
BERISLAV ŽARNIĆ

ONTOLOGY OF SENTENTIAL MOODS
In this paper ontological implications of the Barcan formula and its converse

will be discussed at the conceptual and technical level. The thesis that will be
defended is that sentential moods are not ontologically neutral since the rejection
of ontological implications of Barcan formula and its converse is a condition of a
possibility of the imperative mood.

The paper is divided into four sections. In the first section a systematization
of semantical systems of quantified modal logic is introduced for the purpose of
making explicit their ontological presuppositions. In this context Jadacki’s onto-
logical difference between being and existence is discussed and analyzed within
the framework of hereby proposed system of quantified modal logic. The second
section discusses ontological implications of the Barcan formula and its converse
within the system accommodating the difference between being and existence.
The third section presents a proof of incompatibility of the Barcan formula and its
converse with the use of imperatives. In the concluding section, a thesis on logi-
cal pragmatics foreclosing the dilemma between necessitism and contingentism is
put forward and defended against some objections.

1 Ontologies of quantified modal logic
Quantified modal logic opens up a series of questions regarding the interpreta-

tion of singular terms and predicates, as well as the range of quantification. There
is a significant number of semantical systems proposed by the most influential
philosophical logicians in the second half of the 20th century, such as Rudolf Car-
nap (1891–1970), Jaakko Hintikka (1929–2015), Stig Kanger (1924–1988), Richard
Montague (1930–1971), Saul Kripke (b. 1940). A comparative overview of the se-
mantical systems of quantified modal and related ontological problems has been
given in (Lindström and Segerberg 2007). It seems to be unquestionable that a
predicate extension can change across worlds. So, the interpretation of an n-
place predicate is a two-place function that delivers the predicate’s extension at
a world, I(w, P). The controversial decision regards the range of predicate exten-
sions. Should it be restricted to objects existing in a world, i.e., to the domain
D(w), so that I(w, Pn) ⊆ D(w)n? Or should it also include the objects existing in
some other world, i.e., to the domain U =

⋃
w∈W D(w), so that I(w, Pn) ⊆ U? Or

might it also include objects that do not exist in any world, i.e., those belonging
the domain U such ast U−U 6= ∅ so that I(w, Pn) ⊆ Un? For example, suppose
that the object denoted by an individual constant t does not exist in a possible
world w, and that P is a monadic predicate. Can sentence Pt be true in w? can
it be false? can it have the value of being neither true nor false? The answer
depends upon the chosen semantical system. A systematization of semantical
options is given in Table 1, while Table 2 presents the positioning of chosen ex-
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emplars within the systematization. The scope of quantifying can vary. Global

Table 1: Modelling options under presupposition that each object exists in some world.
It is redundant to treat the assignement as a two-place function in rigid options.

option assignment of
objects to individual
variables

interpretation of
predicates

range of
quantification

universal g(w, c) ∈ U I(w, Pn) ⊆ Un U
global g(w, c) ∈ U I(w, Pn) ⊆ Un U =

⋃
w∈W D(w)

local g(w, c) ∈ D(w) I(w, Pn) ⊆ D(w)n D(w)

rigid g(w, c) = g(v, c) for
all w and v

I(w, Pn) = I(v, Pn) for
all w and v

flexible g(w, c) 6= g(v, c) for
some w and v

I(w, Pn) 6= I(v, Pn) for
some w and v

Table 2: Semantical systems: [K63] denotes the system of (Kripke 1963), [BE] denotes
the system introduced in this section, [L-Z] denotes the system of (Linsky and Zalta
1994), [JvB] denotes the system of (van Benthem 2010). The range of quantification is
universal if M(w, ∀) = U, global if M(w, ∀) =

⋃
w∈W D(w), and local if M(w, ∀) =

D(w). Rigidity means that values are the same in all worlds: forall v such that Rwv,
g(w, x) = g(v, x), V(w, x) = V(v, x), M(w, ∀) = M(v, ∀). Flexibility is non-rigidity.

option assignment of
objects to individual
variables

interpretation of
predicates

range of
quantification

g(w, x) V(w, P) M(w, ∀)

universal [BE] [BE] except for E [BE]
global [K63], [L-Z] [K63], [L-Z] [L-Z]
local [JvB] [BE] only for E,

[JvB]?
[K63], [JvB]

rigid [K63], [BE],
[L-Z],[JvB]

[K63], [BE],
[L-Z],[JvB]

flexible [K63], [BE],
[L-Z],[JvB]

interpretation of predicates goes together with the quantification over all possible
objects. So, the “possibilist” gives the following truth-definition of quantified for-
mula ∃xϕ in a model M at a world w under an assignment g: ‘M, w |= ∃xϕ [g]
iff for some d ∈ D, M, w |= ∃xϕ [g(d/x)]’. On the other hand, the “actualist”
restricts the quantification range to the objects actually existing in the domain of
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w: ‘M, w |= ∃xϕ [g] iff for some d ∈ D(w), M, w |= ∃xϕ [g(d/x)]’.1 The most
permissive position in semantics does not require of objects to exist in any possible
world and takes U as the quantification range: ‘M, w |= ∃xϕ [g] iff for some d ∈ U,
M, w |= ∃xϕ [g(d/x)]’. For example, the semantical system of (Kripke 1963) has
global and rigid assignment, global and flexible interpretation of predicates and
the local range of quantification.

Example 1.1. Let U = {a, b}, D(w) = {b}, g = {〈x, a〉, 〈y, b〉}, Rww, in a Kripke’s
system (1963). Then M, w |= x = x [g], but M, w 6|= ∃y x = y [g] since for no
d ∈ D(w), M, w |= ∃y x = y [g(d/y)]. Therefore, M, w 6|= �∃y x = y [g]. Nevertheless,
M, w |= ∀x∃y x = y [g] since for all d1 ∈ D(w) there is some d2 ∈ D(w) such that
M, w |= x = y [g(d1/x; d2/y)], namely, a = d1 = d2.

1.1 Jadacki on being and existence

Summing up his ontological views Professor Jadacki states as follows:

2. The correct formulation of metaphysical problems requires introducing
the notion of various modes of being.

2.1. There is a difference between “being” and “existence”.
2.11. “Existence” is a predicate.
2.22. “To exist” means the same as “to be real”.
(. . . )

3. Every object is (i.e. has being) but not every object exists.
(Jadacki 2003, 26-27)

Professor Jadacki’s views can be observed within the theoretical framework of
quantified modal logic with a slight modification of the system (Kripke 1963) with
respect to the range of quantification.

1.1.1 Semantical and deductive system for the difference between be-
ing and existence

The system for modelling the difference between being and existence will be
denoted by [BE]. The language LBE has the following syntax:

ϕ ::= t1 = t2 | E(t) | Pn(t1, . . . , tn) | ¬ϕ | (ϕ1 ∨ ϕ2) | ∀x ϕ | �ϕ, (LBE)

where ti is an individual constant or individual variable, Pn is an n-place predi-
cate, and E is the existence predicate.

A frame for the language LBE is a quintuple F = 〈W,U, R, D, w0〉 such that
W 6= ∅, U 6= ∅, R ⊆ W ×W, D : W 7→ U, and w0 ∈ W plays the role of the real
world. A [BE] model is an ordered pair M = 〈F, I〉 where I is an interpretation
function such that I(w, Pn) ⊆ Un for each n-place predicate P, and I(w, c) ∈ U

1The terms ‘possibilist’ and ‘actualist’ are taken from Linsky and Zalta (1994).



4 Berislav Žarnić

for each individual constant c. In particular, I(w,=) = {〈d, d〉 | d ∈ U}, and
I(w, E) = {d | d ∈ D(w)}. An assignment g is a possibly partial function
g : Variables 7→ U; g∅ is the empty function that does not assign objects to any
variables; g(d1/x1; . . . ; dn/xn) is the assignment that assigns the same values as g,
with possible exception of assigning d1 to x1, . . . , and dn to xn; g is appropriate for
ϕ iff all free variables of ϕ are in the domain of g. The denotation of a singular term
JtKM

g in the model M under the assignment g is JtKM
g = I(t) if t is an individual

constant, and JtKM
g = g(t) if t is an individual variable. The formula M, w |= ϕ [g]

stands for ‘assignment g satisfies formula ϕ in model M’.

Definition 1.1 (Satisfaction). Let g be an assignment in M which is appropriate
for each formula being evaluated.

• M, w |= t1 = t2 [g] iff Jt1KM
g = Jt2KM

g ,

• M, w |= E(t) [g] iff JtKM
g ∈ D(w),

• M, w |= Pn(t1, . . . , tn) [g] iff 〈Jt1KM
g , . . . .JtnKM

g 〉 ∈ I(w, Pn),

• M, w |= ¬ϕ [g] iff M, w 6|= ϕ [g],

• M, w |= ϕ1 ∨ ϕ2 [g] iff M, w |= ϕ1 [g] or M, w |= ϕ2 [g],

• M, w |= ∀xϕ [g] iff for all d ∈ U, M, w |= ϕ [g(d/x)].

Definition 1.2 (Truth in a world). M, w |= ϕ iff M, w |= ϕ [g∅]

Definition 1.3 (Truth in the real world). M, w0 |= ϕ iff M, w0 |= ϕ [g∅]

Definition 1.4 (Truth in a model). A formula ϕ is true in the model M iff for all w,
M, w |= ϕ.

Definition 1.5 (Truth in a frame). A formula ϕ is true in the frame F iff for all I, ϕ
is true in the model 〈F, I〉.

Definition 1.6 (General validity). A sentence ϕ is generally valid in class K of
frames iff for all F ∈ K, ϕ is true in the frame F.

1.1.2 Deductive system [BE]

Basin, Matthews and Vigano (1998) have developed a system of deduction
for unimodal normal logics lying within “Geach’s hierarchy” (i.e., those whose
relational theory is representable in first order language).2 The rules are the same
for any type of universal and existential modality. The differences between logics
are introduced using relational theory which describes frame properties. At each
w we use classical rules except for negation, whose rules are “global”. Table 3
presents the labelled deduction rules for the system [BE].

2A labeled deduction for bimodal, deontic-praxeological logic has been given (Žarnić 2006).
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Table 3: Deduction system for [BE].

Logical
sign

Introduction rule Elimination rule

¬ Γ, w : ϕ ` v : ⊥ ⇒ Γ ` w : ¬ϕ Γ, w : ¬ϕ ` v : ⊥ ⇒ Γ ` w : ϕ
∧ Γ ` w : ϕ, w : ψ⇒ Γ ` w : ϕ ∧ ψ Γ ` ϕ ∧ ψ⇒ Γ ` w : ϕ, w : ψ
∨ Γ ` w : ϕ⇒ Γ ` w : ϕ ∨ ψ, w :

ψ ∨ ϕ
Γ, w : ϕ ` w : θ and Γ, w : ψ ` w :
θ ⇒ Γ, w : ϕ ∨ ψ ` w : θ

→ Γ, w : ϕ ` w : ψ⇒ Γ ` w : ϕ→ ψ Γ ` w : ϕ→ ψ, w : ϕ⇒ Γ ` w : ψ

∀ Γ ` w : ϕ(c)⇒ Γ ` w : ∀xϕ(x)
provided that individual constant
c does not occur in Γ and ϕ

Γ ` w : ∀xϕ(x)⇒ Γ ` w : ϕ(c)

∃ Γ ` w : ϕ(c)⇒ Γ ` w : ∃xϕ(x) Γ ` w : ∃xφ(x) and Γ, w : φ(c) `
ψ⇒ Γ ` ψ provided that
individual constant c does not
occur in Γ , φ, and ψ

= ` w : c1 = c2 Γ ` w : ϕ(c1), c1 = c2 ⇒ Γ ` w :
ϕ(c2)

� Γ, Rwv ` v : ϕ⇒ Γ ` w : �ϕ
provided that v does not occur in
Γ

Γ ` Rwv, w : �ϕ⇒ Γ ` v : ϕ

♦ Γ ` Rwv, v : ϕ⇒ Γ ` w : ♦ϕ Γ, Rwv, v : ϕ ` ψ⇒ Γ, w : ♦ϕ ` ψ
provided that v does not occur in
Γ ∪ {ψ}

1.1.3 Application

In this subsection the possibility of formalization of thesis (BE.3) (Jadacki 2003,
27) will be examined.

(BE.3) Every object is (i.e. has being) but not every object exists.

The translation for (BE.3) is a conjunction whose candidate conjuncts for the
left-hand side are: (1), (2), (3), and for the right-hand side: (4), (5), (6), (7).

∀x x = x (1)
�∀x x = x (2)
∀x� x = x (3)
∃x¬Ex (4)
∃x♦¬Ex (5)
∃x�¬Ex (6)
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�∃x¬Ex (7)

Nevertheless, not all translations are equally suitable. Propositions (1) and (2) are
valid in any semantical system. Proposition (3) is more restrictive since it might
fail if the range of quantification and interpretation of the identity predicate are lo-
cal. In system [BE] proposition (3) is valid, cf. Proposition 1.1 below. So, (3) comes
closest to the requirement of a universal domain, which is wider than the union of
local domains. In order to capture the intended meaning of the second conjunct,
the suitable translations would be those that make sure that the range of quantifi-
cation includes objects outside the “worldly existence”; outside the spatiotempo-
ral realm, M(∀) = U and U−U 6= ∅, and that the interpretation of the identity
predicate is defined for all objects, both spatiotemporal and non-spatiotemporal
ones, I(w,=) = {〈x, x〉 | x ∈ U}. The translations (4) and (5) cannot be considered
adequate since their truth does not depend on the fact that U−U 6= ∅. If the ac-
cessibility relation is reflexive, then the translation (6) guarantees that there will be
some non-worldly object d in worlds accessible from w ( d /∈ ⋃v∈{v|Rwv} D(v)) but
cannot exclude the possibility of the same object occurring in worlds other than
those accessible from w.3 If, in addition to being reflexive, the accessibility relation
is also transitive, then U−⋃v∈{v|R∗wv} 6= ∅ where R∗ is the reflexive transitive clo-
sure of R. Proposition (7) is implied by (6) (see Proposition 1.2) but not vice versa.
So, the closest translation for (BE) within [BE] would be the conjunction of (3) and
(6).

Proposition 1.1. `BE ∀x�x = x

Proof.

1 a v Rwv

2 v : a = a Intro=

3 w : �a = a 1–2/ Intro�

4 w : ∀x�x = x 1–3/ Intro∀

Proposition 1.2. `BE ∃x�¬Ex → �∃x¬Ex

Proof.

1 w : ∃x�¬Ex

2 a w : �¬Ea

3 v Rwv

4 v : ¬Ea 2, 3/ Elim�

5 v : ∃x¬Ex 4/ Intro∃

6 w : �∃x¬Ex 3–5/ Intro�

7 w : �∃x¬Ex 1, 2–6/ Elim∃

8 w : ∃x�¬Ex → �∃x¬Ex 1–7/ Intro→

3For example, d /∈ ⋃v∈{v|Rwv} D(v) but for some v ∈ {v | Rwv} and some v′ such that Rvv′ it
might be the case that d ∈ D(v′).
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2 The Barcan formula and the converse Barcan formula
The first axiomatization of quantified modal logic has been introduced by Bar-

can (1946). The characteristic axiom schema 11 (Barcan 1946, 2) is the formula
‘♦∃xϕ → ∃x♦ϕ’, and it covers the relation between the two categories of logical
operators; a modality operator and a quantifier. Later, the axiom schema is known
in its contrapositive form under the name ‘Barcan formula’ (BF) and is usually
discussed together with its converse (CBF):

∀x�ϕ→ �∀xϕ (BF)
�∀xϕ→ ∀x�ϕ (CBF)

Although there is no semantical system in the original work (Barcan 1946), seman-
tic intuitions are implicit. If the universal range of quantification had been presup-
posed, there would have been no need to introduce axiom schema 11 (BF) since it
can be obtained in the deduction system [BE] embedding universal quantification
range, as shown by Proposition 2.1.

Proposition 2.1. ♦∃xPx → ∃x♦Px

Proof.

1 ♦∃xPx

2 v Rwv

3 ∃xPx

4 a v : Pa

5 w : ♦Pa 2, 4/ Intro♦

6 w : ∃x♦Px 5/ Intro∃

7 w : ∃x♦Px 3, 4–6/ Elim∃

8 w : ∃x♦Px 1, 2–7/ Elim♦

9 ♦∃xPx → ∃x♦Px 1–8/ Intro→

The Barcan formula and its converse do convey important metaphysical infor-
mation. Namely, the information as to whether an object, not existing at w, might
exist in an accessible v, and whether the object, existing at w, must also exist in
an accessible world v. This information becomes directly visible in semantical
systems where the range of quantification is local, i.e., where the quantifier ∃ is
“existentially loaded” (Linsky and Zalta 1994). The systems of (Kripke 1963) and
(van Benthem 2010) are of this kind.

Example 2.1. In the system [JvB] the assignment and quantification range are local. The
interpretation for (BF) and (CBF) can be obtained using “standard translation” ST from
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modal to first-order language and additionally introducing Exw for ‘x is an object in
the domain of w’.

ST(∀x�Px → �∀xPx)
= ∀x(Exw→ ∀v(Rwv→ Pxv))→ ∀v(Rwv→ ∀x(Exv→ Pxv))
⇔ ∀v∀x(Rwv→ (Exw→ Pxv))→ ∀v(Rwv→ ∀x(Exv→ Pxv))

The “minimal way of making antecedent true” is to let P be the property satisfied at v
just by elements of D(w): Pxv := Exw. The substitution of the minimal property gives
the following formulas:

∀v∀x(Rwv→ (Exw→ Exw))→ ∀v(Rwv→ ∀x(Exv→ Exw))⇔
⇔ > → ∀v(Rwv→ ∀x(Exv→ Exw))

⇔ ∀v(Rwv→ ∀x(Exv→ Exw))

Using the set-theoretic language we finally obtain (DLD) the “decreasing local domain”-
or “no object growth”-property characterized by (BF).

Rwv→ D(v) ⊆ D(w) (DLD)

The converse Barcan formula characterizes cumulative or increasing local domains
(“no object loss”) where objects existing in a world persist in an accessible world.

ST(�∀xPx → ∀x�Px) =
= ∀v(Rwv→ ∀x(Exv→ Pxv))→ ∀x(Exw→ ∀v(Rwv→ Pxv))
⇔ ∀x∀v(Rwv→ (Exv→ Pxv))→ ∀v∀x(Exw→ (Rwv→ Pxv))

Let P be the property satisfied at v just by elements of D(v): Pxv := Exv.

∀x∀v(Rwv→ (Exv→ Exv))→ ∀v∀x(Exw→ (Rwv→ Exv))
⇔ > → ∀v∀x(Exw→ (Rwv→ Exv))
⇔ ∀v(Rwv→ ∀x(Exw→ Exv))

Using the set-theoretic language finally we obtain (ILD) the “increasing local domain”
property characterized by (CBF).

Rwv→ D(w) ⊆ D(v) (ILD)

2.1 The Barcan formula and its converse within the universal
quantification range system

Thanks to having the “existence predicate”, the language of [BE] can express
the properties of local domains defined by (BF) and (CFB).

∀x(Ex → �ϕ)→ �∀x(Ex → ϕ) (BF*)
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�∀x(Ex → ϕ)→ ∀x(Ex → �ϕ) (CBF*)

The counterexamples for (BF*) and (CBF*) are the same as those that have been
described in the literature dealing with the local quantification range systems, and
they will be omitted here. On the confirmation side, it must be proved that (BF*)
and (CBF*) hold on decreasing and increasing local domains, respectively. For this
purpose, the labeled deduction system [BE] must be enlarged with the “domain
theory” as described in Table 4.

Table 4: Relational theory and domain theory. In this paper only the domain theory
rules will be used. The relational theory rules adequate for S5 modal logic are given
hereby only for the purpose of an illustration.

relational theory

axiom T ` Rww
axiom 4 Rwv, Rvz ` Rwz
axiom 5 Rwv ` Rvw

domain theory

decreasing local domain [DLD] Rwv, v : Ec ` w : Ec
increasing local domain [ILD] Rwv, w : Ec ` v : Ec

Proposition 2.2. `BE ∀x(Ex → �Px)→ �∀x(Ex → Px)

Proof.

1 w : ∀x(Ex → �Px)

2 v Rwv

3 a v : Ea

4 w : Ea→ �Pa 1/ Elim∀

5 w : Ea 2, 3/ DLD

6 w : �Pa 4, 5/ Elim→

7 v : Pa 2, 6/ Elim�

8 v : Ea→ Pa 3–7/ Intro→

9 v : ∀x(Ex → Px) 3–8/ Intro∀

10 w : �∀x(Ex → Px) 2–9/ Intro�

11 w : ∀x(Ex → �Px)→ �∀x(Ex → Px) 1–10/ Intro→
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Proposition 2.3. `BE �∀x(Ex → Px)→ ∀x(Ex → �Px)

Proof.

1 w : �∀x(Ex → Px)

2 a w : Ea

3 v Rwv

4 v : ∀x(Ex → Px) 1, 3/ Elim�

5 v : Ea 2, 3/ ILD

6 v : Ea→ Pa 4/ Elim∀

7 v : Pa 5, 6/ Elim→

8 w : �Pa 3–7/ Intro�

9 w : Ea→ �Pa 2–8/ Intro→

10 w : ∀x(Ex → �Px) 2–9/ Intro∀

11 w : �∀x(Ex → Px)→ ∀x(Ex → �Px) 1–10/ Intro→

2.2 Is quantified modal logic a metaphysical theory?

Among many semantical systems of quantified modal logic, the preference
should be given to the one that has the greatest expressive power. For example,
consider the sentence (SA) “Necessarily, if c is P, then c exists”, which according to
Linsky and Zalta (1994) expresses the thesis of “serious actualism”. If a semantical
system has the local quantification range and local valuation of predicates, then (8)
captures the meaning of (SA) since in such system Ec means the same as ∃x c =
x, while V(w, Pn) ⊆ D(w)n. In systems with global or universal quantification
(8) and (9) differ in meaning. In particular, (8) is valid in [BE], while (9) is not.
Nevertheless, the postulate of “serious actualism” can be added thus introducing
a restriction on admissible models. For example, the addition of the rule Pc ` Ec
to the deduction system [BE] turns it into an actualist’s system.

�(Pc→ ∃x c = x) (8)
�(Pc→ Ec) (9)

If the problem of quantification range is understood as the question of proper
reading of quantifiers, then within the systems with universal or global quantifica-
tion range only “existentially unloaded” readings are appropriate for ∃: ‘for some
objects it is true that . . . ’ is acceptable reading, but not ‘there exists an object such
that . . . ’. For example, Professor Jadacki’s thesis 1.3., quoted below, forecloses the
possibility of existentially loaded reading of the existential quantifier.
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1.3. The object domain, which any language refers to, is not identical with
the real world.

(Jadacki 2003, 26)

The implicit definition of metaphysical modalities is not completed by making
explicit a logical system for � and ♦ that is being employed in some theory. It is
their relations to other modalities that constitute their meaning. For example, how
do they relate to nomological, historical and deontic possibilities? The real chal-
lenge does not lie in combining metaphysical modalities with other modalities,
but in their interaction with quantifiers. The problem of interaction of metaphys-
ical modalities with quantifiers does not appear if quantifiers occur within the
scope of modalities (in de dicto mode).4 The de dicto mode of combination � ∀ is
unproblematic since all that it requires is to move along the paths of accessibility
relation and to apply first-order logic at evaluation points. The real problem ap-
pears in de re mode where quantifiers range over modalities: ∀ �. A theoretical
option must be chosen in order to solve the problem of the interaction between
metaphysical modalities and quantifiers. The choice is not theoretically inert but
implies a commitment to metaphysical theses.5

If the question of “worldly” existence of objects across metaphysical alterna-
tives is regarded as a logical question, then the choice of a logical axiom implies
the metaphysical choice.

For a mixture of technical and philosophical reasons, any such separation
of logic and metaphysics became increasingly hard to maintain, especially
for principles like the Barcan formula and its converse. (Williamson 2013,
30-31)

The fact of inseparability of logical and metaphysical theoretical choices does not
oppose Thesis 1 as put forward by Professor Jadacki.

1. No logical formula forecloses metaphysical problems.
(Jadacki 2003, 26)

Within the framework of quantified modal logic, postulates of logic are conceived
in view of the background of metaphysical choices.

The axioms or deductive rules of quantified modal logic have strong meta-
physical consequences.

Call the proposition that it is necessary what there is necessitism, and
its negation contingentism. In slightly less compressed form, necessitism

4(Hughes and Cresswell 1996, 250) write: “Whether or not the Latin descriptions are accurate
the fact remains that wff of modal predicate logic divide into those called de dicto, in which no
variable occurs free within the scope of a modal operator, and those called de re, in which some
do”.

5An example with the Barcan formula in an epistemic context shows that our intuitions are
much clearer in this case. The rejection of the epistemic Barcan formula is straightforward since
the possible truth of Romeo knows that someone likes him, but he doesn’t know who := Kr∃xLxr ∧
¬∃xKr Lxr shows that Kr∃xLxr → ∃xKr Lxr is not a truth of epistemic logic.
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says that necessarily everything is necessarily something; still more long-
windedly: it is necessary that everything is such that it is necessary that
something is identical with it. In a slogan: ontology is necessary. Contin-
gentism denies that necessarily everything is necessarily something. In a
slogan: ontology is contingent. (Williamson 2013, 2)

In local quantification systems, the necessitism thesis can be expressed by (N). On
the other hand, if the quantification is either global or universal, the necessitism
thesis can be expressed by (N*).

∀x� ∃yx = y (N)
∀x(Ex → �∃y(Ey ∧ x = y)) (N*)

The necessitism thesis holds on increasing local domains. The contingentism the-
sis is the negation of the necessitism thesis, and it can be formulated either as (C)
or (C*) depending on the semantical system.

∃x♦∀y x 6= y (C)
∃x(Ex ∧♦∀y(Ey→ x 6= y)) (C*)

The contingentist believes that at least one object that is contingent exists in the
real world; the object whose existence is not necessary. Metaphysical necessitism,
i.e., the denial of the contingentism, is a consequence of the converse Barcan for-
mula, as shown by Proposition 2.5. For many philosophers, the necessitism is an
unacceptable consequence.

This conclusion [∀x�∃y x = y], however, is extremely counterintuitive
(provided we read quantifiers in the normal way as ranging over ordi-
nary objects). Intuitively, it is simple false that everything there is exists
necessarily. (Lindström and Segerberg 2007, 1167)

Lemma 2.4. `BE �∀x(Ex → ∃y(Ey ∧ x = y))

Proof.

1 v Rwv

2 a v : Ea

3 v : a = a Intro=

4 v : Ea ∧ a = a 2, 3/ Intro∧

5 v : ∃y(Ey ∧ a = y) 4/ Intro∃

6 v : ∀x(Ex → ∃y(Ey ∧ x = y)) 2–5/ Intro∀

7 w : �∀x(Ex → ∃y(Ey ∧ x = y)) 1–6/ Intro�
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Proposition 2.5. �∀x(Ex → ∃y(Ey ∧ x = y))→ ∀x(Ex → �∃y(Ey ∧ x = y)) `BE
∀x(Ex → �∃y(Ey ∧ x = y))

Proof. Use the instance of (CBF*) with Px := ∃y(Ey ∧ x = y). The right-hand side of this instance
is exactly the necessitism thesis (N*). Using Lema 2.4, (N*) follows by modus ponens.

3 Contingentism as the ontology of imperatives
There is a long and noteworthy tradition in logic of imperatives where imper-

atives are treated as requested acts, e.g., Lemmon (1965), Segerberg (1990), Belnap
et al. (2001). In short, as is put forward (Belnap et al. 2001, 10), “the content of ev-
ery imperative is agentive”. This idea can be easily explained using von Wright’s
(1966) typology of acts and forbearances and his simple semantics of acts.

Generally speaking, for a description of action in terms of states and trans-
formations (changes), three items are required:

(a) First, we must be told the state in which the world is at the moment,
when action is initiated. I shall call this the initial state.

(b) Secondly, we must be told the state, in which the world is, when action
has been completed. I shall call it the end-state.

(c) Thirdly, we must be told the state, in which the world would be, had
it not been for the presence of agency in it, or, as I shall also say, “in-
dependently of the agent”.

( von Wright 1966, 123)

The original Von Wright’s notation for acts and forbearances will be modified and
extended to represent the eight elementary types of imperatives. Also, following
Segerberg (1992), the term ‘counter-state’ will be used for “the state, in which the
world would be, had it not been for the presence of agency in it”. In Table 5, the
three-part formula (TPF) is utilized for the purpose.

!
(

wi : initial state
∣∣∣∣ we : end state

wc : counter state

)
(TPF)

Let us analyze a token of produce-imperative type expressed by formula (10).

!
(
∀x¬Px

∣∣∣∣ ∃xPx
∀x¬Px

)
(10)

There are two ways for this imperative to become satisfied by means of the two
sub-types of productive act. Firstly, it can be satisfied by the world rearrangement.
Speaking in terms of semantics, the sufficient condition for the satisfaction is that
of the change of the valuation of P, from V(P, wi) = ∅ at wi to V(P, we) 6= ∅ at
we. Secondly, imperative (10) can be satisfied by an object creation. A new object
d, which is not in the domain of world wi, appears in the domain of world we but
remains absent in the domain of world wc: d /∈ D(wi), d ∈ D(we), d /∈ D(wc).
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Table 5: Eight elementary types of imperatives corresponding to Von Wright’s eight
elementary types of acts and forbearances. In the orginal Von Wright’s notation the
formula is written down as ‘ϕ1T(ϕ2 Iϕ3)’. In this table, indexed worlds — initial world
wi, end world we, counter world wc — are added for the purpose of easy reading, but
are redundant otherwise.

act imperatives forbearance imperatives

Produce ϕ! !
(

wi : ¬ϕ

∣∣∣∣ we : ϕ

wc : ¬ϕ

)
Let ϕ remain
absent!

!
(

wi : ¬ϕ

∣∣∣∣ we : ¬ϕ

wc : ¬ϕ

)
Maintain ϕ! !

(
wi : ϕ

∣∣∣∣ we : ϕ

wc : ¬ϕ

)
Let ϕ vanish! !

(
wi : ϕ

∣∣∣∣ we : ¬ϕ

wc : ¬ϕ

)
Suppress ϕ! !

(
wi : ¬ϕ

∣∣∣∣ we : ¬ϕ

wc : ϕ

)
Let ϕ appear! !

(
wi : ¬ϕ

∣∣∣∣ we : ϕ

wc : ϕ

)
Destroy ϕ! !

(
wi : ϕ

∣∣∣∣ we : ¬ϕ

wc : ϕ

)
Let ϕ continue! !

(
wi : ϕ

∣∣∣∣ we : ϕ

wc : ϕ

)

Example 3.1. The imperative ‘Write the term paper’ directed to the student r is a produce-
imperative. Its form is depicted below in (11).

!
(

wi : There is no term paper of r.
∣∣∣∣ we : There is a term paper of r.

wc : There is no term paper of r.

)
(11)

The sole permitted way of satisfying imperative (11) is by object creation: an object not
existing in D(wi) ought to come into existence in we. On the other hand, the satisfaction
of imperative (11) by means of the rearrangement of the world is forbidden, e.g., by r
submission of an “object already existing at wi” but not written by r.

Local range of quantification type of semantics does not make it possible to
distinguish world rearrangement- from object creation-imperatives. On the other
hand, within the semantics of global or universal quantification range, this distinc-
tion becomes expressible. In this kind of systems, besides imperative (10,) which
is ambiguous with respect to modes of satisfaction, there is also formula type (12)
which can only be satisfied by domain variation, since, as sentence (13) claims, no
object from the domain of wi can satisfy the condition P.

!
(
∀x(Ex → �¬Px)

∣∣∣∣ ∃x(Ex ∧♦Px)
∀x(Ex → �¬Px)

)
(12)

∀x(Ex → �¬Px) (13)

The conjunction of (10) and (13) gives the intended reading for a produce-imperative
that can only be satisfied by an object creation, not by world rearrangement.
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3.1 The Barcan Formula and the Converse Barcan Formula in the
context of imperatives

Suppose: (i) that the instance of the Barcan formula (BF*.1) ∀x(Ex → �¬Px)→
�∀x(Ex → ¬Px) is valid; (ii) that historical alternatives are metaphysically possi-
ble, i.e., that Rwiwe and Rwiwc (where R is the relation of metaphysical accessibil-
ity). Further assume that an object-creation imperative, i.e., the conjunction of (10)
and (13), has been successfully issued.

Proposition 3.1. The success of object-creation imperative excludes the validity of the
Barcan formula.

Proof. In (1)-(3) it is assumed that indicative (13) is true and imperative (10) is successful.

(1) M, wi |= ∀x(Ex → �¬Px), assumption;

(2) M, we |= ∃x(Ex ∧ Px), assumption;

(3) Rwiwe, assumption;

(4) M, wi |= ∀x(Ex → �¬Px)→ �∀x(Ex → ¬Px), the instance of Barcan formula;

(5) M, wi |= �∀x(Ex → ¬Px), by modus ponens, form (1) and (4);

(6) M, we |= ∀x(Ex → ¬Px), by the semantic definition of �, form (3) and (5);

(7) M, we |= ⊥, form (2) and (6).

Mutatis mutandis the same result holds for the relation between the object-
destruction imperative and the converse Barcan formula. The conjunction of (14)
and (15) excludes the possibility of satisfaction by “shrinking” extension V(we, P)
of P at we (which is accessible from wi), since by (15) no object existing in we satis-
fies condition P.

!
(
∃xPx

∣∣∣∣ ¬∃xPx)
∃xPx

)
(14)

∀x(Ex → �¬Px) (15)

Proposition 3.2. The success of object-destruction imperative excludes the validity of the
converse Barcan formula.

Proof. Similar to proof of Proposition 3.1.

4 Conclusion and a reply to objections
The use of imperatives presupposes the metaphysics of varying domains, which

may be rightfully called the ontology of imperative mood. The ontology of imper-
ative mood rejects both the Barcan formula and the converse Barcan formula. The
implicit definition of metaphysical modality cannot be completed within a uni-
modal propositional logical system. In order to see what ‘necessity’ means, one
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must investigate in which way metaphysical modality interacts with all logical
terms and elements, such as other modalities (e.g., deontic modality), quantifiers
or sentential moods (e.g., imperative mood). In the context opened by the use of
indicatives, it is meaningful to dispute whether the Barcan formula or the con-
verse Barcan formula hold, but not so in the context of imperatives. One should
either reject both (BF) and (CBF) or refrain from using imperatives. In short, the
ontology of imperatives is contingent. Thus, logical pragmatics settles some questions
of metaphysics.

There are several objections that can be raised against these theses on the pri-
macy of logical pragmatics. According to the first objection, the semantics of im-
peratives involves time as well as metaphysical possibility. New objects come into
existence in expanding domains or old objects cease to exist in shrinking domains
on temporal rather than on modal grounds. According to the model of quantified
modal logic, used in this paper, and imperative semantics based on Von Wright’s
approach (Žarnić 2011, 109-111), any historical possibility is a metaphysical possi-
bility but not vice versa. In model [BE], worlds are conceived as atemporal points
the sequence of which represents time. The objection presupposes a historical con-
cept of the world as stretched through time. It is only under this presupposition
that contingentism, implied by the use of imperatives, can be replaced with tem-
poraryism according to which not everything exists eternally.6 The fact that the
historical concept of the world is not compatible with the branching time structure
— which is indispensable for understanding of the human world — is a sufficient
reason to refute the fusion of necessitism and temporaryism. According to the
second objection, both necessitism and contingentism are compatible with the use
of imperatives, and consequently, logical pragmatics does not decide on this the-
oretical question of metaphysics. For instance, the necessitist may claim that the
appearance of new and the disappearance of old objects is just an issue of tempo-
rality or that any imperative can be satisfied by a rearrangement of the world. The
first claim has been already refuted on the grounds of presupposing the historical
concept of the world. The second claim depends on an untenable notion of object
according to which the identity of a composed object is entirely determined by its
minimal parts and not by their structural arrangement.

Finally, it may well be the case that no formula of logical syntax and logical
semantics forecloses metaphysical problems, but this need not be the case with
logical pragmatics.
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6Williamson (2013) gives an extensive exposition on the relation between necessitism and
contigentism, on one side, and permanentism and temporaryism, on the other.
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