositional variable – ob-

tains its value are metaphysically possible worlds. The function from possible
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formulas to values is thus an intension).

-sec(x) = λc.JxKc,c

(the two parameters relative to which x obtains its value are epistemically

possible worlds).

Then:

• Epistemic Mathematical Necessity (Apriority)

J�φKw,c = 1 ⇐⇒ ∀c′JφKc,c
′

= 1

(φ is true at all points in epistemic modal space).

• Epistemic Mathematical Possibility

J⋄cφKin 6= ∅ ⇐⇒ JPrφKin 6= ∅ ∧ >.5, else 〈∅, Prin
(φ | ∅)〉, where in

designates an agent’s state of information in a context.

(φ might be true if and only if its value is not null and it is greater than

.5).

Crucially, epistemic mathematical modality is constrained by consistency,

and the formal techniques of provability and forcing. A mathematical formula

is false, and therefore metaphysically impossible, if it can be disproved or induces

inconsistency in a model.

2.3 Interaction

• Convergence

∀w∃cJφKw,c = 1

(the value of x is relative to a parameter for the space of metaphysically

possible worlds. The value of x relative to the first parameter determines
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the value of x relative to the second parameter for the space of epistemic

possibility).

• Super-rigidity (2D-Intension):

JφKw,c = 1 ⇐⇒ ∀w’,c’JφKw
′
,c

′

= 1

(the intension of φ is rigid in all points in metaphysical and epistemic

modal space).

2.4 Modal Axioms

• Metaphysical mathematical modality is governed by the modal system

KTE, as augmented by the Barcan formula and its Converse (cf. Fine,

1981).

K: �[φ → ψ] → [�φ → �ψ]

T: �φ → φ

E: ¬�φ → �¬�φ

Barcan: �∀xFx → ∀x�Fx

Converse Barcan: ∀x�Fx → �∀xFx

• Epistemic mathematical modality is governed by the modal system, KT4,

as augmented by the Barcan formula and the Converse Barcan formula.2

2Reasons adducing against including the Smiley-Gödel-Löb provability formula among the
axioms of epistemic mathematical modality are examined in Section 5. GL states that ’�[�φ
→ φ] → �φ’. For further discussion of the properties of GL, see Löb (1955); Smiley (1963);
Kripke (1965); and Boolos (1993). Löb’s provability formula was formulated in response to
Henkin’s (1952) problem concerning whether a sentence which ascribes the property of being
provable to itself is provable. (Cf. Halbach and Visser, 2014, for further discussion.) For an
anticipation of the provability formula, see Wittgenstein (1933-1937/2005: 378). Wittgenstein
writes: ’If we prove that a problem can be solved, the concept ’solution’ must somehow occur
in the proof. (There must be something in the mechanism of the proof that corresponds to
this concept.) But the concept mustn’t be represented by an external description; it must
really be demonstrated. / The proof of the provability of a proposition is the proof of the
proposition itself’ (op. cit.). Wittgenstein contrasts the foregoing type of proof with ’proofs of
relevance’ which are akin to the mathematical, rather than empirical, propositions, discussed
in Wittgenstein (2001: IV, 4-13, 30-31).
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K: �[φ → ψ] → [�φ → �ψ]

T: �φ → φ

4: �φ → ��φ

Barcan: �∀xFx → ∀x�Fx

Converse Barcan: ∀x�Fx → �∀xFx

3 Departures from Precedent

The approach to mathematical modality, according to which it yields a repre-

sentation of the cumulative universe of sets, has been examined by Fine (2005;

2006) and Uzquiano (2015). Fine argues that the mathematical modality should

be interpretational; and thus taken to concern the reinterpretation of the domain

over which the quantifiers range, in order to avoid inconsistency. Uzquiano ar-

gues similarly for an interpretational construal of mathematical modality, where

the cumulative hierarchy of sets is fixed, yet what is possibly reinterpreted is the

non-logical vocabulary of the language, in particular the membership relation.3

On Fine’s approach, the interpretational modality is both postulational, and

’prescriptive’ or imperatival. The prescriptive element consists in the rule:

’Introduction: !x.C(x)’,

such that one is enjoined to postulate, i.e. to ’introduce an object x con-

forming to the condition C(x)’ (2005: 91; 2006: 38).

In the setting of unrestricted quantification, suppose, e.g., that there is an

interpretation for the domain over which a quantifier ranges. Fine writes that

an interpretation ’I is exten[s]ible – in symbols, E(I) – if possibly some inter-

pretation extends it, i.e. ⋄∃J(I⊂J)’ (2006: 30). Then, the interpretation of the

domain over which the quantifier ranges is extensible, if ’∀I.E(I)’. The interpre-

3Compare Gödel, 1947; Williamson, 1998; and Fine, 2005.
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tation of the domain over which the quantifier ranges is indefinitely extensible, if

’�∀I.E(I)’ iff ’�∀I⋄∃J(I⊂J)’, where the reinterpretation is induced via the pre-

scriptive imperative to postulate the existence of a new object by the foregoing

’Introduction’ rule (2006: 30-31; 38). Fine clarifies that the interpretational ap-

proach is consistent with a ’realist ontology’ of the set of reals. He refers to the

imperative to postulate new objects, and thereby reinterpret the domain for the

quantifier, as the ’mechanism’ by which epistemically to track the cumulative

hierarchy of sets (2007: 124-125).

In accord with Fine’s approach, the epistemic mathematical modality defined

in the previous section was taken to have a similarly representational interpreta-

tion, and perhaps the postulational property is an optimal means of inducing a

reinterpretation of the domain of the quantifier. However, the present approach

avoids a potential issue with Fine’s account, with regard to the the introduc-

tion of deontic modal properties of the prescriptive and imperatival rules that

he mentions.4 It is sufficient that the interpretational modalities are a species

of epistemic modality, i.e. possibilities that are relative to agents’ spaces of

states of information. Developing Fine’s program, Linnebo (2013) outlines a

modalized version of ZF. Similarly to the modal axioms for the epistemic math-

ematical modality specified in the previous section, Linnebo argues that his

modal set theory ought to be governed by the system S4.2, the Converse Bar-

can formula, and (at least a restricted version of) the Barcan formula. However

– rather than being either interpretational or epistemic – Linnebo deploys the

mathematical modality in order to account for the notion of ’potential infinity’,

as anticipated by Aristotle.5 The mathematical modality is thereby intended

to provide a formally precise answer to the inquiry into the extent of the cu-

4For an analysis of the precise interaction between the semantic values of epistemic and
deontic modal operators, see Author (ms).

5Cf. Aristotle, Physics, Book III, Ch. 6.
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mulative set-theoretic hierarchy; i.e., in order to precisify the answer that the

hierarchy extends ’as far as possible’ (2013: 205).6

Thus, Linnebo takes the modality to be constitutive of the actual ontology

of sets; and the quantifiers ranging over the actual ontology of sets are claimed

to have an ’implicitly modal’ profile (2010: 146; 2013: 225). He suggests, e.g.,

that: ’As science progresses, we formulate set theories that characterize larger

and larger initial segments of the universe of sets. At any one time, precisely

those sets are actual whose existence follows from our strongest, well-established

set theory’ (2010: 159n21). However – despite his claim that the modality is

constitutive of the actual ontology of sets – Linnebo concedes that the math-

ematical modality at issue cannot be interpreted metaphysically, because sets

exist of metaphysical necessity if at all (2010: 158; 2013: 207). In order partly

to allay the tension, Linnebo remarks, then, that set theorists ’do not regard

themselves as located at some particular stage of the process of forming sets’

(2010: 159); and this might provide evidence that the inquiry – concerning at

which stage in the process of set-individuation we happen to be, at present –

can be avoided.

Another distinction to note is that both Linnebo (op. cit.) and Uzquiano

(op. cit.) avail of second-order plural quantification, in developing their prim-

itivist and interpretational accounts of mathematical modality. By contrast

to their approaches, the epistemic and metaphysical modalities defined in the

previous section are defined with second-order singular quantification over sets.

6Precursors to the view that modal operators can be availed of in order to countenance the
potential hierarchy of sets include Hodes (1984). Intensional constructions of set theory are
further developed by Reinhardt (1974); Parsons (1983); Myhill (1985); Scedrov (1985); Flagg
(1985); Goodman (1985); Hellman (1990); Nolan (2002); and Studd (2013). (See Shapiro
(1985) for an intensional construction of arithmetic.) Chihara (2004: 171-198) argues that
’broadly logical’ conceptual possibilities can be used to represent imaginary situations relevant
to the construction of open-sentence tokens. The open-sentences can then be used to define
the properties of natural and cardinal numbers and the axioms of Peano arithmetic.
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Finally, Linnebo and Uzquiano both suggest that their mathematical modal-

ities ought to be governed by the G axiom; i.e. ⋄�φ → �⋄φ. The present ap-

proach eschews, however, of the G axiom, in virtue of the following. Williamson

(2009) demonstrates that – because KT4G is a sublogic of S5 – an epistemic

operator which validates the conjunction of the 4 axiom of positive introspec-

tion and the E axiom of negative introspection will be inconsistent with the

condition of ’recursively enumerable quasi-conservativeness’. Recursively enu-

merable quasi-conservativeness is a computational constraint on an epistemic

agent’s theorizing, according to which the intended models of the agent’s the-

ory are both maximally consistent and conservatively extended by addition of

the ’box’-operator, interpreted as expressing the agent’s state of knowledge. As

axioms of an agent’s consistent, recursively axiomatizable theorizing about the

theory of its own states of knowledge and belief, the conjunction of 4 and E would

entail that the agent’s theory is both consistent and decidable, in conflict with

Gödel’s (1931) second incompleteness theorem. The modal system, KT4, avoids

the foregoing result. In the present setting, the circumvention is innocuous, be-

cause the undecidability – yet recursively enumerable quasi-conservativeness –

of an epistemic agent’s consistent theorizing about its epistemic states is con-

sistent with the epistemic mathematical possibility that large cardinal axioms

are absolutely decidable.

4 Knowledge of Absolute Decidability

Williamson (2016) examines the extension of the metaphysically modal profile

of mathematical truths to the question of absolute decidability. In this section,

I aim to extend Williamson’s analysis to the notion of epistemic mathematical

modality that has been developed in the foregoing sections. The extension
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provides a crucial means of witnessing the signficance of the multi-dimensional

intensional approach for the epistemology of mathematics.

Williamson proceeds by suggesting the following line of thought. Suppose

that A is a true interpreted mathematical formula which eludes present human

techniques of provability; e.g. the continuum hypothesis (op. cit.). Williamson

argues that mathematical truths are metaphysically necessary (op. cit.). From

there, he suggests that knowledge of A satisfies the condition of safety from error,

as codified via a reflexive and symmetric accessibility relation from worlds at

which A is known. Thus, there is either no, or a small risk of, not believing that

A, relative to a world in which A is known – although the safety condition is

not itself sufficient for mathematical knowledge that A. Williamson then enjoins

one to consider the following scenario: It is metaphysically possible that there

is a species which can prove that A. Therefore, A is absolutely provable; that

is, A ’can in principle be known by a normal mathematical process’ such as

derivation in an axiomatizable formal system with quantification and identity.

Williamson’s scenario evinces one issue for the ’back-tracking’ approach to

modal epistemology, at least as it might be applied to the issue of possible

mathematical knowledge. On the back-tracking approach, the method of modal

epistemology is taken to proceed by first discerning the metaphysical modal

truths – normally by natural-scientific means – and then working backward to

the exigent incompleteness of an individual’s epistemic states concerning such

truths (cf. Stalnaker, 2003; Vetter, 2013).

The issue for the back-tracking method that Williamson’s scenario illumi-

nates is that the metaphysical mathematical possibility that CH is absolutely

decidable must in some way converge with the epistemic possibility thereof.

However, the normal mathematical techniques that Williamson specifies – i.e.
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proof and forcing – fall within the remit of what is mathematically possible

relative to agents’ states of information; i.e. what is epistemically mathemat-

ically possible. Thus, whether CH is metaphysically necessary – and thus, as

Williamson claims, metaphysically possible and absolutely decidable thereby –

can only be witnessed by the epistemic means of demonstrating that its abso-

lute decidability is not impossible. It may thus be epistemically possible that

Williamson’s technically advanced species, which can absolutely decide CH, ex-

ist – following Williamson (2013), they actually exist, albeit non-concretely –

but the metaphysical necessity of the absolute decidability of CH needs still to

be corroborated.

The significance of the multi-dimensional intensional framework outlined in

the foregoing is that it provides an explanation of the discrepancy between meta-

physical mathematical modality and epistemic mathematical modality. The

metaphysical mathematical modality is taken to be more fundamental than the

epistemic, as witnessed by the order of the parameters specified in the Conver-

gence property in Section 2. Further and crucially, metaphysical mathematical

modality is governed by the system S5, the Barcan formula, and its Converse,

whereas epistemic mathematical modality is governed by KT4, the Barcan for-

mula, and its Converse. Thus, epistemic mathematical modality figures as the

mechanism, which enables the tracking of metaphysically possible mathematical

truth.7

7A provisional definition of large cardinal axioms is as follows.
∃xΦ is a large cardinal axiom, because:
(i) Φx is a Σ2-formula;
(ii) if κ is a cardinal, such that V |= Φ(κ), then κ is strongly inaccessible, where a cardinal

κ is regular if the cofinality of κ – comprised of the unions of sets with cardinality less than κ

– is identical to κ, and a strongly inaccessible cardinal is regular and has a strong limit, such
that if λ < κ, then 2λ < κ (Cf. Kanamori, 2012: 360); and

(iii) for all generic partial orders P∈Vκ, VP |= Φ(κ); INS is a non-stationary ideal, where an
ideal is a subset of a set closed under countable unions, whereas filters are subsets closed under
countable intersections. (Cf. Kanamori, op. cit.: 361); AG is the canonical representation of
reals in L(R), i.e. the interpretation of A in M[G]; H(κ) is comprised of all of the sets whose
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Leitgeb (2009) endeavors similarly to argue for the convergence between the

notion of informal provability – countenanced as an epistemic modal operator,

K – and mathematical truth. Availing of Hilbert’s (1923/1996: ¶18-42) epsilon

terms for propositions, such that, for an arbitrary predicate, C(x), with x a

propositional variable, the term ’ǫp.C(p)’ is intuitively interpreted as stating

that ’there is a proposition, x(/p), s.t. the formula, that p satisfies C, obtains’

(op. cit.: 290). Leitgeb purports to demonstrate that ∀p(p → Kp), i.e. that

informal provability is absolute; i.e. truth and provability are co-extensive.8

He argues as follows. Let A(p) abbreviate the formula ’p ∧ ¬K(p)’, i.e., that

the proposition, p, is true while yet being unprovable. Let K be the informal

provability operator reflecting knowability or epistemic necessity, with 〈K〉 its

dual.9 Then:

1. ∃p(p ∧ ¬Kp) ⇐⇒ ǫp.A(p) ∧ ¬Kǫp.A(p).

By necessitation,

2. K[∃p(p ∧ ¬Kp)] ⇐⇒ K[ǫp.A(p) ∧ ¬Kǫp.A(p)].

Applying modal axioms, KT, to (1), however,

3. ¬K[ǫp.A(p) ∧ ¬Kǫp.A(p)].

Thus,

transitive closure is < κ (cf. Rittberg, 2015); and L(R)Pmax |= 〈H(ω2), ∈, INS , AG〉 |= ’φ’. P

is a homogeneous partial order in L(R), such that the generic extension of L(R)P inherits the
generic invariance, i.e., the absoluteness, of L(R). Thus, L(R)Pmax is (i) effectively complete,
i.e. invariant under set-forcing extensions; and (ii) maximal, i.e. satisfies all Π2-sentences and
is thus consistent by set-forcing over ground models (Woodin, ms: 28).

Assume ZFC and that there is a proper class of Woodin cardinals; A∈P(R) ∩ L(R); φ is
a Π2-sentence; and V(G), s.t. 〈H(ω2), ∈, INS , AG〉 |= ’φ’: Then, it can be proven that
L(R)Pmax |= 〈H(ω2), ∈, INS , AG〉 |= ’φ’, where ’φ’ := ∃A∈Γ∞〈H(ω1), ∈, A〉 |= ψ.

The axiom of determinacy (AD) states that every set of reals, a⊆ωω is determined, where
κ is determined if it is decidable.

Woodin’s (1999) Axiom (*) can be thus countenanced:
ADL(R) and L[(Pω1)] is a Pmax-generic extension of L(R),
from which it can be derived that 2ℵ0 = ℵ2. Thus, ¬CH; and so CH is absolutely decidable.
8The formula is referred to as the Principle of Knowability, and discussed in further detail

in Section 5, below.
9See Section 5, for further discussion of the duality of knowledge, and its relation to doxastic

operators.
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4. ¬K∃p(p ∧ ¬Kp).

Leitgeb suggests that (4) be rewritten

5. 〈K〉∀p(p → Kp).

Abbreviate (5) by B. By existential introduction and modal axiom K, both

6. B → ∃p[K(p → B) ∨ K(p → ¬B) ∧ p], and

7. ¬B → ∃p[K(p → B) ∨ K(p → ¬B) ∧ p].

Thus,

8. ∃p[K(p → B) ∨ K(p → ¬B) ∧ p].

Abbreviate (8) by C(p). Introducing epsilon notation,

9. [K(ǫp.C(p) → B) ∨ K(ǫp.C(p) → ¬B)] ∧ ǫp.C(p).

By K,

10. [K(ǫp.C(p) → KB) ∨ K(ǫp.C(p) → K¬B)].

From (9) and necessitation, one can further derive

11. Kǫp.C(p).

By (10) and (11),

12. KB ∨ K¬B.

From (5), (12), and K, Leitgeb derives

13. KB.

By, then, the T axiom,

14. ∀p(p → Kp) (291-292).

Rather than accounting for the coextensiveness of epistemic provability and

truth, Leitgeb interprets the foregoing result as cause for pessimism with regard

to whether the formulas countenanced in epistemic logic and via epsilon terms

are genuinely logical truths if true at all (292).

In response to the attending pressure on the status of epistemic logic as

concerning truths of logic, one can challenge the derivation, in the above proof,
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from lines (12) to (13). The inference depends on line (5), i.e., the epistemic

possibility of completeness: 〈K〉∀p(p → Kp). One can question how, from (4),

i.e. the unprovability of the unprovability of a proposition [¬K∃p(p ∧ ¬Kp)],

one can derive (5), i.e. that it is epistemically possible that all propositions

are informally provable. Assume, however, that line (5) is valid. Then, the

validity of the inference from (12) to (13) can be challenged by the restriction

on the quantifier on worlds in the Knowability Principle expressed by (5). The

epistemic operator in lines (12) and (13) records, by contrast, the epistemic ne-

cessity, rather than the possibility, of the truth of the formulas and subformulas

therein. Thus, from (12) either the provability of the provability of propositions

or the provability of the unprovability of propositions, one cannot derive (13)

the provability of the provability of propositions, because – by (5) – it is only

epistemically possible that all true propositions are provable.

5 Knowability without Paradox

This section aims, finally, to provide a novel, non-revisionary solution to the

Church-Fitch paradox that the Knowability Principle – that all truths can be

known – either yields contradiction or entrains the worse result that all truths

are known. One reason to endorse the claim that all truths can be known is

that a condition of evidential constraint might be constitutive of the alethic

property (cf. Dummett, 1977/2000, 1978, 1991; Wright, 1987/1993; Putnam,

1981). However, the paradox appears to undermine the viability of approaches

to the nature of truth which take the latter to be evidentially constrained. A

distinct reason for endorsing the Knowability Principle is that it has crucial

extensions to the epistemology of mathematics. An Orey sentence has the form:

For any theory T, ’T ≡ T + φ and T ≡ T + ¬φ’. Examples of Orey sentences
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include the Generalized Continuum Hypothesis (i.e., ’2ℵn = ℵn+1’) where the

theory at issue is ZFC, and the Projective Uniformization property relative

to ZF (i.e., whether a choice function can be defined in ZF for a pointclass

comprised of sets of reals). In the previous section, I noted that Williamson

(op. cit.) argues that, because it is metaphysically possible for Orey sentences

to be decided, Orey sentences are thus absolutely decidable. I availed, then,

of a multi-dimensional intensional semantics, and argued that, if epistemically

mathematically possible in virtue of, e.g., consistency via forcing techniques

and large cardinal axioms, then the absolute decidability of Orey sentences is

metaphysically mathematically possible. So, for any mathematical truth φ, the

value of φ can be known.

In this section, I argue that, if one accepts principles of duality for the belief

and knowledge operators which mirror those for the diamond and box operators,

then the axioms of epistemic logic are themselves sufficient for a dissolution of

the knowability paradox. So, if the belief and knowledge operators are the

abbreviations of their duals, then the Knowability Principle is not false, and

Knowability entails neither contradiction nor the implausible result that all

truths are known.

The present proposal contrasts to revisionary approaches to the underlying

epistemic logic, by retaining classical principles rather than arguing either (i)

that the paradox is intuitionistically invalid (cf. Dummett, 1977/2000, 2009;

Wright, op. cit.; Bermúdez, 2009), or (ii) that the inconsistency or paracom-

pleteness entailed by the paradox is innocuous, via restriction of the law of

excluded middle (cf. Routley, 1981/2010; Beall, 2000, 2009; Wansing, 2002;

Priest, 2009). A virtue of the present result is thus that classical reasoning can

be consistent with a principle amenable to verificationist approaches to truth;
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and so my solution to the paradox can be accepted by both realists and verifica-

tionists alike. A second virtue of the present account is that the epistemic logic

availed of, in response to the paradox, is computationally more basic than those

proffered by van Benthem (2009) and Restall (2009). Finally, a third virtue of

the proposal is that it circumvents reformulation of the Knowability Principle

itself; for example, by the addition of the actuality operator and quantification

over situations (cf. Edgingtion, 1985, 2010).

Here is the paradox. The Knowability Principle states that, for all φ, if

φ is true then it is metaphysically possible for there to be knowledge that φ:

’∀φ(φ → ⋄Kφ)’. Suppose, however, that ’φ’ abbreviates ’φ and it is not the case

that one knows that φ’: ’φ ∧ ¬Kφ’ (cf. Fitch, 1963; Church, 2009). In the

consequent of the Knowability Principle, the foregoing would yield that ⋄K(φ

∧ ¬Kφ). Thus, Kφ and K¬Kφ. Thus, Kφ. However, by the modal T axiom,

which codifies the factivity or truthfulness of knowledge, ∀x(Kx → x). Thus,

¬Kφ. Contradiction.

Suppose, then, that one negates the problematic sentence in the antecedent

of the Principle. Thus, ¬(φ ∧ ¬Kφ). By the De Morgan rules for negation,

¬φ ∨ ¬¬Kφ. By double negation elimination, ¬φ ∨ Kφ. By the definition of

the material conditional, φ → Kφ; that is, all truths are known. The paradox

of knowability is therefore that possible knowledge of unknown truths entails

either contradiction or omniscience.

One response to the paradox that has yet to be examined is the adoption of

the provability logic, GL. The relevant axioms of GL are the Smiley-Gödel-Löb

provability formula [�(�φ → φ) → �φ], K [�(φ → ψ) → (�φ → �ψ)], and 4

[�φ→ ��φ], although not T (�φ → φ). Thus, the derivation of contradiction in

the consequent of the Knowability Principle can be blocked via the invalidation
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of the T axiom. However, denying the factivity of knowledge might be too

significant a cost in the endeavor to retain the Knowability Principle.

At the opposing extreme is Restall’s (op. cit.) approach, which avails of the

modal system, S5, on its epistemic interpretation. As mentioned, one issue for

the latter is that endorsing both axioms 4 and E (i.e., ¬�φ → �¬�φ) would

entail that an agent’s consistent epistemic theorizing about its epistemic states

is decidable, in conflict with Gödel’s second incompleteness theorem. (The lat-

ter states that – given a particular choice of coding, predicate, and fixed point

– a recursively axiomatizable system is consistent only if it is inconsistent.) Be-

cause epistemic agent’s theorizing ought ideally to be consistent, the pernicious

consequences of decidability are avoidable by eschewing of axioms 4 and E.

By contrast, then, to the foregoing, our target epistemic logic can be suf-

ficiently axiomatized by the modal system, KT, as augmented by the rule of

necessitation (⊢φ → ⊢ �φ). ’�φ’ is interpreted as stating that ’the agent knows

that φ’, and ’⋄φ’ is interpreted as stating that ’the agent believes that φ’. If so,

then ⋄φ abbreviates ¬�¬φ, and conversely �φ abbreviates ¬⋄¬φ. In our epis-

temic logic, the foregoing entails that – because belief is not factive – belief that

φ abbreviates that, for all one knows, φ is false: ’Bφ’ ⇐⇒ ’¬K¬φ’. Conversely,

not knowing whether a proposition is false rather than true is a necessary con-

dition for belief thereof. Crucially, knowledge that φ abbreviates disbelief that

φ is false: ’Kφ’ ⇐⇒ ’¬B¬φ’. Kφ entails Bφ, if the seriality condition is further

endorsed, i.e. �φ → ⋄φ. Finally, in the setting of metaphysical modality, the

possibility that φ abbreviates that φ is not necessarily false: ⋄φ ⇐⇒ ¬�¬φ.

In virtue of the dualities of the belief and knowledge operators, the Knowa-

bility Principle is logically equivalent to the following statement: For all φ, if φ

is true, then it is not necessarily not the case that one disbelieves the negation
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of φ: ’∀φ(φ → ¬�¬¬B¬φ)’. Suppose, again, that ’φ’ abbreviates ’φ and it is not

the case that one knows that φ’: ’φ ∧ ¬Kφ’. In the consequent of the Knowa-

bility Principle, the foregoing yields that it is not necessarily not the case that

one disbelieves the negation of the proposition that φ is true and φ isn’t known:

¬�¬¬B¬(φ ∧ ¬Kφ). By double negation elimination, ¬�B¬(φ ∧ ¬Kφ). By

the De Morgan rules of negation, the Knowability Principle is therefore logically

equivalent to the proposition that it is not necessary for one to believe that all

truths are known: ¬�B(φ → Kφ). That involves no contradiction; and so – by

classical reasoning – the Knowability Principle is innocuous.

A possible objection to the present approach is that knowledge ought not

to abbreviate disbelief that a proposition is false. Left-to-right, the duality

between the knowledge operator and the belief operator appears innocuous; if

one knows that φ is true, then one ought to disbelieve that φ is false. However,

the right-to-left direction of the duality would appear to be more problematic;

the disbelief that not φ ought not to be sufficient for knowledge.

The solution to the objection depends both (i) on the priority that one

accords to knowledge, by contrast to belief, and (ii) on the observation that the

entailment relations reflect necessary though insufficient conditions. There is

thus an implicit priority in the directions by which to interpret the epistemic

duality principles. Compare, e.g., the significance of the direction by which to

interpret second-order implicit definitions for the cardinals, in the neo-logicist

foundations of number theory and analysis.10 Sense is conferred to the left-hand-

side of the biconditional in virtue of the priority of the right-to-left reading of

the definition. Similarly, understanding the notion of metaphysical necessity –

truth at all points in a model – takes priority to understanding the notion of

10For the locus classicus of the abstractionist/neo-logicist program, see Hale and Wright
(2001).
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metaphysical possibility; and so φ is possibly true if and only if, and because,

it is not necessary for φ to be false. However, that engenders no bar to the

stipulation that �φ abbreviates the impossibility that φ is false.

The situation is similar in epistemic logic. The belief that φ is true reflects

the foregoing conceptual priority: On the assumption that knowledge is a fun-

damental mental state – comprised, e.g., of a set of factive propositions – belief

would thereby be the derivative property, owing (inter alia) to its nonfactivity

(cf. Williamson, 2001). Thus, an agent believes that φ is true if and only if, and

because, the agent does not know that φ is false. Not knowing that φ is false

is, conversely, a necessary condition for the belief that φ is true. By the dual-

ity and seriality axioms specified above, one’s knowledge that φ subsequently

entails the consistency of one’s belief with regard to φ; i.e., that one believes

φ and disbelieves φ’s negation. Crucially, however, the knowledge operator can

abbreviate ’disbelief that not’, because of the conceptual priority of knowledge

to belief. The left-to-right interpretation of the principle takes, then, priority

to the right-to-left direction; and the right-to-left direction is descriptively ade-

quate, because – in the setting of epistemic modal logic – grasp of the concept

of belief is insufficient, although a derivative necessary condition, for grasp of

the concept of knowledge.

6 Concluding Remarks

In this paper, I have endeavored to delineate the types of mathematical modality,

and to argue that the epistemic interpretation of multi-dimensional intensional

semantics can be applied in order to explain, in part, the epistemic status of

large cardinal axioms and the decidability of Orey sentences. I demonstrated,

further, how the duality axioms in the logic of epistemic mathematical modality
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are able to defuse the paradoxical consequences associated with the Knowability

Principle, to the effect that for all truths it is possible to possess knowledge

thereof. The formal constraints on mathematical conceivability adumbrated in

the foregoing can therefore be considered a guide to our possible knowledge of

unknown mathematical truth.
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