2,865 research outputs found

    Dance-the-music : an educational platform for the modeling, recognition and audiovisual monitoring of dance steps using spatiotemporal motion templates

    Get PDF
    In this article, a computational platform is presented, entitled “Dance-the-Music”, that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers’ models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method can determine the quality of a student’s performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures

    Discriminative methods for classification of asynchronous imaginary motor tasks from EEG data

    Get PDF
    In this work, two methods based on statistical models that take into account the temporal changes in the electroencephalographic (EEG) signal are proposed for asynchronous brain-computer interfaces (BCI) based on imaginary motor tasks. Unlike the current approaches to asynchronous BCI systems that make use of windowed versions of the EEG data combined with static classifiers, the methods proposed here are based on discriminative models that allow sequential labeling of data. In particular, the two methods we propose for asynchronous BCI are based on conditional random fields (CRFs) and latent dynamic CRFs (LDCRFs), respectively. We describe how the asynchronous BCI problem can be posed as a classification problem based on CRFs or LDCRFs, by defining appropriate random variables and their relationships. CRF allows modeling the extrinsic dynamics of data, making it possible to model the transitions between classes, which in this context correspond to distinct tasks in an asynchronous BCI system. On the other hand, LDCRF goes beyond this approach by incorporating latent variables that permit modeling the intrinsic structure for each class and at the same time allows modeling extrinsic dynamics. We apply our proposed methods on the publicly available BCI competition III dataset V as well as a data set recorded in our laboratory. Results obtained are compared to the top algorithm in the BCI competition as well as to methods based on hierarchical hidden Markov models (HHMMs), hierarchical hidden CRF (HHCRF), neural networks based on particle swarm optimization (IPSONN) and to a recently proposed approach based on neural networks and fuzzy theory, the S-dFasArt. Our experimental analysis demonstrates the improvements provided by our proposed methods in terms of classification accuracy

    Effect of Initial HMM Choices in Multiple Sequence Training for Gesture Recognition

    Get PDF
    We present several ways to initialize and train Hidden Markov Models (HMMs) for gesture recognition. These include using a single initial model for training (reestimation), multiple random initial models, and initial models directly computed from physical considerations. Each of the initial models is trained on multiple observation sequences using both Baum-Welch and the Viterbi Path Counting algorithm on three different model structures: Fully Connected (or ergodic), Left-Right, and Left-Right Banded. After performing many recognition trials on our video database of 780 letter gestures, results show that a) the simpler the structure is, the less the effect of the initial model, b) the direct computation method for designing the initial model is effective and provides insight into HMM learning, and c) Viterbi Path Counting performs best overall and depends much less on the initial model than does Baum-Welch training

    Understanding HMM Training For Video Gesture Recognition

    Get PDF
    When developing a video gesture recognition system to recognise letters of the alphabet based on hidden Markov Model (HMM) pattern recognition, we observed that by carefully selecting the model structure we could obtain greatly improved recognition performance. This led us to the questions: Why do some HMMs work so well for pattern recognition? Which factors affect the HMM training process? In an attempt to answer these fundamental questions of learning, we used simple triangle and square video gestures where good HMM structure can be deduced analytically from knowledge of the physical process. We then compared these analytic models to models estimated from Baum-Welch training on the video gestures. This paper shows that with appropriate constraints on model structure, Baum-Welch reestimation leads to good HMMs which are very similar to those obtained analytically. These results corroborate earlier work where we show that the LR banded HMM structure is remarkably effective in recognising video gestures when compared to fully-connected (ergodic) or LR HMM structures

    Real-Time Head Gesture Recognition on Head-Mounted Displays using Cascaded Hidden Markov Models

    Full text link
    Head gesture is a natural means of face-to-face communication between people but the recognition of head gestures in the context of virtual reality and use of head gesture as an interface for interacting with virtual avatars and virtual environments have been rarely investigated. In the current study, we present an approach for real-time head gesture recognition on head-mounted displays using Cascaded Hidden Markov Models. We conducted two experiments to evaluate our proposed approach. In experiment 1, we trained the Cascaded Hidden Markov Models and assessed the offline classification performance using collected head motion data. In experiment 2, we characterized the real-time performance of the approach by estimating the latency to recognize a head gesture with recorded real-time classification data. Our results show that the proposed approach is effective in recognizing head gestures. The method can be integrated into a virtual reality system as a head gesture interface for interacting with virtual worlds
    corecore