63,606 research outputs found

    Model Selection via Racing

    Get PDF
    Model Selection (MS) is an important aspect of machine learning, as necessitated by the No Free Lunch theorem. Briefly speaking, the task of MS is to identify a subset of models that are optimal in terms of pre-selected optimization criteria. There are many practical applications of MS, such as model parameter tuning, personalized recommendations, A/B testing, etc. Lately, some MS research has focused on trading off exactness of the optimization with somewhat alleviating the computational burden entailed. Recent attempts along this line include metaheuristics optimization, local search-based approaches, sequential model-based methods, portfolio algorithm approaches, and multi-armed bandits. Racing Algorithms (RAs) are an active research area in MS, which trade off some computational cost for a reduced, but acceptable likelihood that the models returned are indeed optimal among the given ensemble of models. All existing RAs in the literature are designed as Single-Objective Racing Algorithm (SORA) for Single-Objective Model Selection (SOMS), where a single optimization criterion is considered for measuring the goodness of models. Moreover, they are offline algorithms in which MS occurs before model deployment and the selected models are optimal in terms of their overall average performances on a validation set of problem instances. This work aims to investigate racing approaches along two distinct directions: Extreme Model Selection (EMS) and Multi-Objective Model Selection (MOMS). In EMS, given a problem instance and a limited computational budget shared among all the candidate models, one is interested in maximizing the final solution quality. In such a setting, MS occurs during model comparison in terms of maximum performance and involves no model validation. EMS is a natural framework for many applications. However, EMS problems remain unaddressed by current racing approaches. In this work, the first RA for EMS, named Max-Race, is developed, so that it optimizes the extreme solution quality by automatically allocating the computational resources among an ensemble of problem solvers for a given problem instance. In Max-Race, significant difference between the extreme performances of any pair of models is statistically inferred via a parametric hypothesis test under the Generalized Pareto Distribution (GPD) assumption. Experimental results have confirmed that Max-Race is capable of identifying the best extreme model with high accuracy and low computational cost. Furthermore, in machine learning, as well as in many real-world applications, a variety of MS problems are multi-objective in nature. MS which simultaneously considers multiple optimization criteria is referred to as MOMS. Under this scheme, a set of Pareto optimal models is sought that reflect a variety of compromises between optimization objectives. So far, MOMS problems have received little attention in the relevant literature. Therefore, this work also develops the first Multi-Objective Racing Algorithm (MORA) for a fixed-budget setting, namely S-Race. S-Race addresses MOMS in the proper sense of Pareto optimality. Its key decision mechanism is the non-parametric sign test, which is employed for inferring pairwise dominance relationships. Moreover, S-Race is able to strictly control the overall probability of falsely eliminating any non-dominated models at a user-specified significance level. Additionally, SPRINT-Race, the first MORA for a fixed-confidence setting, is also developed. In SPRINT-Race, pairwise dominance and non-dominance relationships are established via the Sequential Probability Ratio Test with an Indifference zone. Moreover, the overall probability of falsely eliminating any non-dominated models or mistakenly retaining any dominated models is controlled at a prescribed significance level. Extensive experimental analysis has demonstrated the efficiency and advantages of both S-Race and SPRINT-Race in MOMS

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl

    Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting

    Get PDF
    As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability
    • …
    corecore