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Abstract

When developing a video gesture recognition system to
recognise letters of the alphabet based on hidden Markov
Model (HMM) pattern recognition, we observed that by
carefully selecting the model structure we could obtain
greatly improved recognition performance. This led us to
the questions: Why do some HMMs work so well for pat-
tern recognition? Which factors affect the HMM training
process? In an attempt to answer these fundamental ques-
tions of learning, we used simple triangle and square video
gestures where good HMM structure can be deduced ana-
lytically from knowledge of the physical process. We then
compared these analytic models to models estimated from
Baum-Welch training on the video gestures. This paper
shows that with appropriate constraints on model structure,
Baum-Welch reestimation leads to good HMMs which are
very similar to those obtained analytically. These results
corroborate earlier work where we show that the LR banded
HMM structure is remarkably effective in recognising video
gestures when compared to fully-connected (ergodic) or LR
HMM structures.

1. Introduction

Hidden Markov Models (HMMs) have been used promi-
nently and successfully in speech recognition [5] and hand
writing recognition [3] during in the last decades. Given
these successes, HMMs have been widely adopted for com-
puter vision and pattern recognition. Starner [7] used Hid-
den Markov Models for visual recognition of America Sign
Language(ASL). Lee and Kim [2] designed an HMM-based
threshold model approach for recognition of ten gestures to
control PowerPoint slides.

Many researchers apply Baum-Welch and other
exemplar-driven algorithms for training HMM models, but
use fairly arbitrary selections of fundamental parameters
such as structure and order. Finding reliable criteria for the

selection of the best HMM parameters is largely an open
question — yet these parameters have a severe impact on
recognition rates. Due to the lack of guidance for choosing
model structure and other parameters, researchers resort to
performance evaluations over wide ranges of parameters in
the hope of finding good solutions.

When developing a system to recognise video gestures
for the 26 letters of the alphabet using HMMs [4], we
found that by changing the model structure from Fully-
Connected (ergodic) to Left-Right and then finally to Left-
Right Banded (LRB), we achieved marked improvement in
average recognition rates. Indeed, LRB yielded 97.3% cor-
rect recognition on unseen gestures from a database of 780
video gestures — the error rate was 3 times lower than ob-
tained with conventional FC and LR models. These im-
provements were so startling that we decided to investigate
the fundamental problem of model selection in this paper.
The questions we are starting to address in this research are:
Why do some HMMs work well and others not? Which fac-
tors affect the HMM training process? How best to design
the model structure and parameters? Some recent work has
made progress in this direction [1, 6], but more is required.

In this paper, we present an analytic calculation method
for a class of HMMs. This is of particular interest because
although no training is required, quite good models are ob-
tained. We show that the analytic models are a good place
to start for finding the globally optimal model and can be
applied in a novel way for improved HMM training.

2. Direct Computation Method

In this paper we focus on the LRB model structure be-
cause of its good performance in video gesture recognition.
LRB is a simple HMM structure (Figure 2) that can be de-
scribed by a single linear chain with only self and next state
transitions. With this structure, we can segment gestures
(i.e., segment the observation sequence) according to state
duration time. A simple way is to evenly segment by the
number of states, and then estimate theA matrix from the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. Hand gestures for Triangle and Square

duration equation. Because the actual letter gestures varied
so much from one to another, we used two much simpler
gestures for the purposes of this study: Triangle and Square
(Figure 1). The reason for this is that it is easy to partition a
Triangle into 3 equal duration parts (states) or a Square into
4 equal duration parts.

1 2 3 4

Figure 2. Left-right Banded Structure

In both cases, the state characterizes the expected angle
of hand movements to draw each side of a perfect trian-
gle or square. The measurements are the positions of the
hand in the video image which are subject to measurement
noise and correspond to the HMM state path. From these
measurements, the observation sequences are the quantized
angles of each hand movement from frame to frame. The
B matrix can be viewed as the noise distribution around the
state’s mean angle value.

2.1. A Matrix Computation

TheA matrix is computed using the state duration equa-
tion 1. The observation sequence(T ) is segmented evenly
and the duration time is same for each state. For example,
if 3 states are used, the observation sequence length(T ) is
24, and the duration (d) is 24/3=8, thenaii = 0.875, and
because the row sum is 1, then the other value is 0.125. As
there is no next state for state 3,a33 = 1;

d̄i =
1

1− aii
(1)

2.2. B Matrix Computation

Each segment corresponds to one state, which ideally
corresponds to one observation symbol. However in a real
system, noise creates a dispersed distribution of observa-
tions from the state. So theB matrix can be directly cal-
culated using one of the following probability distribution
estimation methods.

2.2.1 Histogram estimation

Since there are 18 observation symbols and the training set
has 20 observation sequences(T × 20), we segment the
training set by the number of statesN . Each segment is
(T/N × 20) which is related to its state. We determine the
histograms and use them as the elements of the observation
probability matrixB.

2.2.2 Fitted Gaussian Distribution

Random variables with unknown distributions are often as-
sumed to be Gaussian. After computing the meanµ and
standard deviationσ of the data set, we can easily fit a Gaus-
sian distribution. Since the training data sets are not large,
noise values may have a great effect on the sample variance
and mean. In this case, the maximum value may be more
reliable than the mean and variance can be determined by
ensuring the pdf integration to 1 (Max-Value Gaussian).

2.2.3 Von Mises Distribution

As we are dealing with angular data (observation angle), it
is more appropriate to use circular distributions. The von
Mises distribution is a circular analog of the normal distri-
bution on a line with a mean directiona and concentration
parameterb. For smallb, it tends to a uniform distribution
and for largeb it tends to a Normal Distribution with vari-
ance1/b. Its continuous distribution defined on the range
x ∈ [0, 2π] with probability density function:

P (x) =
eb cos(x−a)

2πI0(b)
(2)

whereI0(x) is a modified Bessel function of the first kind
of order 0. Here,a ∈ [0, 2π] is the mean direction andb > 0
is a concentration parameter.

3. Half and Full Baum Welch Training

We used the traditional Baum Welch (BW) [5] algo-
rithms to train the HMM models. The model structure
applied here is always Left-Right Banded (LRB). For the
training process, we used two methods. One is Half train-
ing, which is to keep theA matrix unchanged, and only
train theB matrix. In this way, we can estimate how much
errors in the value of theA matrix can affect the final trained
output. Full training is the traditional method, which trains
both theA andB matrix together.

4. Experiments on Two Simple Gestures

The two gestures we use are actually the trajectories of
the hand movements forming a triangle and a square. The
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implementation of the hand trajectory analysis were pre-
sented in previous work [4]. Along each trajectory, the ori-
entation of each of the 25 hand movements is computed and
quantized to one of 18 discrete symbols to form the dis-
crete observation sequences. Then the discrete observation
sequence(T = 24) is used as input to a Hidden Markov
Model classification module for training and testing. There
were 20 training samples and 10 test samples for each of the
two gestures; so there 60 gesture videos in the database in
total.

4.1. A Matrix Comparison

Figure 3 gives the list ofA matrices. The left column is
for the Triangle, and the right column is for the Square. The
first row is computed analytically based on equal duration
time for each leg of the trajectory by (1). The second row
gives the output from Baum-Welch training on the video
data using random LRB intial models (IMs). In Half train-
ing, the analyticA matrix (standardA matrix) is used as the
initial model and kept unchanged during the training pro-
cess. For full training with a pre-computed IM, the analytic
method is used to initialise theA matrices. For full training
with random IM, the initialA matrices are also generated
randomly. We trained the HMMs 20 times and averaged the
results. The models resulting from Full training with the
pre-computed IM all stay very close to the standardA ma-
trix (implying a local maximum has been reached), while
the models from Full training using a random IM yield 11
results which are quite close to the standardA matrix, whilst
the other 9 were very different.

A 
Matrix 

Triangle (3 states) Square (4 States) 

Directly 
Compute  
 

0.875 0.125 0 

0 0.875 0.125 

0 0 1  

0.83 0.17 0 0 

0 0.83 0.17 0 

0 0 0.83 0.17 

0 0 0 1  
BW-
training 
From 
Random 
IM 

0.87 0.13 0 

0 0.87 0.13 

0 0 1  

0.85 0.15 0 0 

0 0.83 0.17 0 

0 0 0.85 0.15 

0 0 0 1  

 
Figure 3. ComparingA Matrix Between the two Methods

4.2 B Matrix Comparison

In section 4.2, we show the experimental results for com-
puting theB matrix by various methods, including different
distribution fitting algorithms and different training meth-
ods with multiple topologies on the training data set.

(a) Histogram Estimation (b) Gaussian Distribution

(c) Max-Value Gaussian (d) von Mises Distribution

Figure 4. B Matrix estimation by multiple methods (Tri-
angle)

4.2.1 Pre-computedB Matrix Comparison

Figure 4 showsB Matrices computed from the distribution
estimation methods. The histogram is not very accurate due
to lack of samples. A fitted gaussian distribution is a way of
handling this problem, but because the data set is not large
enough, it did not represent the observation probabilityB
Matrix well. The Max-Gaussian method matches the his-
togram better, and the distribution tails are more suppressed.

4.2.2 B Matrix Training Comparison

We show theB matrix trained outputs for the Triangle ges-
ture in figure 6. We use four ways to train theB Matrix:
Half, Full training and by random and pre-computed Initial
Models (IM). The aim of the experiment was to check the
degree of match ofB between training outputs and the pre-
computed IM. TheB matrix directly computed from the
histogram is defined as the standardB matrix. We trained
20 times on each of the four methods. The quality of match
is shown in Figure 5.

4.2.3 Discussion of the Degree of Matching

In order to compare theA and B matrix from different
methods, we use the difference parameterDiffDist defined
by:
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DiffDist = vec(M −Mb)vec(M −Mb)T . (3)

We use the difference of the target matrix(M ) and the
standard matrix(Mb), and sum the squares of each element
in the difference matrix. The result means that the smaller
the DiffDist value is, the closer the match to the standard
matrix is. Figure 5 shows the matching degree ofA andB.
After analyzing this, we make the following observations.

Method A matrix 
DiffDist 
(Triangle) 

B matrix 
DiffDist 
(Triangle) 

A  Matrix 
DiffDist 
(Square) 

B Matrix 
DiffDist  
(Square) 

Half-BW-Ran 0 0.4654 0 0.7284 
Half-BW-Pre 0 0.0066 0 0.0698 
BW-Ran 0.0708 0.8632 0.1314 1.4370 
BW-Pre 2.1315e-005 0.0059 8.1856e-004 0.0676 

 

Figure 5. A andB Matrix matching degree byDiffDist

1. When trainingA andB together by Baum Welch with
the pre-computed initial parameters, the trained mod-
els match both of the standard matrices very well for
both triangle and square. However the result using the
random IM does not match. The degree of match for
theA matrix on the pre-computed IM is 2.1315e-005
and 8.1856e-004 for triangle and square respectively,
and for theB Matrix it is 0.0059 and 0.0676. While the
degree of matching on the random IM is 0.0708 (Tri-
angle) and 0.1314 (Square) forA matrix, and 0.8632
and 1.4370 forB matrix. It was interesting to note that
the IM from the histogram seems to be a good place to
start to reach the global optimum.

2. For Half training, the outputB matrix on the pre-
computed IM matches the standardB matrix much
more than on the random IM. In the triangle gesture,
the Half-BW matching degree with the pre-computed
IM is 0.0066, and the one using the random method is
0.4654. It further justifies the choice of initial models
from the histogram distribution.

5. Conclusion

The paper uses two simple gestures to investigate the
Baum-Welch training performance. TheA Matrix is com-
puted based on the Left-Right Banded HMM model and
equal duration in states. TheB Matrix is treated as a prob-
ability distribution and solved through the corresponding
equations on the real data. TheA andB matrices obtained
from the direct computation are quite well matched with the
ones trained from the Baum-Welch training methods with
the pre-computed initial models. However the training out-
put from the randomly initialised models does not match

(a) Half BW(Random) (b) BW(Random)

(c) Half BW(pre-computed) (d) BW(pre-computed)

Figure 6. B Matrix training results

well in some cases. We have proposed some novel ways to
estimate the initial model from direct computation.
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