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ABSTRACT

Model Selection (MS) is an important aspect of machine learning, as necessitated by the No Free

Lunch theorem. Briefly speaking, the task of MS is to identify a subset of models that are opti-

mal in terms of pre-selected optimization criteria. There are many practical applications of MS,

such as model parameter tuning, personalized recommendations, A/B testing, etc. Lately, some

MS research has focused on trading off exactness of the optimization with somewhat alleviating

the computational burden entailed. Recent attempts along this line include metaheuristics op-

timization, local search-based approaches, sequential model-based methods, portfolio algorithm

approaches, and multi-armed bandits.

Racing Algorithms (RAs) are an active research area in MS, which trade off some computational

cost for a reduced, but acceptable likelihood that the models returned are indeed optimal among

the given ensemble of models. All existing RAs in the literature are designed as Single-Objective

Racing Algorithm (SORA) for Single-Objective Model Selection (SOMS), where a single opti-

mization criterion is considered for measuring the goodness of models. Moreover, they are offline

algorithms in which MS occurs before model deployment and the selected models are optimal in

terms of their overall average performances on a validation set of problem instances.

This work aims to investigate racing approaches along two distinct directions: Extreme Model

Selection (EMS) and Multi-Objective Model Selection (MOMS).

In EMS, given a problem instance and a limited computational budget shared among all the can-

didate models, one is interested in maximizing the final solution quality. In such a setting, MS

occurs during model comparison in terms of maximum performance and involves no model val-

idation. EMS is a natural framework for many applications. However, EMS problems remain

unaddressed by current racing approaches. In this work, the first RA for EMS, named Max-Race,
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is developed, so that it optimizes the extreme solution quality by automatically allocating the com-

putational resources among an ensemble of problem solvers for a given problem instance. In

Max-Race, significant difference between the extreme performances of any pair of models is sta-

tistically inferred via a parametric hypothesis test under the Generalized Pareto Distribution (GPD)

assumption. Experimental results have confirmed that Max-Race is capable of identifying the best

extreme model with high accuracy and low computational cost.

Furthermore, in machine learning, as well as in many real-world applications, a variety of MS

problems are multi-objective in nature. MS which simultaneously considers multiple optimization

criteria is referred to as MOMS. Under this scheme, a set of Pareto optimal models is sought that

reflect a variety of compromises between optimization objectives. So far, MOMS problems have

received little attention in the relevant literature. Therefore, this work also develops the first Multi-

Objective Racing Algorithm (MORA) for a fixed-budget setting, namely S-Race. S-Race addresses

MOMS in the proper sense of Pareto optimality. Its key decision mechanism is the non-parametric

sign test, which is employed for inferring pairwise dominance relationships. Moreover, S-Race

is able to strictly control the overall probability of falsely eliminating any non-dominated models

at a user-specified significance level. Additionally, SPRINT-Race, the first MORA for a fixed-

confidence setting, is also developed. In SPRINT-Race, pairwise dominance and non-dominance

relationships are established via the Sequential Probability Ratio Test with an Indifference zone.

Moreover, the overall probability of falsely eliminating any non-dominated models or mistakenly

retaining any dominated models is controlled at a prescribed significance level. Extensive experi-

mental analysis has demonstrated the efficiency and advantages of both S-Race and SPRINT-Race

in MOMS.
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CHAPTER 1: INTRODUCTION

Problem Statement and Motivation

Model Selection (MS) is an important aspect in machine learning [56]. Typically, the performance

of a machine learning model is heavily dependent on its parameters, which necessitates param-

eter tuning. Moreover, the No Free Lunch (NFL) theorem for optimization [138] supports the

importance of MS: generally there is no algorithm that performs uniformly better than any other

algorithm over all possible optimization problems. Consequently, the problem of choosing an ap-

propriate algorithm to effectively solve the given type of optimization problem is and will remain

an open problem. The volume of machine learning algorithms is overwhelming. Therefore, the

practitioner in the field faces an important problem, as he/she is confronted with a plethora of

machine learning algorithms to choose from in solving for a specified optimization problem of

interest.

The task of MS is to identify a subset of models that are optimal in terms of selected optimiza-

tion criteria. Typically, the MS problems fall into four categories [56]: feature selection, pre-

processing approach selection, learning methodology selection and hyper-parameter selection. A

common practice in MS is the Brute Force Approach (BFA), which selects models according to

their performances on the same validation set of problem instances. Much research in MS fo-

cuses on alleviating the computational burden of this selection process. Recent attempts along this

line include metaheuristics optimization, local search-based approaches, sequential model-based

methods, portfolio algorithm approaches, and multi-armed bandits.

Racing Algorithms (RAs) are an active research area in MS. RAs refer to a series of algorithms

that perform MS via statistical analysis of accumulated historical observations. RA is an iterative
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procedure which starts off with an initial ensemble of competing models. The performances of

the models are evaluated on a sequence of problem instances and the under-performing ones are

eliminated once sufficient statistical evidence has been collected to demonstrate their inferiority.

Eliminations occur periodically during the racing process and the optimal models will be retained

at the end of racing. This process terminates if only one candidate model is retained, or when

problem instances are exhausted. Due to the timely elimination of under-performing models, the

computational resources are automatically allocated and more computational effort will be con-

centrated on fine exploitation of near-optimal models. Compared with the BFA, RAs save the

computational resources wasted on evaluating unpromising models. In other words, RAs trade off

some computational complexity for a reduced but acceptable likelihood that the models returned

are indeed optimal among the given ensemble of candidate models.

The crux of designing a RA is how to discover inferior models as soon as possible based on

accumulated statistical evidence. Several primary RAs have been put forward in the literature:

Hoeffding Race (HR) [90] based on Hoeffding’s inequality, Block Race (BRACE) [94] based

on Bayesian statistics, Bernstein Race (BR) [93, 85] based on Bernstein’s inequality, and F-Race

[21, 22] based on Friedman test. Other instances of RA include A-Race based on ANOVA analysis,

tn-Race based on paired t-test without any correction for multiple-test, tb-Race based on paired t-

test with Bonferroni correction, racing based on Welch’s t-test, etc. Ever since the first RA was

proposed, RAs have been widely used in a variety of applications, such as algorithm configuration

and hybridization [86, 60], robot control [57], and industrial applications [17, 31].

The MS problems have received great attention in the literature by different research communities,

and various MS problems have been introduced in recent years. In this research, two key ideas are

identified: Extreme Model Selection (EMS) and Multi-Objective Model Selection (MOMS).
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Currently, all the RAs are offline per-set based algorithms where MS occurs before model deploy-

ment and models are compared in terms of their overall average performances on the common

validation set of problem instances. Considering a different MS scenario of solving a given prob-

lem instance with limited computational budget, one wants to maximize the final solution quality

achieved at the end by optimally distributing the overall computational resources among a set

of problem solvers. Such problems are referred to as Extreme Model Selection (EMS), in which,

model selection occurs during problem solving and no separate validation set is needed. Moreover,

the models are compared in terms of their extreme/maximum performances.

Depending on the number of optimization criteria selected for measuring the goodness of mod-

els, MS problems can be single-objective, or multi-objective. Heretofore, all existing RAs were

designed as Single-Objective Racing Algorithms (SORAs) for Single-Objective Model Selec-

tion (SOMS) which takes only one optimization criterion into consideration. For instance, HR

was used to select optimal supervised learning model only in terms of their prediction accuracy.

BRACE was adopted to minimize the Leave-One-Out Cross Validation (LOOCV) error of regres-

sion models with different subsets of features. However, in machine learning, as well as many

real-world applications, many of the MS problems are multi-objective in nature. In supervised

learning, for example, a good model needs to maintain a balance between prediction accuracy

and model complexity. In multi-task learning, multiple related tasks are learned at the same time

with a shared representation and hence it is expected to optimize the objectives of all constituent

tasks simultaneously. We refer to MS with multiple optimization objectives as Multi-Objective

Model Selection (MOMS) where a set of Pareto optimal models is expected to be returned with

compromised optimization objectives to various extents.

However, neither EMS nor MOMS have received significant attention in the literature of RAs.

Such limitations inspired us to design RAs for EMS and MOMS.

3



Contributions

This work aims at investigating racing approaches along two distinct directions: EMS and MOMS.

More Specifically, the contributions of this research are summarized as follows:

• In this research, we proposed the first RA for EMS, named Max-Race, which optimizes

the final solution quality by automatically allocating the computational resources among an

ensemble of problem solvers when solving a particular problem instance. In Max-Race,

the tail distribution of a model’s performance is approximated via the Point Over Threshold

(POT) approach rooted in Extreme Value Theory (EVT). Moreover, a parametric hypothesis

test based on the Generalized Pareto Distribution (GPD) assumption is developed to identify

significant difference between the extreme performances of a pair of models.

• In this work, we put forward the first Multi-Objective Racing Algorithm (MORA) in a fixed-

budge setting, namely S-Race. In S-Race, the MOMS problems are properly addressed in

the sense of Pareto-optimality. In the fixed-budget setting, the total number of available

problem instances for validation is fixed and is known by the forecaster. It is most common

in medical trials, for example, where the length of the test phase is determined beforehand

(e.g. enrolls a fixed number of patients). In S-Race, the non-parametric pairwise sign test

is utilized for pairwise dominance relationship inference. Besides, the overall probability of

making any Type I errors is strictly controlled at a user specified level via a discrete Holm’s

Step-Down Family-Wise Error Rate (FWER) control method.

• A novel MORA based on Sequential Probability Ratio Test (SPRT) with an Indifference

zone was developed, called SPRINT-Race. SPRINT-Race is the first MORA in the fixed-

confidence setting, which is applicable for situations where the samples arrive sequentially

in an online fashion. In the fixed-confidence setting, the goal of the forecaster is to min-
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imize the number of validation instances required to achieve a fixed confidence about the

optimality of the returned models. In online controlled experiments at large scale for data-

driven decisions, for instance, selected beta users are enrolled sequentially in the test until

it is, e.g. 95%, confident that the best test object(s) is(are) identified. In SPRINT-Race, a

non-parametric ternary-decision dual-SPRT is employed to establish pairwise dominance

and non-dominance relationships. In addition, a sequential Holm’s Step-Down procedure is

employed to control the overall probability of making any Type I or Type II errors at a user

specified level.

Organization of the Dissertation

The rest of this dissertation is organized as follows: Chapter 2 provides an brief overview of MS

and the state-of-the-art MS algorithms. Moreover, a detailed review of RAs is given along with

discussions of their current limitations in Chapter 3. Chapter 4 introduces the first RA for EMS,

named Max-Race, which features a parametric hypothesis testing based on EVT and GPD model-

ing via POT. The problem of MOMS are described in Chapter 5. Chapter 5 also presents the first

MORA in a fixed-budget setting, namely S-Race, with details of the Sign Test and the Holm’s Step-

down Procedure. Chapter 6 discusses the details of a fixed-confidence MORA, namely SPRINT-

Race, including the background knowledge of SPRT, the dual-SPRT for statistical inference of

pairwise dominance and non-dominance relationships, and the sequential Holm’s procedure. Fi-

nally, concluding remarks are provided in Chapter 7.
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CHAPTER 2: BACKGROUND AND STATE-OF-THE-ART IN MODEL

SELECTION

Model Selection Problem

Model Selection (MS) (also known as model configuration, algorithm selection, algorithm con-

figuration, or parameter tuning) is a sequential decision making problem. The task of MS is to

identify the optimal problem solvers for specific problem instance(s). MS problems have been

studied extensively in machine learning. The No Free Lunch (NFL) theorem for optimization

[138] demonstrates that there is no algorithm that performs uniformly better than any other al-

gorithm over all possible optimization problems. Moreover, most machine learning algorithms

possess a certain number of parameters, either categorical or numeric, which have significant im-

pact on their performances. As a result, MS problems have gained much attention in recently years,

and now there exists plenty of literature presenting varieties of MS approaches.

The MS problem is first formalized as the algorithm selection problem [109, 110], in which an

algorithm serves as a selection procedure itself to select free parameters for a specific class of al-

gorithms so as to fulfill predefined selection objectives. Such algorithm selection problem features

three characteristics: problem space, algorithm space and performance measurement.

A more recent formal description of MS problem is provided in [21, 20]: the solution of a MS

problem is to identify the optimal configuration parameters, from a set of candidate configurations,

which optimizes the desirability of the parameters in terms of a typically infinite set of problem

instances. The author emphasized that the difficulty might arise from the black-box features of the

models.
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Formally speaking, the MS problem can be stated as follows:

Given

• a model configuration spaceM (e.g. parameter settings, etc), in which each modelM ∈M’s

behavior on a given problem instance is totally defined.

• a problem instance space I, where the problem instances are sampled.

• a performance metric c, which measures the performance of any M ∈M on a subset of I.

find a model M ∈M that optimizes c.

MS encompasses a wide variety of problems [56], such as feature selection, data pre-processing

method selection (e.g. normalization, dimension reduction), learning strategy selection (e.g. neural

network, kernel method, nearest neighbor) and hyper-parameter selection. Examples of real-world

applications can be found in computer vision, pattern recognition, industrial engineering, etc. A

list of such applications can be found in [95].

Leading MS Methods

Although there are various MS methods, many of them can be considered as extensions or varia-

tions of several major ideas. In model-based selection, an explicit predictive model is built based

on previously accumulated knowledge of the MS problem, which will be used later to generate

new models. On the contrary, no model is built to map the relationship between model param-

eters and model performance in model-free selection. Another independent distinction is made

between static selection, in which the pool of candidate models remains fixed after initialization;

and dynamic selection, in which the ensemble of candidate models is updated periodically during
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the entire selection process. Moreover, if selection happens during problem solving, it is online

selection; and if a separate validation phase is required for selection, it is offline selection. In

the latter type of selection, the chosen model is optimal for a specific class of problem instances.

Hence, it offers the most value when the problem instances are similar. Online selection, on the

contrary, offers the most value when the problem instances are diverse and different. Furthermore,

if the selected model is optimal for just a specific problem instance, the MS problem is referred to

as per-instance selection [67] or specialist selection [43]. On the other hand, if a set of problem

instances is targeted, the corresponding MS problem is referred to as per-set selection or generalist.

The classification of existing state-of-the-art MS approaches will help understand how they are

developed and when to apply each. In this research, we identify two key ideas, static selection

and dynamic selection, to organize the current literature accordingly. Each division is further sub-

divided into model-free selection and model-based selection according to whether an explicit model

is built to guide the selection for optimal models. Figure 2.1 presents the proposed categorization of

several major MS approaches which will be discussed in more detail in the following subsections.

In the remainder of this section, five classes of MS approaches are discussed. Search-based Selec-

tion utilizes powerful stochastic local search methods to search for good parameter configurations

within potentially vast model space; Metaheuristic Optimization uses population-based algorithms

as higher-level optimizers to select lower-level optimization algorithms; Sequential Model-based

Selection builds a regression model to learn a mapping from the model space to the objective space

based on which promising configurations are selected for further investigation; Portfolio-based

Selection combines several algorithms, which run independently or are interleaved following a

pre-determined policy, into a portfolio; and Multi-Armed Bandit features different model selection

strategies and stopping conditions for sequential decision making problems defined by a set of

actions.
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Figure 2.1: Classification of existing state-of-the-art MS algorithms, i.e. Local Search-based
Selection (LSS), Metaheuristic Optimization (MO), Sequential Model-based Selection (SMS),
Portfolio-based Selection (PS), and Multi-Armed Bandit (MAB).

Local Search-based Selection

The idea of performing local search in solving configuration problems is similar to searching for

the optimal configuration in the configuration space manually. Given a randomly chosen config-

uration to start off with as an incumbent configuration, the user tries to improve its performance

by modifying one parameter at a time. If no improvement is detected, the previous modification is

rejected; otherwise, the new configuration is accepted as the new incumbent configuration. Sim-

ilar to such iterative first-improvement search process, the key idea behind ParamILS [69, 72] is

to utilize Iterative Local Search (ILS) methods [88] to search for good parameter configurations.

ILS methods consist of iterating calls to build a sequence of locally optimal solutions either by

perturbing the current optimal solution, or by applying local search or hill climbing methods start-

ing from a modified solution. In ParamILS, a number of initial candidate solutions are evaluated
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and the best of them is selected as the starting point for the ILS process. The ILS method used in

ParamILS is based on one-exchange neighborhood in which only one parameter is modified at a

time. After a certain number of permutations, the new configuration is accepted as the new starting

point with prescribed probability, so as to maintain diversity to some degree.

The most straightforward variant of ParamILS is BasicILS [69, 72] in which all candidate permu-

tations are evaluated by equal number of trials. When the number of benchmark instances is large,

however, this approach is less than satisfactory since computational resources are wasted on under-

performing configurations. One way of addressing such limitation is to perform multiple BasicILS

simultaneously in parallel. FocusedILS [69, 72], another variant of ParamILS, addresses the same

problem by assigning more computational resources to promising configurations. In FocusedILS,

a small number of runs are performed for the initial ensemble of configurations. The candidate

configurations are compared with each other on a common set of problem instances, and inferior

ones are removed from further evaluation. Additional runs, namely bonus runs, are performed

for the retained configurations. Moreover, the Probably Approximately Correct (PAC) property of

FocusedILS is provided in [69]: the probability of finding the global optimal configuration in Fo-

cusedILS asymptotically approaches 1 for increasing number of iterations. Obviously, FocusedILS

is more efficient than BasicILS, especially when the configuration space is large. To further speed

up ParamILS, the Trajectory-preserving Adaptive Capping (TP capping) and Aggressive Adaptive

Capping (Aggr capping) strategies were introduced [72] which adaptively determine the cutoff

time of each trial by comparing the lower bound of the performance of one configuration and the

upper bound of another comparison configuration’s performance.
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Metaheuristic Optimization

In metaheuristic optimization, a metaheuristic refers to a higher-level optimization algorithm that is

used to select a lower-level optimization algorithm according to pre-selected optimization criteria.

Metaheuristic algorithms mostly involve evolutionary computing techniques, such as evolutionary

algorithms, ant colony optimization, particle swarm optimization, differential evolution, etc. The

advantage of using metaheuristics is that few assumptions are required about the optimization

problem to be solved.

As a metaheuristic, Genetic Algorithms (GAs) were employed in [83] for finding the optimal

hyper-parameters of a kernel-based Support Vector Machine (SVM) model. In GA, a linear geno-

type encoding of the SVM’s hyper-parameters is defined, including kernel exponents, kernel com-

bination operators, kernel parameters and the regularization parameter. The individual quality is

measured in terms of ten-fold cross validation error of some classification tasks.

In [54], a Particle Swarm Optimization (PSO) algorithm served as a search algorithm to explore

the discrete parameter space of SVM configurations with given initial starting points. In their

PSO implementation, each particle represents a parameter configuration of a SVM model. For

regression problems, the fitness function is defined as the normalized mean square error of a ten-

fold cross validation experiment.

In [114], the author took advantage of the Ant Colony Optimization (ACO) algorithm to select time

delays for different dimensions in non-uniform embedding. For a given embedding problem, each

individual ant represents a solution. Three fitness functions are designed for different optimization

criteria (i.e. the minimal neighborhood distance criterion, the minimal false nearest neighborhood

criterion, and the minimum description length criterion).
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The Relevance Estimation and Value Calibration (REVAC) algorithm [96] was proposed to tackle

the problem of choosing the best mutation operators and parameters of an Evolutionary Algorithm

(EA). In REVAC, the joint probability distribution over all possible vectors is maintained. Shannon

entropy is used to measure parameter relevance. Hence, the parameters that maximize Shannon

entropy are always preferred. The objective of the REVAC algorithm is to maximize the expected

performance of the specific EA.

In [117], a new Multi-objective Evolutionary Algorithm (MOEA), namely Multi-Function Evolu-

tionary Tuning Algorithm (M-FETA), was proposed to select the optimal parameters of EAs on

a collection of functions. Due to the stochastic nature of EAs, the performance of each candi-

date EA is assessed by looking at the performances of its nearest neighbors. To be more specific,

the dominance relationship between a pair of models is inferred via a t-test in an objective-wise

fashion based on the performance vectors of 2 sets of nearest neighbors. The experimental results

illustrated that Pareto front solutions provide strong insight into the optimization problem itself.

Feature selection is a MS problem in which a small subset of relevant features is expected to be

identified so that the same or better prediction accuracy is achieved. In [140], a multi-objective PSO

approach was developed for feature selection in classification. Each particle is a d-dimensional

binary vector where d is the number of total available features. Two conflicting optimization

objectives are considered: minimizing the number of features and maximizing the classification

accuracy. The obtained Pareto front can be further refined by the users according to their specific

needs.

Sequential Model-based Selection

Sequential model-based selection is also widely known as Sequential Model-based Optimization

(SMBO) in which a regression model is built explicitly to learn a mapping from the model space to
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the objective space. Typically in model-based selection, the regression model is initialized based

on the performances of the candidate models in preliminary runs. A set of potential configurations

is sampled according to the predictions made by the regression model, and the optimal ones are

retained which in turn help update the regression model to improve its prediction accuracy. The

problems that SMBO addresses can be regarded as black-box optimization [63]: Given an unknown

objective function f , either deterministic or stochastic, and a search space X , the goal is to find an

input x ∈ X that optimizes f by using surrogate models. The surrogate models in SMBO are used

to approximate the actual performances of any models based on which promising configurations

are selected for further investigation.

In [37], good parameter settings are selected via design of experiments. More specifically, a two-

level (i.e. low level, high level) full factorial design method is adopted to construct a linear response

surface. Gradient descent is applied afterwards, so that the gradient of the linear model guides the

search direction for better parameter settings. However, the proposed method may not work well

when the class of problems being studied is too broad for one set of parameter settings. Therefore,

it is important to classify the problems based on their characteristics.

CALIBRA was proposed in [2] which utilizes Taguchi’s fractional factorial experimental designs

[125] coupled with a local search procedure. A non-linear response surface is built and updated

occasionally. CALIBRA performs well when the number of parameters is small (e.g. ≤ 5) and

the correlation among parameters is negligible. As emphasized by the author, CALIBRA is more

beneficial in situations where the parameter values have significant impact on the performance of

the algorithms being tuned.

The Efficient Global Optimization (EGO) algorithm proposed in [73] fits a response surface model

by modeling the objective and constraint functions via noise-free Gaussian process, which is

known as the “Design and Analysis of Computer Experiments (DACE) stochastic process model”.
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The EGO algorithm starts off with a set of initial points specified by a space-filling experimental

design to fit a DACE model using maximum likelihood estimation. Then, cross-validated stan-

dardized residuals are examined to determine whether the model is satisfactory, and whether a log

or inverse transformation is needed to refit the model. By maximizing the expected improvement

using a branch-and-bound algorithm, new samples are generated and the DACE model is updated

iteratively. However, the weakness of the DACE model is that it assumes that the parameters of the

Gaussian process are known, which is generally not true in practice. Therefore, utilizing estimated

parameters will result in a slight underestimation of the prediction error when the sample size is

small.

The Sequential Kriging Optimization (SKO) method [64] was proposed as an extension of the

EGO algorithm to deal with stochastic black-box optimization problems. In SKO, an initial kriging

meta-model is built for the objective functions in which the response is assumed to be the sum of

linear models with random errors. Cross validation is adopted to ensure the prediction accuracy

of the kriging model. New samples are selected from the model using the Nelder-Mead Simplex

algorithm [98], so as to maximize the augmented expected improvement. The advantage of the

kriging model is that it is able to approximate a wide variety of objective functions via the noisy

Gaussian process model. However, its approximation is poor, no better than a purely random

search, if the sample size is small or the objective function is not smooth and behaves irregularly,

since the assumption that the noise is normally distributed is violated. Moreover, the computation

cost of fitting a kriging model is high when the dimensionality if too high (> 10).

Similar to SKO, the response is modeled by a stochastic regression model in Sequential Parameter

Optimization (SPO) [16]. To be more specific, a Gaussian correlation function and a regression

model with polynomial of order 2 have been adopted in the noise-free Gaussian process model.

The Latin Hypercube Sampling (LHS) method [92] is used to determine an initial set of design

points, while additional such points are sampled in order to maximize the generalized expected
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improvement. As the author mentioned, the selection of an appropriate number of design points

requires a balance between exploration and exploitation.

In [71], the two most influential methods for model-based optimization of noisy objective func-

tions, namely SKO and SPO, were compared and the experimental evidence indicated that SPO

is more robust than SKO. The impact of four key design factors of SPO were investigated, which

were the initial design, data transformation, intensification mechanism and expected improvement

criterion. According to the experimental findings, a variant of SPO was proposed, named SPO+,

which extends SPO with a Latin hypercube design, log-transformed response values, expected im-

provement criterion and a new intensification mechanism. The experimental results demonstrated

that SPO+ achieves state-of-art performance, and it is better than SPO on CMA-ES configuration

optimization problems.

Another variant of SPO was developed in [68], named Time-Bounded Sequential Parameter Op-

timization (TB-SPO). It replaces the time-consuming LHS with interleaving random sampling.

Moreover, a time-bounded intensification mechanism is employed which ensures that the cost of

running the target algorithms does not exceed a pre-set limit. In addition, an approximate Gaussian

process model, named the projected process approximation, is used to gain substantial improve-

ments in reducing computational complexity. The author demonstrated that TB-SPO leads to sig-

nificant improvement over SPO in terms of computational efficiency when applied on optimizing

local search algorithms for SAT problems.

The intensification mechanism is the key component for any SMBO algorithms, which determines

how many runs to allocate to each candidate configuration. Consequently, a simple instantiation

of the general SMBO algorithm, namely Randomized Online Approximate Racing (ROAR), was

designed with four design components including initialization, model fitting, configuration selec-

tion and intensification. ROAR is model-free since it performs random sampling and no model
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is ever used. Accordingly, the Sequential Model-based Algorithm Configuration (SMAC) [70]

method was introduced which utilizes ROAR’s intensification mechanism. In SMAC, each candi-

date configuration is evaluated if and only if sufficient evidence has been collected to demonstrate

its competitiveness. In order to support both numerical and categorical parameters, SMAC em-

ploys a weighted Hamming distance kernel function for Gaussian Process (GP) model and random

forests as the regression model. SMAC also supports model selection for multiple problem in-

stances with large mixed categorical and numerical parameters. GP is a common tool for modeling

a learning algorithm’s generalization performance on optimizing expensive functions, especially in

Bayesian optimization [118]. In [70], a fully Bayesian optimization approach, which aims at max-

imizing the expected improvement over the current best value, was developed for hyper-parameter

selection.

Portfolio-based Selection

The idea of Algorithm Portfolio (AP) is to combine several algorithms into a portfolio which will

be running independently or be interleaved following a pre-determined policy. The need of AP is

motivated by the NFL theory: since there is no unique optimal problem solver that is best for all

the problems, combining different algorithms into a portfolio is able to improve the overall general

performance (e.g. computation time, solution quality, etc).

Generally speaking, there are two aspects of AP design [28, 123]:

• selection - it starts by comparing the candidate algorithms following some simple rules based

on preliminary runs and then the optimal one(s) is(are) selected to run for the remainder of

the time.
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• scheduling - the computational resources are allocated, statically or dynamically, among

all candidate algorithms. The candidate algorithm run either in parallel, or alternatively

following a switching paradigm.

In [28], both selection-type and switching-type AP approaches are studied by applying machine

learning techniques to low-knowledge algorithm control. In the selection-type AP, a Bayesian

classifier is trained to predict the algorithm that has the best performance on the new problem

instances to be solved. In the switching-type AP, a reinforcement learning approach is used to

allocate more runtime to promising algorithms.

Machine learning plays an important role in predicting algorithm performance. In [139], a per-

instance AP for solving Satisfiability Problems (SATs), namely SATzilla, was developed that em-

ploys empirical hardness models as runtime predictors. By modeling several algorithms’ runtime

based on their historical performances and the characteristics of the given problem, the algorithm

with the best predicted performance will be selected as the problem solver for the new problem

instance(s) to be solved.

Other similar work in the field of Constraint Programming (CP) were CPHydra [100] and clasp-

folio [50]. In CPHydra, the performance of each algorithm is learned by solving a large validation

set of problem instances. When a new problem instance is set to be solved, k-Nearest Neighbor is

used to find similar validation problem instances according to their features. Then the algorithm

with the best overall performance, with respect to the set of similar validation instances, will be

selected to solve the new problem instance. claspfolio also takes advantage of instance features

for algorithm selection. The idea of claspfolio is to train classifiers on features of benchmark

instances in order to predict the best solver from a pre-selected algorithm portfolio for the new

problem instances.
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Distinguished from previous work, Modular Architecture for Probabilistic Portfolios (MAPP)

[116] assumes that the runtime of each individual solver on a given problem instance follows a

fixed but unknown distribution. It first estimates the Run Time Distributions (RTDs) by build-

ing a generative model. Then it incorporates feature information to predict problem instances on

which the solvers exhibit similar performances. Finally, an execution schedule is provided for an

ensemble of problem solvers via dynamic programming approximation.

Multi-Armed Bandit

Multi-Armed Bandit (MAB) problems refer to a wide variety of sequential allocation problems

with an exploration-exploitation tradeoff. Depending on the assumptions of the payoff/reward

process, there are three fundamental formalizations of MAB problems: stochastic, adversarial, and

Markovian. In our research, we are only interested in stochastic MABs.

The stochastic MAB problems can be formalized as follows: Given K arms with K unknown pay-

off probability distributions p1, p2, · · · , pK respectively, at each time t, the forecaster chooses an

arm It ∈ {1, · · · , K} to pull once, and obtains an observation of the identically and independently

distributed (i.i.d.) payoff, denoted as XIt ∼ pIt . If µi denotes the means of pi, for i = 1, · · · , K,

the index of the arm with the best expected payoff k∗ and the best expected payoff µ∗ are defined

as

k∗ , argmax
k∈1,··· ,K

µk , µ
∗ , µk∗ (2.1)

A wide variety of stochastic MAB algorithms are investigated in the literature, which are distin-

guished by their optimization objectives.
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Exploitation versus Exploration Dilemma

A common criterion for measuring the performance of a MAB algorithm is the expected cumula-

tive regret, defined in Equation (2.2). It refers to the expected value of the difference between the

cumulative rewards of an ideal MAB strategy and the rewards of the proposed MAB algorithm.

E [RT ] , max
i=1,··· ,K

E

[
T∑
t=1

Xi,t −
T∑
t=1

XIt,t

]

= Tµ∗ −
T∑
t=1

E [µIt ]

(2.2)

The fundamental dilemma in MAB is the exploitation-exploration trade-off. Exploitation refers to

the tendency of pulling the current best arm, while exploration denotes the behavior of exploring

other arms to gain new knowledge in order to increase the probability of identifying the actual best

arm. A good strategy for tackling MAB problems, aiming at minimizing E [RT ] in Equation (2.2),

is all about maintaining a balance between exploitation and exploration. Such exploitation versus

exploration dilemma is also faced in Reinforcement Learning (RL) [124].

A well-known result of Lai and Robbins [79] shows that the expected cumulative regret of the

optimal MAB algorithm grows at least logarithmically, that is E [RT ] = O(log T ) for large T . In

the MAB literature, theoretical regret bounds have been established for various bandit algorithms.

The most popular principle of many stochastic sequential decision-making problems is the so-

called optimism in face of uncertainty [79]. In face of uncertainty, the forecaster accumulates

observations from previous actions to estimate the desirableness of a set of potential actions. Al-

most all existing MAB algorithms aiming at minimizing the expected cumulative regret are based

on this simple heuristic principle.
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The Upper Confidence Bound (UCB) family of bandit algorithms [10] is a classical implementation

of the optimism in face of uncertainty principle for bounded rewards. At each iteration of the

simplest UCB-1 algorithm, the arm with the best upper confidence bound of the expected reward

is always pulled. To be more specific, at time t, the UCB-1 strategy always plays the arm with

index It, such that

It , argmax
i∈1,··· ,K

{
µ̂i,t−1 +

√
2 log t

Ti(t− 1)

}
(2.3)

where µ̂i,t−1 = 1
Ti(t−1)

∑Ti(t−1)
s=1 Xi,s, in which Xi,s ∈ [0, 1] is an i.i.d. sample of distribution pi, and

Ti(t− 1) is the number of times that the ith arm has been played up to time t− 1.

In [10], it was shown that, via Hoeffding’s inequality, at any time t, the expected regret of UCB-1

is bounded by:

Rt ≤ 8
∑

i:µi<µ∗

(
ln t

∆i

)
+

(
1 +

π2

3

) K∑
i=1

∆i (2.4)

Hence it is said that the UCB-1 algorithm solves the MAB problem because it achieves the the

logarithmic lower regret bound of Lai and Robbins [79], up to a multiplicative constant.

Intuitively, tighter confidence bounds imply smaller regret. The regret bound of UCB-1 can be

improved in many ways. The UCB-V algorithm [9] utilizes Bernstein’s inequality, which considers

the variance of the distributions as well as the expected value, to achieve a smaller regret. A

similar idea was developed in [91]. Moreover, the KL-UCB algorithm was presented in [48] based

on Kullback-Leibler divergence. At each iteration of KL-UCB, only the arm with the maximum
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upper bound of the deviations of the exponential moments is pulled. It was shown that the KL-UCB

algorithm achieves a uniformly better regret bound than UCB and its variants.

Unlike optimistic algorithms based on concentration inequalities, Thompson Sampling (TS), also

called Bayesian Bandits, uses Bayesian sampling in which any arm is sampled according to the

posterior probabilities that it maximizes the expected reward. In [30], some empirical results

were provided to demonstrate the superiority of TS over UCB on bandit problems. The basic

idea of TS is similar to probability matching in which the probability of each arm being drawn is

proportional to its probability of being the optimal arm. While this heuristic, originally appeared

in [128], has been used for many years as bandit problem solvers, it was not until recently that

theoretical analysis of its performance was achieved for Bernoulli bandits [4]. More specifically,

the expected cumulative regret at time T isO
(

lnT
∆

+ 1
∆3

)
for the 2-armed bandit, where ∆ defined

as µ1 − µ2 (µ1 > µ2), and it is O
([(∑K

i=2
1

∆2
i

)2

lnT

])
for aMAB, where ∆i = µ∗ − µi. There

are some discrepancies between analyzing TS-based MAB and UCB-based MAB, but it was shown

in [30] that the logarithmic bounds provided above are optimal in terms of ∆i with some constant

factors.

In [78], the authors proposed a TS algorithm for exponential family bandits using Jeffreys prior,

which is an asymptotically optimal algorithm for bandit models and is a competitive alternative to

KL-UCB for exponential family bandits. The cornerstone of their proof is a finite time concentra-

tion bound for posterior distributions in exponential families.

In [5], the author provides two examples of TS: one with Bernoulli distribution and Beta priors,

and the other with Normal distribution and Normal priors. The authors used novel martingale-

based analysis techniques to find the optimal problem-dependent bound of E [RT ] and the first

near-optimal problem-independent bound, which are (1+ ε)
∑

i
lnT
∆i

+O
(
K
ε2

)
andO

(√
KT lnT

)
respectively.
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Due to its outstanding performance, TS is applied later on solving complex bandit problems [55]

in which multiple arms are pulled simultaneously each time. The authors are able to show that the

regret bound scales logarithmically with time.

There are two distinct settings of stochastic MAB in the literature. In the frequentist setting,

the reward distributions of the arms are determined by unknown but deterministic quantities, and

the goal of the MAB algorithm is to achieve the best parameter-dependent performance. On the

contrary, in Bayesian approaches, each arm is characterized by a parameter which is endowed

with a prior distribution. Consequently, the Bayesian approaches are evaluated by their average

performances over all possible problem instances weighted by the prior information. In [77],

Bayesian theory is integrated into the UCB family, termed Bayes-UCB. It is similar to TS which

draws samples from the payoff distributions so as to select the arms with probability proportional to

their posterior probability of being optimal. The authors showed that the Bayes-UCB algorithm is

optimal in the sense that it achieves the logarithmic lower bound of Lai and Robbins [79]. However,

finite-time regret bounds and asymptotic optimality of Bayes-UCB have only been provided for

binary MABs.

In [41], the author studied how to extend UCB to solve multi-objective bandit problems, either by

adopting a linear or non-linear scalarization function, or using the concept of Pareto dominance.

The upper bound of the expected Pareto regret of the proposed Pareto UCB-1 is obtained directly

following the analysis of UCB-1 and is given as
∑

i/∈A∗
8 log

(
n 4
√
D|A∗|

)
∆i

+
(

1 + π2

3

)∑
i/∈A∗ ∆i, where

D is the number of objectives and A∗ is the set of Pareto optimal arms in terms of their expected

payoffs.
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Pure Exploration Problems

The Best Arm Identification (BAI) problem is a variant of the MAB problem. Instead of minimiz-

ing the cumulative regret over the course of problem solving, the goal of BAI is to find i∗, the index

of the optimal arm. Let us denote the index of the arm returned by the forecaster after T iterations

as JT . A simple regret of measuring the performance of BAI algorithm is

rT = µ∗ − µJT (2.5)

Moreover, the error probability as defined in Equation (2.6) and denoted as eT , is also a com-

monly used performance metric for BAI, which refers to the probability that a non-optimal arm is

returned.

eT = P (JT 6= i∗) (2.6)

If MAB problems for cumulative regret minimization are regarded as online MS problems which

require a balance between exploration and exploitation, the BAI problems can be regarded as

offline MS problems which emphasize more on exploration.

In [45], Action Elimination (AE) was proposed which eliminates sub-optimal arms as early as

possible to reduce the total number of samples. Three (ε, δ)-PAC style AE algorithms are designed

for BAI: a naive algorithm, Successive Elimination (SE), and Median Elimination (ME) with

sample complexities O
(
K
ε2

log K
δ

)
, O

(
log K

δ

∑K
i=2

1
∆2
i

)
and O

(∑K
i=2

ln
(
K
δ∆i

)
∆2
i

)
respectively. In

SE, the arms with minimal average rewards will be eliminated. On the other hand, in ME, any

arms with average rewards below the media are removed.
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In [7], two exploration strategies in the fixed budget setting were suggested: a highly explor-

ing UCB policy with error probability upper bounded by 2TK exp
(
−2a

25

)
, and a parameter-free

Successive Rejects (SR) algorithm with error probability no larger than K(K−1)
2

exp
(
− T−K

log(K)H2

)
.

Moreover, the hybridization of them leads to a new algorithm, called adaptive UCB-E. Although

analytical results of its optimality are not provided, the experimental results demonstrated its su-

periority.

In [47], a unified approach for BAI is proposed, namely Unified Gap-based Exploration (UGapE)

algorithm, which uses a unique arm-selection strategy for both fixed budget setting and fixed con-

fidence setting. They only differ in the way of computing the confidence interval. Analytical

proof about the upper bound of the simple regret, success probability and sample complexity are

provided for both versions of the unifying UGapE algorithm.

In [27], a novel Successive Accepts and Rejects (SAR) algorithm was proposed for top-m arms

identification as an extension of SR in which the best m arms are expected to be returned. Let us

assume that µ1 > · · · > µK for K arms, and the arms with indices J1, · · · , Jm are returned. In

top-m arms identification, the probability of misidentification is defined as follows:

eT = P ({J1, · · · , Jm} 6= {1, · · · ,m}) (2.7)

In SAR, each arm could be accepted as a top-m candidate or be excluded from being a top-m

candidate if sufficient evidence is collected. The evidence is dependent on the empirical means of

the payoffs. It was shown in the paper that the error probability of SAR for top-m arms identifica-

24



tion is upper bounded by 2K2 exp

(
− T−K

8log(K)H
〈m〉
2

)
, where H〈m〉2 is a commonly used complexity

measure of the multiple identification bandit problem.

H
〈m〉
2 , max

i∈{1,··· ,K}
i
(

∆
〈m〉
i

)−2

, ∆
〈m〉
i ,

µi − µm+1 if i ≤ m

µm − µi if i > m
(2.8)

In [74], a PAC-stylem-best arms identification, namely Explore-m, is studied and three algorithms

were proposed. In their formulation, the objective is to minimize the sample complexity necessary

to reliably identify (with probability of at least 1−δ)m ε-optimal arms. An arm is called ε-optimal

if its expected reward is within ε of µ∗. The corresponding algorithms are called (ε,m, δ)-optimal

algorithms. Generally, the sample complexity is a function of K,m, ε and δ. These algorithms are

called Fixed-Sample-Complexity algorithms, since they guarantee to achieve the predefined prob-

ability of correct identification in the worst case when the differences between µi, i ∈ {1, · · · , K}

are small. The sampling efficiency can be improved in practice by adapting the relative spacing

between arms and their variances.

Distinguished from their previous research which is restricted to the worst-case sample complexity,

Kalyanakrishnan & Stone developed a set of PAC-based Variable-Sample-Complexity algorithms

for Explore-m bandit problems [75]. The proposed algorithms distinguish between the stopping

rule and the sampling strategy. The accuracy and efficiency of the algorithms only depend on

the proposed stopping rule which could be coupled with any sampling strategy. It meets the PAC

correctness requirement with the best-known worst-case sample complexity, and its expected sam-

ple complexity on a bandit instance, which can be substantially lower than the worst-case sample

complexity, depends on the difficulty of that instance. Based on different confidence intervals, the

Lower Upper Confidence Bound (LUCB)-1 and LUCB-2 algorithms were developed in [75], both

of which are similar to the UCB algorithm with a greedy sampling strategy.
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Max-K Armed Bandit

The Max K-Armed Bandit problem was first introduced in [33]. The objective of Max K-Armed

Bandit is to allocate trials among the arms so as to maximize the best single reward received at the

end. The objective could be formally stated as max max
i=1,··· ,K

max
j=1,··· ,Ti

Rj(pi), where Rj(pi) refers to

the reward of the j th pull of arm i with underlying reward distribution pi. The Double Exponential

Sampling strategy was proposed in which the number of pulls of the observed best arm would

grow double exponentially with respect to the number of pulls of the second best. The proposed

strategy is based on the assumption that pi, i = 1, · · · , K follows a Gumbel distribution, one of

three Generalized Extreme Value (GEV) distributions [34].

In [120], a PAC-style Max K-Armed Bandit algorithm was proposed which follows an explore-and-

exploit pattern. Assuming that each arm, when pulled, returns a random reward sample drawn from

a GEV distribution, the proposed approach first pulls each arm O
(

ln 1
δ

ln(T )2

ε2

)
times to estimate

its expectation. Then the arm with the maximum estimated expectation value will be pulled for

the remaining trials. The author is able to show that, with probability at least 1 − δ, the expected

maximum payoff received over a series of n trials is within ε of the real optimal.

All previous approaches dealing with Max K-Armed Bandit are parametric approaches with GEV

distribution assumptions about the rewards. If such assumptions are invalid, however, parametric

approaches cannot work well. Therefore, non-parametric approaches are developed [121, 122].

The motivation behind these approaches is straightforward: maximizing the expected maximum

reward obtained at the end is equivalent to maximizing the probability of obtaining a solution that

is > t where t is a prescribed threshold.

In [121], an interval estimation algorithm was proposed based on Chernoff’s inequality. When

applied as a thresholded Max K-Armed Bandit algorithm, it has additive regret of O (Tp∗k lnT )
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where p∗ , maxi pi with pi referring to the probability that the reward of the ith arm exceeds t and

T is the total number of trials. Similarly, a Chernoff Interval Estimation algorithm was proposed

in [122] which is applied on Max K-Armed Bandit as Threshold Ascent algorithm.

A semi-parametric Max K-Armed Bandit algorithm was developed by Carpentier et al. [29],

named ExtremeHunter. It assumes that the reward distribution is heavy-tailed and only the sec-

ond order Pareto assumption [58] is made. Moreover, ExtremeHunter selects models based on an

optimism in face of uncertainty principle. The author is able to show that the proposed strategy

performs almost as well as the ideal strategy and is able to detect the arm with the heaviest tail

with high precision.
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CHAPTER 3: RACING ALGORITHM

In this chapter, we discuss a class of algorithms, namely Racing Algorithms (RAs), which are

popular Model Selection (MS) algorithms in machine learning. Simply speaking, RAs can be

regarded as elimination-type Multi-Armed Bandit (MAB) algorithms. To be more precise, the

task of RAs is to identify the best model(s) with respect to specific optimization criteria from an

ensemble of models, while guaranteeing certain level of confidence with minimal computational

cost. This family of approaches is also the main focus of this dissertation.

The Racing Approach

As their name suggests, RAs are iterative procedures for MS in which the under-performing models

are automatically excluded from further consideration as early as possible during racing. RAs start

off with an ensemble of candidate models which are repeatedly evaluated during racing on a given

validation set of problem instances. Under-performing models will be eliminated immediately

once sufficient statistical evidence has been collected to support their inferiority. When only one

model is remained in racing, or when the total computational resources are exhausted, racing stops

and all the remaining models are returned as optimal ones in terms of pre-selected optimization

criteria. The general framework of a RA is depicted in Table 3.1.

The goal of racing is to allocate computational resources optimally among the candidate models,

so that more computational efforts will be concentrated on fine-tuning the superior models. The

overall computational effort is reduced when compared with the Brute Force Approach (BFA)

which distributes the computational resources evenly among all competing models. A visual rep-

resentation of the computational efforts needed by a RA and the BFA is given in Figure 3.1.
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Table 3.1: General Framework of Racing Algorithm

Step 1 Randomly select problem instance(s) to
evaluate the performances of candidate models.

Step 2 Identify statistically significant difference between candidate models.
Step 3 Remove all inferior models from race.
Step 4 Go to Step 1, if available problem instances are not exhausted,

or more than one model is left.

Figure 3.1: A visual representation of computational effort needed by RA and BFA.

A racing strategy is characterized by its way of statistically inferring significant differences in

models’ performances with respect to pre-selected optimization criteria for particular applications.

Several leading RAs in the literature are summarized in Table 3.2

Leading Racing Algorithms

Hoeffding Race (HR) [90] is the first racing algorithm which is applied on selecting the optimal

memory-based learning models in terms of their prediction accuracy (i.e. Leave-One-Out Cross
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Table 3.2: Leading RAs in the Literature

Name Year Statistical Criterion of ApplicationTest Goodness

HR 1994
Hoeffding’s Prediction Classification & Function
Inequality Accuracy Approximation

BRACE 1994
Bayesian Cross-validation

Classification
Statistics Error

F-Race 2002
Friedman Function Parameter tuning of

Test Optimization Max-Min-Ant-System

BR 2008
Bernstein’s Function Policy Selection
Inequality Optimization in CMA-ES

Validation (LOOCV) error). The proposed HR algorithm combines the robustness of BFA and the

computational efficiency of gradient descent. HR derives its name from Hoeffding’s inequality

[61]. It assumes that the LOOCV errors xi ∈ [a, b], i = 1, · · · , n of a model are identically and

independently distributed (i.i.d.) random variables (RVs) with true mean Etrue. Given its empirical

mean Eemp = 1
n

∑n
i=1 xi, the probability that the difference between Eemp and Etrue is within a

distance of ε is bounded by

Pr {|Eemp − Etrue| > ε} < 2e
− 2nε2

(b−a)2 (3.1)

Therefore, the 1 − δ confidence bound of Etrue is easily obtained as [Eemp − ε, Eemp + ε] with

ε ,
√

(b−a)2 log(2/δ)
2n

. When xi refers to the LOOCV error, the model with minimum Etrue is

expected to be returned as the optimal model. As a result, a model whose lower bound of Etrue

is greater than the upper bound of any other competing model will be removed from racing. The

algorithm repeats until only one model is left, or until we run out of problem instances. At the

end, it returns a set of models whose error rates are close to each other (within ε). Given m initial
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models and a validation set of size n, the author is able to show that when δ = ∆
nm

, the probability

that HR eliminates the optimal model is ≤ ∆, which is referred to as the correctness of HR.

A parametric analogue of HR was proposed in [94], known as Block Race (BRACE), which is also

applied on selecting memory-based (or instance-based) models based on LOOCV. One key char-

acteristic of BRACE is the use of blocking to quickly eliminate near-identical models. Moreover,

as a parametric RA, it assumes the LOOCV errors of the ith model over the validation data follows

a Gaussian distribution with an unknown mean e∗i and variance σ∗i . Given empirical mean ê∗i and

empirical variance σ̂∗i , a posterior distribution is estimated via Bayesian statistics (e.g. the Welch

approximation to the Behrens-Fisher problem [136]). In BRACE, the ith model is eliminated if and

only if

∃j(i 6= j), s.t. Pr
{
e∗i < e∗j − γ|ei(1), · · · , ei(T ), ej(1), · · · , ej(T )

}
< δ (3.2)

To be more specific, a new RV h∗ij , e∗i −e∗j is introduced by a statistical technique called blocking

[24]. The probability that h∗ij < −γ is calculated based on the following statistics:

µ̂hij(n) ,
1

n

n∑
k=1

(ei(k)− ej(k)) , σ̂hij(n) =

√√√√ 1

n− 1

n∑
k=1

[
ei(k)− ej(k)− µ̂hij

]2 (3.3)

If P
(
h∗ij < −γ

)
< δ where δ is a user-specified significance level, the j th model will be removed

from racing.

When the candidate models demonstrate similar performances, it is hard for HR to eliminate rela-

tively inferior models efficiently. To overcome the limitation of HR, Bernstein Race (BR) [93, 91]
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was developed based on the empirical Bernstein bound [8]. The empirical Bernstein bound, which

states that, with probability at least 1− δ, we have

|Eemp − Etrue| ≤ σ̄n

√
2 log

(
3
δ

)
n

+
3R log

(
3
δ

)
n

(3.4)

whereR , b−a, σ̄n , 1
n

∑n
i=1 (xi − x̄n)2 refers to the empirical standard deviation of {xi}i=1,··· ,n.

Since R is decreasing at a rate of n−1, this bound will mainly depend on the first term when

σ̄n � R, implying that the empirical Bernstein bound will quickly become much tighter than the

Hoeffding bound.

A generalization of BR was later proposed in [85] which uses a jackknife estimate to replace

the unknown variance. The proposed BR is more widely applicable than HR, BRACE and BR

when the statistics of interest are not simple empirical averages of independent observations (e.g.

U-statistics, discrete entropy, cross-validation, etc). The proposed method constructs empirical

Bernstein bound based on a jackknife estimates of the variances of the statistics of interest. Em-

pirical simulation results in [85] have demonstrated that the asymptotic Bernstein bound results in

significant speedups.

In [21], the most popular racing procedure was proposed, namely F-Race, which has the advantages

of both HR (i.e. non-parametric) and BRACE (i.e. block design). The author first provides a formal

definition of the metaheuristic configuration problem: Given the set of candidate configurations Θ,

the set of problem instances I and its probability measure PI , function tmeasuring the computation

time of each problem instance, the cost space C for all possible combinations of θ ∈ Θ and i ∈ I ,

and its probability measure PC , the objective of the configuration problem is to find θ∗ such that

θ∗ , argminθ C(θ) (3.5)
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where C(θ) = C (θ|Θ, I, PI , PC , t) is the cost with respect to θ.

Next, F-Race was developed based on the Friedman test [35] for multiple comparisons which is

also known as Friedman two-way analysis of variance by ranks. In F-Race, the ith model will be

assigned a rank Rij based on its performance on the j th problem instance. Then the Friedman test

detects if all rankings of the candidates are equally likely or not using the following test statistic:

T =
(n− 1)

∑n
i=1

(
Ri − k(n+1)

2

)2

∑k
j=1

∑n
i=1 R

2
ij −

kn(n+1)2

4

(3.6)

where n is the number of current models, k is the number of problem instances seen so far, and

Ri =
∑k

j=1Rij .

If the null hypothesis is rejected, implying that at least one model is superior to at least one other,

a pairwise t-test is employed to identify the under-performing models to eliminate. The ith and hth

model are statistically different if

|Ri −Rh|√
2k(1− T

k(n−1))
(∑k

j=1

∑n
i=1R

2
ij−

kn(n+1)2

4

)
(k−1)(n−1)

> t1−α
2

(3.7)

where t1−α
2

is the 1− α
2

quantile of the Student’s t distribution.

Originally in F-Race, full factorial design was adopted to initialize the candidate configurations.

However, the drawbacks of a full factorial design are: i) the levels of each parameter need to be

explicitly determined by the experimenter; and ii) the number of initial configurations grows expo-

nentially with the number of parameters. To overcome these drawbacks, a F-Race based on random

sampling design was proposed in [12]. Moreover, an Iterative F-Race (I/F-Race) was developed
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which incorporates the idea of model-based search. In I/F-Race, a simple probabilistic model bias-

ing the next sampling towards better configurations is maintained and updated periodically during

racing. Whenever inferior models are removed, they are replaced with newly sampled ones.

Other instances of RAs include A-Race which is based ANOVA analysis [143], tn-Race which is

based on t-tests without multiple tests correction, tb-Race which is based on t-tests with Bonferroni

correction [21], and a racing algorithm which is based on Welch’s t-test [80], etc.

Limitations of Existing Racing Algorithms

Ever since the first RA was proposed, RAs have received significant attention and have been ap-

plied in various contexts, such as algorithm configuration and hybridization [86, 60], robot control

[57], and industrial applications [17, 31].

As discussed above, all existing RAs are designed as Single-Objective Racing Algorithms (SORAs)

for Single-Objective Model Selection (SOMS) in which only one optimization criterion is consid-

ered for measuring the goodness of models. Moreover, they are offline MS algorithms and the

returned models are optimal in terms of their overall average performance on a validation set of

problem instances. However, adaptations of MS to several other important problems/settings re-

main unaddressed by existing racing approaches, or have, so far, received little attention in the

literature. This work aims to investigate racing approaches along two distinct directions: Extreme

Model Selection (EMS) and Multi-Objective Model Selection (MOMS). EMS and MOMS are

important problems in machine learning, and they are also natural frameworks of many real-world

applications.
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Extreme Model Selection

In extreme model selection, the goal is to detect outstanding events or estimate extreme values. To

be more specific, given a particular problem instance and fixed computation budget, one may want

to maximize the final solution quality that is achieved by automatically allocating the computation

budget among different problem solvers.

Let us assume that we have K candidate solvers and the ith model returns a solution xi,t ∼ Pi for

the tth iteration. As stated in [29], the objective of EMS is to minimize the extreme regret E [rT ]

which is defined as follows:

E [rT ] = max
i∈K

E
[
max
t≤T

xi,t

]
− E

[
max
t≤T

xIt,t

]
(3.8)

where It refers to the index of the model sampled at the tth iteration. In other words, we want to

allocate most of the pulls to the model with the highest expected maximum value E
[
max
t≤T

xt

]
.

EMS is a natural framework of many applications. In many domains, such as outlier detection [1],

security control [105], and disease surveillance [97], outstanding events or extreme values require

special attention. For example in [29], the author is interested in detecting anomalies from different

sources in network intrusion detection. The need for EMS is also motivated in practice when

tackling combinatorial optimization problems (e.g. vehicle routing, Knapsack problems, Traveling

Salesman problems) using several number of stochastic search heuristics [120].

However, EMS problems remain unaddressed by current racing approaches. In this research, we

propose the first RA for EMS which is capable of allocating the overall computational resources

optimally among multiple candidate models so as to optimize the extreme solution achieved at the

end. RA for EMS is the subject of Chapter 4 which details the analysis of such racing procedure
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and provides experimental results to demonstrate its efficiency. Distinct from existing RAs, RAs

for EMS are online MS approaches in which model comparison and selection occur during problem

solving and therefore requires no validation set.

Multi-Objective Model Selection

In machine learning, as well as many real-world applications, a great variety of MS problems are

multi-objective in nature. In supervised learning, for instance, a good supervised learning model

requires a tradeoff between prediction accuracy and model complexity. Complex models usually

result in high prediction accuracy but require large computational resources. Simple models are

sometimes preferred because they are easy to implement and have better generalized performance.

In multi-task learning, for example, multiple related tasks are learned at the same time with a

shared representation. The goal of multi-task learning is to optimize the objective functions of

all learning tasks simultaneously. Moreover, Recommender System (RS) construction for Top-N

recommendation is also a multi-objective optimization problem, regarding accuracy, novelty and

diversity [130, 107] as the measurements of model’s goodness.

MS with multiple optimization criteria is referred to as MOMS. In MOMS, a set of Pareto optimal

models is expected to be returned with compromised optimization objectives to various extents.

So far, MOMS problems have received little attention in the relevant literature. In this work, we

propose the first two Multi-Objective Racing Algorithms (MORAs) which address MOMS prob-

lems in the proper sense of Pareto optimality. The details of the proposed MORAs are given along

with experimental analysis in Chapter 5 and Chapter 6. In the proposed MORAs, the pairwise

dominance and non-dominance relationships are established statistically according to historically

observed performance vectors.
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The objective of MORAs is to minimize the overall computational cost needed to ensure a pre-

defined upper bound of the probability of falsely retaining any dominated models or mistakenly

removing any non-dominated models. More formally speaking, the objective of MORAs can be

defined as

minE [s (e,P)]

s.t. e ≤ C
(3.9)

where s refers to the overall sample complexity of a complete run of a MORA, C is a prescribed

significance level, and e , P (PR 6= PPF ) where PR denotes the ensemble of models returned by

the racing procedure and PPF denotes the true Pareto front models.
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CHAPTER 4: EXTREME RACING BASED ON EXTREME VALUE

THEORY

In this chapter, the first Racing Algorithm (RA) for Extreme Model Selection (EMS), named Max-

Race [147], is proposed. Given a maximization problem, the goal of Max-Race is to allocate the

computational resources optimally among a portfolio of problem solvers in order to maximize

the quality of the final solution obtained. Max-Race is an online Single-Objective Racing Al-

gorithm (SORA) because model selection occurs during model comparison in terms of extreme

performance and does not involve model validation. In Max-Race, significant difference between

the extreme performances of a pair of models is statistically inferred via a newly developed hypoth-

esis test based on the Generalized Pareto Distribution (GPD) assumption. Finally in this research,

Max-Race is applied directly on constructing a population-based Algorithm Portfolio (AP).

Motivation

The need for Max-Race is motivated by the problem of constructing a population-based AP.

Population-based algorithms have become popular in recent years due to their good character-

istics, such as their ability to optimize non-differentiable, non-linear, multi-modal functions, their

inherent parallelizability, and ease of use, as well as their good convergence properties. Some

well-known population-based algorithms are evolutionary algorithms, artificial bee colony algo-

rithm, particle swarm optimization, differential evolution, etc. Each of these algorithms have

advantages and disadvantages that makes the selection of an appropriate algorithm for solving

a given optimization function an open problem. One attempt to address this issue is using APs

where several algorithms are combined and share the total available computational resources to

create a superior algorithm that does better than its constituent algorithms on average. Population-
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based algorithms are iterative algorithms. Therefore, given an objective function, the ultimate goal

of population-based AP approaches is to wisely allocate the predefined maximum number of it-

erations among the constituent algorithms to maximize the optimum solution achieved. In [131],

Vrugt, et al. put forward A Multi-algorithm Genetically Adaptive Method for Single Objective

Optimization (AMALGAM-SO) which utilizes a self-adaptive learning strategy to automatically

assign the number of offsprings to the constituent algorithms. In [102], a Population-based Al-

gorithm Portfolio (PAP) approach was proposed with fixed shares of the overall computational

resources among the constituent algorithms. Another AP approach, named Multiple Evolutionary

Algorithm (MultiEA), was proposed in [144] where a regression model is built based on historical

optimum values obtained from each individual algorithm, and only the algorithm with the best

predicted performance in the nearest future is allowed to run for the next iteration.

However, existing AP approaches have certain limitations. First of all, how to design the hybridiza-

tion scheme of synchronizing different algorithms to improve the overall efficiency requires much

effort. Secondly, their success is largely dependent on a good synchronization of the constituent

algorithms, and inappropriate selection of the algorithms may impede the optimization process

and result in a worse final solution. Last but not least, a great amount of computational resources

may be wasted on the constituent algorithm with inferior performance on the given optimization

problem.

Ideally, a Winner-Take-All (WTA) methodology based AP approach is more preferable in practice.

In particular, we are proposing to run the algorithms in the suite concurrently and independently,

and decide from time to time, using their intermediate performances, which ones of these algo-

rithms will continue running and which ones, deemed as algorithms that will eventually produce

inferior solutions, will be aborted. Such a population-based AP approach frees the designers from

the sometimes heavy demand of understanding the constituent algorithms well enough to coordi-
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nate them. Moreover, it saves unnecessary computational efforts on algorithms with inferior final

solutions.

Extreme Value Theory

The outcome of a stochastic optimizer, which can be regarded as an estimator of the optimum

value of the objective function, is a random variable (RV) following an unknown distribution. We

often are interested in the best possible outcome that the model could obtain which can be viewed

as the extreme performance of the model. Extreme Value Theory (EVT) is a branch of statistics

dealing with extreme or rare events [34]. Therefore, EVT is ideal for modeling the extreme out-

comes/performances of the candidate models. In the literature, extreme value analysis via EVT

has been widely used to study the underlying distribution of the outcomes of some stochastic opti-

mizers [66, 32, 33].

The univariate EVT states that the distribution of the maximum of a sequence of identically and

independently distributed (i.i.d.) normalized samples converges to a Generalized Extreme Value

(GEV) distribution when the sample size goes to infinity. Mathematically speaking, let Xi, i =

1, 2, · · · , n denote a series of i.i.d. RVs following an unknown Cumulative Distribution Function

(CDF) H , and let Y , max
i=1,2,··· ,n

(Xi). As stated in [34], we have

lim
n→∞

P
(
Y − bn
an

≤ y

)
= lim

n→∞
Hn(any + bn) = G(y) (4.1)
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where an > 0 and bn are normalization coefficients, and G(y) represents the CDF of the GEV

distribution with the following standard form

G(y) , exp

{
−
[
1 + ξ̃

(
y − µ̃
σ̃

)]−1/ξ̃
}

(4.2)

There are three parameters defining a GEV distribution: the location parameter µ̃, the scale pa-

rameter σ̃ > 0 and the shape parameter ξ̃. When normalized, G(y) belongs to one of three non-

degenerate distribution families: Frechét, Weibull and Gumbel.

Moreover, we can derive from Equation (4.1) that the tail distribution of Xi approximates the GPD

in the limit

lim
u→u∗

P (X > x|X > u) = Fξ,µ,σ(x) (4.3)

where u∗ is the endpoint of distribution H , and Fξ,µ,σ(x) has the following standard form

Fξ,µ,σ(x) ,

1−
(

1 + ξ(x−µ)
σ

)−1/ξ

for ξ 6= 0

1− exp
(
−x−µ

σ

)
for ξ = 0

(4.4)

with σ > 0, and x ≥ µ when ξ ≥ 0, and µ ≤ x ≤ µ − σ/ξ, if otherwise. The corresponding

Probability Density Function (PDF) is derived as

fξ,µ,σ(x) =
1

σ

(
1 +

ξ(x− µ)

σ

)− 1
ξ
−1

(4.5)
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Similar to the GEV distribution, a GPD is also determined by three parameters: the shape param-

eter ξ, the location parameter µ, and the scale parameter σ, which are closely related to ξ̃, µ̃ and σ̃

of the associated GEV distribution [34]. Correspondingly, there are three GPD families. If ξ > 0,

the GPD is equivalent to a Pareto distribution; if ξ = 0, the GPD is equivalent to an exponential

distribution; and if ξ < 0, we have a short-tailed Pareto II distribution.

There exist two approaches for practical extreme value analysis in EVT, which are Block Maxima

(BM) for GEV distribution modeling and Point Over Threshold (POT) for GPD modeling, respec-

tively. In BM, the underlying distribution of a series of independently sampled block maximum

is approximated via a GEV distribution according to the results of the Fisher-Tippett-Gendenko

theorem. In practice, it requires to collect a very large number of observations of i.i.d. RVs from

the same distribution over a long period of time to guarantee modeling accuracy. However, only

the block maximum is utilized and the rest are wasted. Distinct from the BM method, POT has a

more efficient use of the collected data. It relies on all the peak values, from a continuous record,

that exceed a pre-selected threshold value. A tail-fitting of the GPD is then employed for these

exceedances according to the Pickands-Balkema-de Haan theorem [13, 103]. Moreover, POT is

more practical and powerful for extreme value analysis due to its “threshold stability” property1.

In the literature, the POT method is widely used in distribution modeling and analysis in the areas

of finance, insurance and environmental studies.

Modeling Model Performance via GPD

In this work, the models considered are Evolutionary Computation (EC) algorithms. Given an

optimization problem, the population of each model consists of sampled solutions in the objective

1If the conditional distribution of X > u follows a GPD, the conditional distribution of X > v given v > u also
follows a GPD with the same ξ but a shifted σ
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space which are updated every iteration/generation via a guided random search. Without loss of

generality, only maximization problems are considered in this work. Due to the stochastic nature

of EC algorithms, the sampled solutions can be regarded as RV from an unknown distribution that

gradually congregate close to local maxima. We are only interested in the extreme outcome (i.e.

the final global/local maximum achieved), and the intermediate outcomes can be considered as

realizations of RVs from the right tail of the underlying distribution. Therefore, the POT approach

is a good choice for extreme value analysis in which the right tail of the unknown distribution is

approximated. The underlying distribution of the outcomes during the course of optimization is

approximated by a GPD, and the accuracy of modeling increases as the optimization continues

because the underlying distribution becomes more stable as more samples concentrate around the

global/local maximum in EC algorithms.

Let us use gbestt to denote the best objective value obtained so far at the tth generation of any

EC algorithm. It is obvious that gbestt, t = 1, 2, · · · is a series of RVs of a discrete time Markov

chain since gbestt , max {max(popt), gbestt−1} where popt refers to the population at the tth

generation. Let us assume that the Markov chain enters a state of equilibrium at some mixing time

t0 where the collected {gbestt}t≥t0 can be regarded as i.i.d. samples from a stationary distribution.

Therefore, in this work, we assume that the sub-sequence {gbestt}∞t=t0 of the stochastic sequence

{gbestt}∞t=1 for very large t0 contains i.i.d. samples. Due the this i.i.d. assumption, the upper order

statistics of the collected {gbestt}∞t=t0 are modeled by a GPD with ξ < 0 and a right endpoint µ− σ
ξ

for maximization problems.

The first step of the POT method is the selection of a threshold u. There are several threshold

selection methods proposed in the literature [112]. In this work, we simply choose the q-quantile

of the sample as the threshold, which is a simple but popular rule. During the evolutionary process,

the populations will converge to the maximum. In other words, the number of samples that are

close to the endpoint is increasing proportionally to the growth of the sample size. Hence, the q
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value is designed to be decreasing exponentially with the sample size s as q = q0e
−λs. q0 and λ are

determined based on the experimental data; in the conducted experiments, the values q100 = 0.7

and q5000 = 0.01 were used. After the value of u is properly selected, we resort to the Method

of Moments (MOM) [40] for ξ, µ and σ estimation which is computationally simple and yields

consistent estimators under very weak assumptions.

In Figure 4.1, we show an example of GPD fitting for gbestt via MOM. The sample data was

collected from one run of a CPSO algorithm on a multi-model numerical function. First of all, it

can be seen that threshold selection plays an important role in GPD fitting. The estimated CDF

curve in Figure 4.1b has a much better fit to the empirical CDF than the one in Figure 4.1c. It is,

because the selected q-quantile is too large for s = 500 in Figure 4.1c and the retained samples

are insufficient for GPD fitting. Moreover, comparing the fitted CDF curves between Figure 4.1a

and Figure 4.1b, it can be seen that the GPD provides more accurate modeling of the empirical

distribution as more samples are collected during the evolutionary process.

Statistical Inference of End-Point Equivalence in Max-Race

As we discussed in the previous section, when comparing two models in terms of their extreme

performances, we are actually comparing the right endpoints of the associated GPDs. In order to

make statistical inference of pairwise equivalence of right endpoints, a parametric pairwise hypoth-

esis test is required in which the sampled data are assumed to be i.i.d. RVs from a three-parameter

GPD with a finite right endpoint. Unfortunately, there exists no statistical test for such equivalence

in the literature. Therefore, we develop a hypothesis test to identify pairwise equivalence relation

of the right endpoints of two GPDs.
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Figure 4.1: MOM fitting of GPD for gbestt collected from one run of CPSO with a multi-modal
optimization function where x′ denotes the normalized x value.
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Let {Xi}ni=1 denote a set of observations from model A, where Xi
i.i.d.∼ FξA,µA,σA(x), ξA < 0. Let

{Yi}mi=1 denote a set of observations from model B, where Yi
i.i.d.∼ FξB ,µB ,σB(x), ξB < 0. The

null hypothesis is H0 : µA − σA
ξA

= µB − σB
ξB

, which implies the equivalence of two endpoints.

Correspondingly, the alternative hypothesis is Ha : µA − σA
ξA

> µB − σB
ξB

, indicating that model

A will achieve a better extreme performance than model B and it is certainly preferable to B.

The sample maximum is commonly used as an estimation of the real endpoints. Given U ,

max {X1, · · · , Xn} , U ∈ [µA, µA − σA
ξA

] and V , max {Y1, · · · , Ym} , V ∈ [µB, µB − σB
ξB

], the

PDFs of U and V are given as follows:

fU(u) = nfξA,µA,σA(u)F n−1
ξA,µA,σA

(u) (4.6)

and

fV (v) = mfξB ,µB ,σB(v)Fm−1
ξB ,µB ,σB

(v) (4.7)

Let ∆ , U − V,∆ ∈ [µA − µB + σB
ξB
, µA − µB − σA

ξA
] denote the difference between two sample

maxima. Considering ∆ as the test statistic, its PDF is

f∆(δ) =

∫ µA−
σA
ξA

µA

fU(u)fV (u− δ)du (4.8)
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Hence, under H0, we have ∆ ∈ [σA
ξA
,−σB

ξB
]. Therefore, the probability that ∆ ≤ d under H0 is

given as

P (∆ ≤ d) =

∫ d

σA
ξA

f∆(δ)dδ

=

∫ 1

0

Fm
ξB ,µB ,σB


σA

[(
1− P 1

n

)−ξA
− 1

]
ξA

+ µA −
σA
ξA

 dP

−
∫ 1

0

Fm
ξB ,µB ,σB


σA

[(
1− P 1

n

)−ξA
− 1

]
ξA

+ µA − d

 dP

(4.9)

where P = F n
ξA,µA,σA

(u). Subsequently, the p-value of the proposed test is computed as

π(d;A,B) = P (∆ > d) = 1− P (∆ ≤ d) (4.10)

where d is the observed value of ∆.

If π(d;A,B) < α where α is the predefined maximum Type I error rate, H0 will be rejected and

it is concluded that A has better extreme performance than B and thus B will be eliminated from

racing. Note that there is no closed form for the probability in Equation (4.9) and, hence, numer-

ical integration method (e.g. adaptive Gaussian quadrature method) must be used to approximate

π(d;A,B).

The other parameters involved in Equation (4.9) are estimated from the observed data. µA and µB

are first estimated via MOM [40]. The data is then shifted according to the estimated µA and µB

values, and the remaining parameters under H0, including σA, ξA, σB, and ξB, are estimated via

a hybrid method consisting of Maximum Likelihood Estimation and Maximum-Goodness-of-Fit
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Estimation [134]. The interested reader may refer to [134] for a detailed description of the adopted

parameter estimation method.

Max-Race Specifics

The pseudo-code of Max-Race is provided in Algorithm 1. Given the stochastic objective function

f , the goodness of each candidate model Mi, i = 1, 2, · · · , K is measured as f (Mi). In Max-

Race, f (Mi) is assumed to be a RV following a GPD. At each step of Max-Race, we run each

remaining model for an additional trial and obtain a new f (Mi) observation. The statistical test

discussed in Section 4 is employed to infer pairwise equivalence of extreme performances based

on historical observations. If sufficient statistical evidence has been collected to demonstrate that

Mi has inferior extreme performance when compared to any other model, Mi will be eliminated

from racing immediately and the saved computational resources will be allocated to models with

promising extreme performances. Max-Race ends when the available computational resources are

exhausted.

Since there are multiple hypotheses being tested simultaneously, the Benjamini-Hochberg-Yekutieli

procedure [19] is employed in Max-Race to control the overall False Discovery Rate (FDR), which

is denoted by FDR(·, ·). FDR is one way of conceptualizing the overall rate of making any Type

I errors in a set of hypothesis tests. By strictly controlling the FDR, the risks of falsely eliminating

any models with best extreme performances are reduced and manageable. FDR control is a recom-

mended alternative to Family-Wise Error Rate (FWER) control, and it provides greater power at

the cost of increased probability of Type I errors. Given a set of p-values Pvalues and a prescribed

significance level α, FDR(Pvalues, α) returns the indices of the models to be removed from racing

due to the rejection of the corresponding null hypotheses. In this work, the α value is chosen to

increase exponentially with the sample size n since the GPD fit gets more accurate as n increases.
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To be more specific, we have αn = α0e
−b(nmax−n) where n is the current sample size, and nmax

is the maximum possible sample size. The α0 and b values are determined experimentally so that

αn0 = 10−30 and αnmax = 0.01.

Algorithm 1: Max-Race Pseudo-code
input : K initial modelsM← {M1,M2, · · · ,MK} and an objective function f
output: the best objective value obtained

while stopping criteria not met do
foreach model Mi ∈M do

run another trial and obtain a new sample f (Mi)
end
Pvalues ← ∅
foreach pair of models Mi,Mj ∈M do

Pvalues ← Pvalues ∪ π(d;Mi,Mj)
end
M←M\ {Mk}, where k ∈ FDR(Pvalues, α)

end

In this work, we introduce a novel population-based AP hinging on Max-Race (see Algorithm 2).

K sub-populations are randomly initialized corresponding to K candidate EC algorithms. At

each step of Max-Race, each remaining sub-population is evolved for another Nsc generations and

the gbest values after every generation are recorded as historical observations. Once a candidate

EC algorithm is identified as under-performing in term of the extreme performance, it will be

eliminated from racing and its population will be stopped from further evolution. The portfolio

stops when a predefined maximum Number of Function Evaluations (NFEs) is reached.

Experiments and Applications

In this section, we assess the performance of Max-Race by comparing it with the Brute Force

Approach (BFA), two baseline algorithms (i.e. BestEC, RandEC) and three popular population-

based APs (i.e. AMALGAM-SO, PAP, MultiEA). 6 popular EC algorithms are selected to form
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Algorithm 2: Max-Race Algorithm Portfolio Pseudo-code
input : K candidate EC algorithms A ← {A1, A2, · · · , AK} and an objective function f
output: the best objective value obtained

Initialize and evaluate K sub-populations {pop1, pop2, · · · , popK} , (K ≥ 2)
For each sub-population, record the best objective value as gbest0
while the maximal NFEs is not reached do

foreach algorithm Ai ∈ A do
Evolve popi for another Nsc generations
Record the gbestt values of every generation

end
Pvalues ← ∅
foreach pair of algorithms Ai, Aj ∈ A do

Pvalues ← Pvalues ∪ π(d;Ai, Aj)
end
A ← A \ {Ak}, where k ∈ FDR(Pvalues, α)

end

the initial ensemble of models, which are PSO [149], CPSO [129], jDE [25], JADE [145], SaDE

[106] and CMA-EA [59]. We use D-dimensional multi-modal functions generated via a Gaussian

landscape generator [142] with bounded search space [−100, 100]D as the objective functions.

Comparisons of Max-Race to the Baseline Algorithms

A common practice for Model Selection (MS) is the BFA which assigns the same amount of

computational resources to each model. We first conducted a set of simple experiments to compare

the performances of Max-Race and the BFA. 30 benchmark functions were generated withD = 10

and D = 30, respectively. In the BFA, each EC algorithm runs for 5000× 5D NFEs which is large

enough to guarantee convergence. The intermediate observations of gbestt collected from the

BFA were used as pseudo-samples for simulating a run of Max-Race. In Max-Race, the statistical

comparisons occurred every 10 generations (Nsc = 10). Each experiment was repeated for 25

trials.
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Two performance metrics were selected, which were prediction accuracy PA and running time

ratio RTR. PA denotes the selection accuracy of Max-Race. PA = 1 if Max-Race retains the

EC algorithm with the true best extreme performance at the end of racing, and 0 otherwise. RTR

refers to the ratio of the NFEs consumed by Max-Race over the NFEs spent by the BFA, and it

reflects the computational savings of Max-Race with respect to the BFA. Obviously, it is desirable

to have RTR close to 0.

In Table 4.1, we report the relevant statistics of the average PA and RTR values. In addition, we

show the average values of the number of models with the best extreme performances, denoted

by Nb, and the number of models retained by Max-Race at the end, denoted by Nr. Regarding

the PA values in Table 4.1, their median values are larger than 0.80, implying that Max-Race is

able to retain the models with best extreme performances in most cases for both D = 10 and

D = 30. Compared to D = 10, Max-Race performs slightly worse for D = 30. This is because,

for high-dimensional multi-modal functions, it is hard for EC algorithms to reach a good objective

value and, thus, all the candidate models show similar performances. Hence, it is highly likely that

Max-Race will retain sub-optimal models since it trades off some computational cost for a reduced

likelihood of identifying the true optimal models.

Regarding the RTR values in Table 4.1, they are no larger than 0.30 for D = 10 and 0.46 for

D = 30, indicating that the computational advantage of Max-Race over the BFA is substantial.

Max-Race always saves more than 50% of the NFEs spent by the BFA.

The ultimate goal of Max-Race is to maximize the final objective value obtained with a limited

computational budget as shown in Algorithm 1 and Algorithm 2. Therefore, we compare the

performance of Max-Race to two baseline algorithms which are BestEC and RandEC. In BestEC,

we only select the EC algorithm with the best extreme performance to run, which is the ideal

strategy. In RandEC, we randomly pick an EC algorithm to run until the maximal NFEs are
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Table 4.1: Statistics of Average PA, RTR, Nb and Nr Values of Max-Race

D max median min std

PA
10 1.00 0.91 0.80 0.07
30 1.00 0.83 0.36 0.13

RTR
10 0.30 0.23 0.22 0.02
30 0.46 0.41 0.38 0.02

Nb
10 3.92 1.42 1.04 0.60
30 2.44 1.28 1.00 0.38

Nr
10 1.24 1.00 1.00 0.06
30 2.20 2.00 1.92 0.05

reached. We still used the pseudo-samples generated in the previous experiments with D = 30 and

the maximum NFEs for Max-Race was set to 5000× 5D.

The average objective values obtained by each approach, as well as the true global maximum of the

objective function, are shown in Table 4.2. In addition, we adopted a paired Wilcoxon signed-rank

test with significance level 0.01 to identify significant performance differences. In Table 4.2, if

BestEC or RandEC outperforms Max-Race significantly, the corresponding entry is bold-faced. If

any of them is significantly outperformed by Max-Race, the corresponding entry is underlined. As

observed from Table 4.2, Max-Race demonstrates inferior performance to BestEC in only 13.33%

of the cases, while Max-Race demonstrates much better performance than RandEC in all cases.

The experimental results confirm that Max-Race performs almost as well as BestEC, the ideal

EMS strategy.

In Figure 4.2, we provide a visual representation of the difference between the performances of

Max-Race, BestEC and RandEC. We estimated the distributions of their average final outcomes

from bootstrapped samples using a normal kernel function. The estimated density for f5 with

D = 30 is depicted in Figure 4.2. It can be seen that, Max-Race performs equally well as BestEC,
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and both of them outperform RandEC significantly in terms of the maximum objective values

achieved at the end.
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Figure 4.2: Bootstrap distributions of the means of final best solutions achieved by Max-Race,
BestEC and RandEC for f5 with D = 30.

Comparisons of Several APs

As we mentioned in Section 4, the need for Max-Race is motivated by the problem of constructing

population-based AP. In order to demonstrate that Max-Race is a promising online MS algorithm,

we compare the performance of a population-based AP hinging on Max-Race with three other

popular APs, including AMALGAM-SO [131], PAP [102] and MultiEA [144]. In this set of

experiments, 20 test functions were generated for D = 30. The initial population size of each

sub-population was 500 and the maximum NFEs was 3 × 105. Other AP parameters were set as

suggested in the respective original papers.
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The final outcomes, including the mean and standard deviation values over 25 runs, of Max-Race,

AMALGAM-SO, PAP and MultiEA are reported in Table 4.3. A paired Wilcoxon signed-rank

test with significance level 0.01 is employed to identify significant performance differences. In

Table 4.3, if Max-Race is significantly outperformed by an algorithm, the corresponding entry

of that algorithm is bold-faced. If an algorithm is significantly outperformed by Max-Race, its

corresponding entry is underlined. As observed from Table 4.3, Max-Race significantly outper-

forms AMALGAM-SO, PAP and MultiEA in 65%, 55% and 65% of all the cases, respectively.

Meanwhile, it presents significantly inferior performance in only 10%, 5% and 10% of the cases.

If we take a closer look at the results of the other three APs, AMALGAM-SO shows the worst

performance. The success of AMALGAM-SO is largely related to a good synchronization of

its constituent algorithms via population sharing, elitism selection, diversity control, premature

convergence detection, etc. Hence, the optimization process may be hindered unexpectedly due

to inappropriate selection of the constituent algorithms. Thus, a simpler AP with less interaction

among the candidate models is preferred. PAP, for instance, achieves better performance than

AMALGAM-SO in most cases because its sub-populations only interleaved with each other by

occasional population migration. MultiEA does not require any population interaction and each

sub-population evolves independently. However, its selection of the best model is based on the

predicted performance in the nearest common future point via a linear regression model of the

evolutionary curve. Therefore, it is highly likely that MultiEA wastes too many computational

resources on algorithms with a fast convergence to a local maximum.

The experimental results confirm the outstanding performance of Max-Race based AP over the

other APs. Moreover, it has been demonstrated that, by accurately identifying the optimal models

with the best extreme performances and eliminating the under-performing models as early as pos-

sible, Max-Race is able to maximize the quality of the final solution by concentrating most of the

computational resources on the superior problem solvers.
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Table 4.2: Averaged Final Objective Values Obtained by Max-Race, BestEC, RandEC and the True
Global Maximum

Prob. f1 f2 f3 f4 f5

Max-Race 168.39 275.45 108.04 12.76 161.79
BestEC 171.09 275.79 114.57 13.61 165.23
RandEC 107.01 170.20 81.88 11.43 69.91
Global 389.68 341.94 193.99 29.16 193.99
Prob. f6 f7 f8 f9 f10

Max-Race 103.62 41.19 157.77 7.76 34.47
BestEC 105.39 41.20 157.77 8.46 34.76
RandEC 83.65 36.25 94.40 5.99 24.68
Global 125.27 287.79 470.55 9.93 41.61
Prob. f11 f12 f13 f14 f15

Max-Race 14.22 187.78 256.18 50.42 78.82
BestEC 14.24 224.36 269.29 50.55 89.61
RandEC 9.51 83.48 144.61 31.93 48.50
Global 39.93 275.21 415.96 327.66 465.00
Prob. f16 f17 f18 f19 f20

Max-Race 62.32 274.44 30.03 13.43 44.19
BestEC 68.56 274.44 35.38 13.59 58.38
RandEC 639.70 193.69 16.73 9.56 17.23
Global 400.16 473.35 49.48 70.55 49.48
Prob. f21 f22 f23 f24 f25

Max-Race 102.14 257.90 155.67 6.65 34.47
BestEC 104.98 262.40 157.51 6.91 35.04
RandEC 69.58 131.12 103.49 3.91 26.61
Global 175.20 275.21 183.65 316.59 41.61
Prob. f26 f27 f28 f29 f30

Max-Race 13.98 178.67 1.38 233.32 30.75
BestEC 14.20 220.17 1.39 265.19 32.21
RandEC 9.37 61.14 1.06 168.22 19.86
Global 39.93 341.94 10.63 446.68 73.57
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Table 4.3: Averaged Final Objective Values Obtained by Max-Race, AMALGAM-SO, PAP and
MultiEA

Prob. f1 f2 f3 f4 f5

Max-Race
mean 53.77 332.34 439.52 278.74 158.16
std 2.27 29.42 1.59e-13 26.38 11.10

AMALGAM-SO
mean 43.00 318.42 438.52 237.56 148.52
std 4.21 30.87 1.01e-05 22.04 13.50

PAP
mean 52.05 268.23 264.42 259.70 148.52
std 4.41 35.42 18.87 18.24 11.26

MultiEA
mean 42.20 241.01 164.21 206.20 133.07
std 3.76 57.40 15.57 35.71 18.17

Prob. f6 f7 f8 f9 f10

Max-Race
mean 336.00 9.16 48.66 13.07 111.91
std 22.35 1.39 2.42 1.62 11.94

AMALGAM-SO
mean 307.96 8.04 45.24 12.42 119.44
std 27.63 4.84 7.87 1.27 8.15

PAP
mean 324.77 9.41 46.27 12.84 113.46
std 19.34 5.61 5.70 1.71 14.87

MultiEA
mean 309.15 10.29 38.75 15.64 110.60
std 26.64 3.91 10.63 2.90 2.23

Prob. f11 f12 f13 f14 f15

Max-Race
mean 53.95 99.50 129.64 102.98 9.94
std 2.11 6.49 4.06e-14 6.09 0.58

AMALGAM-SO
mean 46.40 85.89 117.20 72.97 8.47
std 1.13 5.53 15.10 9.02 1.17

PAP
mean 51.13 99.62 121.67 96.67 9.10
std 6.12 4.79 12.28 3.77 1.65

MultiEA
mean 45.91 87.09 94.70 91.69 8.20
std 3.66 6.51 7.35 6.43 1.51

Prob. f16 f17 f18 f19 f20

Max-Race
mean 90.15 52.78 51.64 1.51 48.48
std 7.58 2.54 8.37 1.31 0.10

AMALGAM-SO
mean 86.58 61.23 49.34 1.11 48.23
std 7.40 4.17 7.03 1.16 0.83

PAP
mean 76.50 43.59 42.64 1.23 39.52
std 3.21 4.65 7.59 1.16 3.03

MultiEA
mean 61.23 50.05 48.85 0.83 45.85
std 6.19 3.52 9.90 0.28 2.81
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CHAPTER 5: MULTI-OBJECTIVE RACING BASED ON SIGN TEST

In this chapter, we propose the first Multi-Objective Racing Algorithm (MORA) in a fixed-budget

setting, namely S-Race, which addresses the problem of Multi-Objective Model Selection (MOMS)

in the proper sense of Pareto optimality. In S-Race, an ensemble of Pareto optimal models is re-

turned with multiple conflicting objectives optimized simultaneously. In S-Race, the pairwise dom-

inance relationship is statistically inferred via a non-parametric Sign Test (ST) based on historical

performance vectors. Moreover, a discrete Holm’s step-down Family-Wise Error Rate (FWER)

control method is leveraged to control the overall probability of making any Type I errors (false

discoveries). In S-Race, the size of the validation set of problem instances is predefined and fixed.

Given the lower bound of the total probability of making no Type I error in S-Race, denoted as ∆,

the α values assigned to each family at each step of S-Race is adjusted adaptively according to the

number of remaining steps and the number of retained models.

Multi-Objective Model Selection

In multi-objective optimization, multiple conflicting objectives are expected to be optimized si-

multaneously. As a result, there is no single unique optimal solution. The concept of Pareto

optimality plays an important role in multi-objective optimization. We assume without loss of

generality that all the objectives are to be maximized. Let us assume that the performance of

each model is measured in terms of D stochastic real-valued objective functions {fi}i=1,··· ,D. In

other words, the performance each model M is measured as a performance vector, denoted as

57



f(M) , {fi(M)}i=1,··· ,D. When comparing model M and M ′ in terms of their performance vec-

tors, f(M) dominates f(M ′), denoted as f(M) � f(M ′), if and only if

fi(M) > fi(M
′) ∀ i ∈ {1, 2, · · · , D}

and ∃ j ∈ {1, 2, · · · , D} | fj(M) > fj(M
′)

(5.1)

Assume that the performance vector of each model is a random variable (RV) following an un-

known distribution. It is not reliable to determine the dominance and non-dominance relationship

between a pair of models based on only one observation. Therefore, in this research, the concept

of probabilistic dominance1 is utilized. To be more specific, model M is said to dominate model

M ′, denoted as M � M ′, if and only if P (f(M) � f(M ′)) > P (f(M) ≺ f(M ′)). On the con-

trary, M is said to be dominated by M ′, denoted as M ≺ M ′, if and only if P (f(M) ≺ f(M ′)) >

P (f(M) � f(M ′)). Otherwise, they are non-dominated to each other, denoted as M ∼ M ′. In

MOMS, all the non-dominated models consist of the Pareto front which are expected to be returned

as Pareto optimal models.

Statistical Inference of Dominance in S-Race

Sign Test

The pairwise Pareto dominance relationship cannot be established with absolute certainty based on

limited number of observations when the objective functions are stochastic in nature. Therefore,

a hypothesis test is employed to infer the dominance relation with confidence. First of all, a non-

parametric hypothesis test is preferred over a parametric one. This is because in non-parametric

1The notions laid out here are related to the concept of probabilistic dominance presented in [126, 65].
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statistical analysis, no assumption of the underlying distributions of the performance vectors is

required, neither marginal nor joint. Moreover, it is desirable to adopt a pairwise test in which the

samples of the test are dependent on paired observations only. This is also known as block design

in Block Race (BRACE) and F-Race. It excludes the risks caused by the variations due to different

problem instances or different execution environments.

In S-Race, ST is employed to infer pairwise dominance relationship between models. Given two

models Mi and Mj whose performances have been evaluated on batches of problem instances at

the tth step of S-Race, it is observed that there are nij times that f (Mi) � f (Mj) and nji times

that f (Mj) � f (Mi). Let us use Nij and Nji to denote the corresponding RVs of nij and nji.

Let S , Nij + Nji with observed value s , nij + nji, and pij , P(Nij|S = 1). For the

ST, the null hypothesis H0 is pij = 1
2

and the alternative H1 is pij > 1
2
. Under H0, we have

Nij| {S = s} ∼ Binomial
(
s, 1

2

)
. Therefore, the test’s p-value is computed as

π (nij, nji) =
1

2s

s∑
k=nij

(
s

k

)
(5.2)

Given α as the desired significance level which refers to the maximum probability of making any

Type I errors allowed, H0 will be rejected if π (nij, nji) < α. Subsequently, Mj is eliminated from

racing. The larger the difference between nij and nji, the stronger the support that one dominates

the other.

Discrete Holm’s Procedure

Assume that the initial ensemble of candidate models is of size K, the total number of pairwise

STs is about
(
K
2

)
. When K is large, which is usually the case of Model Selection (MS) in machine

learning, the number of pairwise comparisons is huge. As a result, controlling only the confidence
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level of individual pairwise STs will lead to increased overall probability of making any false rejec-

tions (Type I errors). In other words, the probability of mistakenly removing any non-dominated

models in S-Race will be unexpectedly large. This is a typical multiple comparison problem in

statistical analysis. Therefore, a FWER control method is used to control the overall probability

of making any Type I errors within a family of hypotheses, denoted as family-wise error. In other

words, given the prescribed FWER significance level α, the overall probability of making any

Type I errors within each family of hypotheses is strictly controlled at level α by adopting a FWER

control approach.

In this work, the discrete Holm’s step-down procedure [137] is used in S-Race for FWER control,

which is an extension of the Holm’s step-down procedure [62].

The original Holm’s step-down procedure [62], as described in Table 5.1, is the step-down version

of the Bonferroni approach. It controls the FWER in a strong sense, indicating that the FWER is

always controlled at a user-specified level without any restrictions about the joint distribution of the

test statistics involved. The Holm’s procedure is more powerful than to the Bonferroni approach,

meaning that it achieves smaller probability of making any Type II errors.

Table 5.1: Holm’s Step-Down Procedure

Given a maximum FWER α, a family of m tests of hypothesis,
and their corresponding p-values

Step 1 Rank the m p-values in ascending order as π(1) ≤ π(2) ≤ · · · ≤ π(m)

Step 2 Find the smallest k = ko such that (m+ 1− ko)π(ko) > α
Step 3 Reject the null hypotheses of the tests with p-values π(k), k < ko;

if ko = 1, reject none; if no such ko, reject all.

The discrete Holm’s step-down procedure [137] is proposed to improve the power of Holm’s pro-

cedure by utilizing the discreteness of the binomial distribution. Since in the ST the underlying

distribution of the test statistics is binomial in nature, the discrete Holm’s procedure is employed
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in S-Race for improved efficiency. In the discrete Holm’s procedure, the intersection hypotheses of

each successive subsets I of the given family of null hypotheses F is tested sequentially. The ac-

tual smallest p-value in I is denoted as TI
(
n+
I
)
, min`∈Iπ

(
n`ij, n

`
ji

)
. The corresponding adjusted

p-value of I is computed as

p̃I(n
+
I ) ,

∑
`∈I

PH`

{
π
(
N

(`)
ij , N

(`)
ji

)
≤ TI

(
n+
I
) ∣∣∣∣S` = s`

}
(5.3)

where N+
I ,

{(
N `
ij, S

`
) ∣∣` ∈ I}, and N `

ij , S
` are the RVs associated with the `th hypothesis.

Correspondingly, n+
I ,

{(
n`ij, s

`
) ∣∣` ∈ I} denotes an observed value ofN+

I .

Therefore, if p̃I(n+
I ) < α, the intersection hypothesis HI and all the H`, ` ∈ I will be rejected.

The discrete version of the Holm’s procedure, as depicted in Table 5.2, is uniformly more powerful

than the original method due to the discreteness of the binomial distribution.

Table 5.2: Discrete Holm’s Procedure

Given a maximum FWER α, a family of m tests of hypothesis
and their corresponding p-values

Step 1 Order the m p-values in ascending order as π(1) ≤ π(2) ≤ · · · ≤ π(m).
Assume r1, r2, · · · , rm are the corresponding indices of the sorted p-values

Step 2 Find the smallest k = ko such that p̃Rk(n
+
Rk

) > α where Rk = {rk, · · · , rm}.
Step 3 Reject the null hypotheses of the tests with p-values π(k), k < ko;

if ko = 1, reject none; if no such ko, reject all.

S-Race Specifics

The framework of S-Race is provided in Algorithm 3. Basically speaking, there are three major

phases of S-Race which are evaluation (lines 3 - 4), inference (lines 7 - 12) and elimination (line

13). Given an initial ensemble of K models, a batch of problem instances is sampled without
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replacement to evaluate the performances of all the remaining models during evaluation. The cor-

responding performance vectors are recorded as historical data that are used later for statistical

inference of dominance. During inference, the ST is employed to infer dominance relation be-

tween each pair of models according to historical pairwise observations. The individual p-value is

adjusted by the discrete Holm’s procedure, denoted as DisHolms(Pvalues, αt), with a significance

level αt at the tth step of S-Race. At each step of S-Race, there are multiple independent families

of hypotheses. A family in S-Race refers to all pairwise comparisons between the ith model Mi

and all the other remaining models. DisHolms(Pvalues, αt) returns the indices of the models to be

removed from racing due to the rejection of the corresponding null hypotheses. These models are

believed to be dominated by their competitors, and thus are eliminated during elimination. The

racing process stops when the validation set of problem instances is exhausted, or only one model

is retained.

Algorithm 3: S-Race Pseudo-code
input : Pool← {M1,M2, · · · ,MK} (K ≥ 2)
output: Pool

1 Initialize t = 1
2 repeat
3 Randomly sample a batch from the validation set
4 Evaluate all the remaining models on the batch
5 foreach model Mi ∈ Pool do
6 Pvalues ← ∅
7 foreach model Mj ∈ Pool \ {Mj} do
8 Update nij and nji
9 if nij > nji then

10 Pvalues ← Pvalues ∪ {π(nij, nji)}
11 end
12 end
13 Pool← Pool \ {Mk}, where k ∈ DisHolms(Pvalues, αt)
14 end
15 t = t+ 1

16 until all validation batches are exhausted or |Pool| = 1
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It is very important to control the overall probability of making any false discoveries (Type I errors)

in S-Race. If any of the Pareto optimal models is eliminated by mistake, especially in the early

stages of the race, some of the dominated models will get the chance to survive due to lack of

competitors.

Let us denote the accuracy of S-Race by ∆, which we define as the probability of no Type I errors

committed during the entire racing process. Therefore, we are able to guarantee a minimum ∆

by controlling individual FWER at level α. According to the Bonferroni inequality: P (A ∪ B) ≤

P (A) +P (B) for any eventsA and B, the relationship between ∆ and α is established as follows.

As we know that the overall probability of making any Type I errors within each family is strictly

controlled at level α by the discrete Holm’s procedure.

P (at least one Type I error within a family) ≤ α (5.4)

Therefore, at the tth step of S-Race, we have

P (at least one Type I error at a step)

≤ Ftα

≤ (Kt−1 − 1)α

≤ (K − 1)α

(5.5)

where Ft and Kt denote the number of families and the number of retained models at the tth step,

and K is the initial ensemble size. Since the validation set and batch size is predefined in advance,
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the maximum number of steps T is available. Therefore, the overall probability of making any

Type I errors in S-Race is

P (at least one Type I error during race)

≤
T∑
t=1

Ftα

≤
T∑
t=1

(Kt−1 − 1)α

≤ T (K − 1)α

(5.6)

In other words, we have

∆ ≡ P (no Type I error during race)

≥ 1− T (K − 1)α

(5.7)

and subsequently

α ≤ 1−∆

T (K − 1)
(5.8)

Therefore, given ∆, the α value assigned to all families is easily computed via Equation (5.8),

which is dependent on the initial ensemble size K and the total number of steps in racing T .

In reality, however, the number of models and the number of families is decreasing during racing.

The bound provided in Equation (5.7) is very loose, unless no model is eliminated during the entire

racing process. Such conservative control over α is helpful in controlling the overall probability

of making any Type I errors at the cost of increasing the probability of making any Type II errors.
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In other words, the risk of falsely retaining any dominated model is increased. In order to improve

the power of S-Race, the α values assigned to the families at each step are adjusted adaptively

according to the number of models retained.

Theorem 1. In S-Race, let the significance level αt at step t be given as

αt =
1−∆−

∑t−1
i=1 αiFi

(T − t+ 1)(Kt−1 − 1)
if 2 ≤ t ≤ T (5.9)

with

α1 =
1−∆

T (K − 1)
(5.10)

Then, the overall probability of making any Type I errors in S-Race is no larger than 1−∆.

Proof. Based on Equation (5.9), we have

0 < αt =
1−∆−

∑t−1
i=1 αiFi

(T − t+ 1)(Kt−1 − 1)

=
1−∆−

∑t−1
i=1 αiFi − αt(Kt−1 − 1)

(T − t)(Kt−1 − 1)

≤ 1−∆−
∑t−1

i=1 αiFi − αtFt
(T − t)(Kt−1 − 1)

≤ 1−∆−
∑t

i=1 αiFi
(T − t)(Kt − 1)

= αt+1

(5.11)

65



Hence, αt+1 ≥ αt for 1 ≤ t ≤ T − 1. Then

T−1∑
i=1

αiFi + αTFT = 1−∆− αT (KT−1 − 1) + αTFT (5.12)

and

T∑
i=1

αiFi = 1−∆ + αT [FT − (KT−1 − 1)] (5.13)

Since FT ≤ KT−1 ≤ KT−1−1, FT−(KT−1−1) ≤ 0, and αT ≥ α1 > 0 (due to Equation (5.11)),

we have

T∑
i=1

αiFi = 1−∆ + αT [FT − (KT−1 − 1)] ≤ 1−∆ (5.14)

Obviously, the adaptive α scheme introduced in Equation (5.9) improves the power of S-Race,

compared to the fixed α scheme in Equation (5.8). This is because a larger α allows for more dis-

coveries of pairwise dominance relationships. As shown in the proof, the α value increases with

growing t, implying that S-Race behaves more conservative in the early stages of racing. Later on,

when more performance vectors are observed, it is more reliable to establish pairwise dominance

relationships and eliminate the dominated models. In other words, the overall probability of mak-

ing any Type II errors will be reduced by utilizing the adaptive α scheme. Meanwhile, the overall

accuracy ∆ is still strictly controlled beyond a certain level.
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∆ is an important parameter in S-Race since it maintains a balance between the accuracy of S-

Race in returning all Pareto front models and the computational cost. To be more specific, higher

∆ leads to smaller α values, representing a lower probability of making any false rejections and

falsely removing any non-dominated models. Correspondingly, high ∆ results in a more conser-

vative racing procedure that is more cautious in model elimination. Consequently, it requires more

computational effort. In the extreme case when ∆ = 1 and α = 0, no model will be removed and

S-Race will behave like the Brute Force Approach (BFA). To sum up, the selection of a proper ∆

reflects the user’s preference over the final quality of the ensemble of models returned by S-Race

and its computational cost.

Experiments and Applications

In this section, we apply S-Race on three MOMS problems to demonstrate its efficiency, which are

choosing optimal parameters for Support Vector Machines (SVMs) for classification and Artificial

Bee Colony (ABC) algorithms for numerical optimization, and hybrid Recommender Systems

(RSs) construction for movie recommendation.

Performance Metrics

The ultimate goal of S-Race is to identify the ensemble of Pareto front models exactly as the ones

returned by the multi-objective BFA which allocates the total computational resources uniformly

among all candidate models. Therefore, we compare the performance of S-Race to the BFA to

demonstrate its efficiency in MOMS. In this work, the BFA is equivalent to running S-Race with a

single step using all of the available validation samples.
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Assume that PS and PBFA denote the final set of models returned by S-Race and BFA respectively,

the selected performance metrics retention and excess, denoted byR andE, are defined as follows:

R ,
|PS ∩ PBFA|
|PBFA|

(5.15)

E ,
|PS \ PBFA|
|PS|

= 1− |PS ∩ PBFA|
|PS|

(5.16)

As their name suggests, R measures S-Race’s ability of retaining the ensemble of non-dominated

models returned by the BFA, and E measures its ability of eliminating the dominated models

identified by the BFA. R is directly regulated by the predefined ∆ value. The overall probability

of committing any Type II errors is, however, beyond the control of S-Race, which implies that E

is not strictly controlled in S-Race. Ideally, it is desirable to have R = 1 and E = 0, indicating

that PS = PBFA. As a matter of fact, high R and low E are acceptable. Note that in information

retrieval contexts, R and 1− E are also referred to as precision and recall, respectively.

In addition to the accuracy of S-Race, the time efficiency of S-Race is also of great interest. There-

fore, a third performance metric T is adopted which denotes the ratio between the computation

time of S-Race and the BFA.

Theoretically, the computational complexity of S-Race is O(DVK + V K
2

logK + V 2K
2
) where

D is the number of objectives, V is the total number of validation samples and K is the average

number of models during the entire racing process. Similarly, the computational complexity of

the BFA is O(DVK + V K2 logK + V 2K2). In S-Race, since the under-performing models are

gradually eliminated, it is expected to have K < K and T < 1.
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Support Vector Machine for Classification

In this section, S-Race was applied for tuning the parameters of SVM [36] for binary- and ternary-

class classification problems. For each classification problem, the classification accuracies, mea-

sured as Percent of Correctly Classified (PCC), of every class are of equal importance. Therefore,

the performance vector of each SVM consists of the PCCs of every class. In other words, param-

eter tuning for binary-classification SVM is a bi-objective maximization problem, and parameter

tuning for ternary-classification SVM is a tri-objective maximization problem.

A total of 12 datasets were selected [84, 42, 104, 135] (see Table 5.3). Each dataset was randomly

split into a training set and a validation set. The initial ensemble of models contained 50 SVMs

with different kernel types, kernel parameters and C values (see Table 5.4). In each experiment,

all the candidate SVMs were trained on the common training set before S-Race started. At each

step of racing, the performances of the remaining models are assessed on a batch of validation

samples which was randomly selected without replacement from the validation set. The batch size

varied from dataset to dataset in order to ensure the maximum number of steps is 100. S-Race

stopped if only one model was left or the maximum number of steps was reached. In order to

demonstrate the influence of ∆ on S-Race’s performance, its value was selected from the discrete

set {0.7, 0.8, 0.9, 1− 0.19}.

The observed retention (R), excess (E), time ratio (T ) values, and the number of Pareto front

models identified by the BFA (|PBFA|), averaged over 30 runs, are reported in Table 5.5 and

Table 5.6. On one hand, it is observed that all the R values are greater than 0.90. To be more

specific, in 87.5% cases we haveR ≥ 0.95, and in 32.3% cases we haveR = 1. The high values of

R demonstrate that S-Race is capable of identifying almost the exact ensemble of Pareto optimal

models that selected by the BFA. Since the observed R values are always above the predefined ∆

values, it implies that the overall probability of making any false discoveries in S-Race is strictly
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Table 5.3: Selected Datasets for Classification

name Training # Validation Samples # Class # Attribute #
a2a 2265 10098 2 123

acoustic(1) 2872 3969 2 50
connect-4(1) 6401 13676 2 126
MiniBooNE 2815 4961 2 50
mushrooms 1626 1620 2 112

w1a 2477 15757 2 300
acoustic(2) 2464 2464 3 50
combined 2464 2464 3 100

protein 1915 2209 3 357
seismic 2465 2465 3 50

connect-4(2) 5632 5632 3 126
dna 600 1186 3 180

Table 5.4: SVM Parameter Description

parameter range
C [0.001, 50]

Kpoly(xi, xj) = (a(xi · xj) + b)c

kernel type Krad(xi, xj) = exp(−γ||xi − xj||2)
Ksig(xi, xj) = tanh(γ(xi · xj) + d)

a [1, 10]
b [0, 5]
c [1, 5]
γ γ = qt, where q ∈ (1, 9), t ∈ (−9, 9)
d [−0.1, 0]

controlled by the discrete Holm’s procedure. Generally, R values increase with growing ∆ values.

This is because, as ∆ approaches to 1, α at every step of S-Race will approach to 0 and it will be less

likely to eliminate any non-dominated models by mistake. However, since R is calculated as the

ratio in Equation (5.15), it may decrease as ∆ increases if |PBFA| changes more than |PS ∩PBFA|.

On the other hand, it is observed that about 87.5% E values are below 0.18, and 69.1% of them are

even smaller than 0.10. Smaller E values demonstrate that S-Race is capable of eliminating almost
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all the dominated models which are the ones identified by the BFA. High ∆ values generally result

in low E values. Additionally, the standard deviation of the resulting R and E values are 0.01 and

0.20. Since R is strongly related to the overall Type I error probability of S-Race which is strictly

controlled at a predefined level, the degree of variation of R is significantly smaller than that of E.

Table 5.5: S-Race on 2-Objective SVM Selection: AverageR,E, T and |PBFA|Values for Varying
∆ Values

∆
Dataset

a2a acoustic(1) connect-4(1) MiniBooNe mushrooms w1a

0.7

R 0.99 0.99 0.96 0.97 0.94 0.95
E 0.13 0.06 0.06 0.14 0.03 0.04
T 0.51 0.50 0.59 0.38 0.26 0.39

|PBFA| 8.60 4.27 9.00 5.37 2.30 3.67

0.8

R 1.00 0.97 0.97 0.97 0.96 0.95
E 0.11 0.04 0.04 0.14 0.01 0.08
T 0.51 0.52 0.61 0.39 0.27 0.41

|PBFA| 8.83 4.47 9.27 5.67 2.33 3.80

0.9

R 1.00 0.98 0.98 0.99 0.93 0.95
E 0.09 0.03 0.03 0.17 0.04 0.06
T 0.59 0.61 0.62 0.88 0.28 0.43

|PBFA| 9.13 4.57 9.43 6.00 2.50 3.90

1− 0.19

R 1.00 0.98 0.99 1.00 0.99 1.00
E 0.04 0.07 0.07 0.05 0.02 0.01
T 0.82 0.86 0.88 0.82 0.61 0.85

|PBFA| 12.17 14.73 22.30 23.70 5.00 14.27

Regarding the T values, it is always smaller than 1 even when ∆ = 1 − 0.19. When ∆ is not

close to 1, S-Race saves about 50% of the computation time taken by the BFA to finish on average.

Generally, it is observed that higher ∆ values lead to lower computational savings. Because when

∆ ≈ 1, α ≈ 0 and it is less likely reject the null hypothesis. And thus more models will be identi-

fied as non-dominated models and are retained to the end of racing. Moreover, as the experimental

results demonstrated [146], smaller batch size generally results in larger computational savings.
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Table 5.6: S-Race on 3-Objective SVM Selection: AverageR,E, T and |PBFA|Values for Varying
∆ Values

∆
Dataset

acoustic(2) combined protein seismic connect-4(2) dna

0.7

R 0.95 0.97 1.00 1.00 0.90 1.00
E 0.22 0.09 0.07 0.24 0.05 0.17
T 0.68 0.49 0.68 0.50 0.46 0.41

|PBFA| 4.97 3.67 19.80 6.17 3.07 7.90

0.8

R 0.96 0.98 1.00 0.99 0.92 1.00
E 0.22 0.10 0.07 0.23 0.08 0.15
T 0.71 0.50 0.70 0.51 0.47 0.41

|PBFA| 5.47 3.93 20.20 6.73 3.10 8.23

0.9

R 0.91 0.98 1.00 0.99 0.90 1.00
E 0.29 0.11 0.07 0.22 0.05 0.12
T 0.72 0.51 0.71 0.53 0.49 0.43

|PBFA| 6.30 4.37 20.57 7.57 3.53 8.73

1− 0.19

R 1.00 0.97 1.00 0.99 0.96 1.00
E 0.06 0.09 0.06 0.04 0.04 0.05
T 0.90 0.89 0.90 0.91 0.78 0.69

|PBFA| 26.80 23.53 39.47 29.47 9.63 15.47

In Figure 5.1 and Figure 5.2, we provide a visual representation of how R, E, T and P changes

during the racing process. The depicted results are average values over 30 runs of S-Race with

the MiniBooNE dataset. P refers to the proportion of initial candidate models that are retained by

S-Race, which starts from 1 and decreases step by step as under-performing models are eliminated

gradually. Correspondingly, T values slightly increase as S-Race proceeds but remain uniformly

below 1. Moreover, as observed from Figure 5.1 and Figure 5.2,R values stay close to 1 throughout

racing for all ∆ values, while E values reduce significantly from a value close to 1 to a value close

to 0. This implies that S-Race is able to distinguish non-dominated models from dominated ones

with high confidence. When ∆ ∈ {0.7, 0.8, 0.9}, the behaviors of the averageR,E, T and P values

are similar to each other. Except when ∆ is close to 1, as shown in Figure 5.2b, the computational

savings achieved by S-Race, as compared to the BFA, has reduced from about 60% to 20%.
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Additionally, we compared the performances of S-Race without and with the adaptive α scheme,

to demonstrate the effect of the adaptive α scheme. For S-Race without the adaptive α scheme, the

α values assigned for all the families are fixed as α1 in Equation (5.10). The comparison results

are shown in Table 5.7 in which we report the differences between their average E and T values.

To be more specific, we compute the differences of the average R, E and T values achieved by

S-Race with and without the adaptive α scheme over all 12 datasets. Relative statistics, including

the average, the maximum and the minimum, are computed. The differences in R are insignificant,

indicating that the overall probability of making any Type I errors is always strictly controlled at

level 1 − ∆. E and T values are, however, significantly reduced as a result of employing the

adaptive α scheme as shown in Table 5.7. The comparison results demonstrate that the adaptive α

scheme enhances the power of S-Race in eliminating dominated models. S-Race with the adaptive

α scheme is able to further reduce computational effort.

Table 5.7: The Differences of Average E and T Values of S-Race Without and With the Adaptive
α Scheme on SVM Selection

∆
E T

Avg Max Min Avg Max Min

0.7 0.135 0.309 0.035 0.027 0.047 0.012
0.8 0.135 0.302 0.029 0.022 0.050 0.008
0.9 0.142 0.301 0.031 0.024 0.057 0.009

1− 0.19 0.035 0.117 0.007 0.006 0.017 0.001

Artificial Bee Colony Algorithm for Numerical Optimization

As one of the most popular swarm intelligence algorithms, the ABC algorithm [76] has been widely

applied to a variety of real-world problems in industrial engineering, mechanical engineering, soft-

ware engineering, etc. In this section, S-Race is used to select the optimal parameters of the ABC

algorithm for numerical optimization problems. Given a numerical optimization function, the best
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objective value obtained and the actual computation time required to achieve that objective value

are two performance metrics of ABC algorithms that we are interested in. Therefore, the ABC pa-

rameter selection problem is a binary-objective model selection problem. More specifically, in the

experiments conducted in this section, each candidate model is an ABC algorithm and its perfor-

mance vector, corresponding to a given optimization function, consists of the best objective value

achieved and the computation time it takes to finish.

In this set of experiments, S-Race starts off with a set of 54 ABC algorithms with different param-

eter settings described in Table 5.8, including the population size (NP ), the initialization scheme,

the selection scheme and the mutation scheme. For each ABC algorithm, the number of food

sources and the limit were set as 0.5 × NP and NS × D where D ∈ {2, 5, 30, 50, 100} refers

to the problem dimension, respectively. The numerical optimization functions used in the experi-

ments were generated via a Gaussian landscape generator [142]. The maximal number of steps in

S-Race was set to 50 and, at each step, a different objective function was randomly generated to

assess the performances of candidate models. The ABC algorithm stopped if it reached the maxi-

mal number of iterations (i.e. 500 for D = 2, 5, and 2000 for D = 30, 50, 100), or it converged. In

this set of experiments, the ∆ value was selected from the discrete set {0.7, 0.8, 0.9, 1− 0.19}.

Average R, E, T and |PBFA| values over 30 trials are reported in Table 5.9. First of all, it is

observed that all R values are above 96%, demonstrating that S-Race has successfully returned

the set of Pareto front models identified by the BFA at the prescribed confidence level. Regarding

the E values, 85% of them are no greater than 15%, implying that S-Race is able to identify and

eliminate most of the dominated models. When D = 30, however, E values are relatively high on

average. Generally speaking, it is hard to find an optimal solution for high-dimensional and multi-

model functions. Therefore, the candidate ABC algorithms demonstrate similar performances in

the experiments with D = 30. In this case, however, it is recommended to have more test instances

for further comparisons. In addition, it is obvious that the T values increase with increasing ∆.
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Table 5.8: ABC Parameter Description

parameter choices
NP 50, 150

random sampling
initialization scheme Latin square sampling

opposition-based sampling [44]
proportional selection

selection scheme [101] disruptive selection
rank selection

original mutation
mutation scheme [3] best-based mutation

dist-based mutation

This is because, when ∆ is large, it is harder for S-Race to make a rejection of the null hypothesis

and more of the dominated models are identified at a later stage of the racing process. All T values

are, however, strictly smaller than 1, even when ∆ = 1− 0.19.

The relevant statistics of the differences between average E and T values of S-Race without and

with the adaptive α scheme are shown in Table 5.10. As demonstrated by the experimental results,

updating α adaptively during racing will improve the power and computational efficiency of S-

Race, especially when the performances of the candidates are very similar to each other (e.g. when

D = 30).

Based on the ABC algorithms returned as Pareto optimal, some interesting facts can be deter-

mined about the parameters. Firstly, all of the Pareto optimal ABC algorithms have NP = 50 for

all studied D values. The experimental results demonstrate that, for the considered optimization

problems, population size of 50 provides enough diversity and good convergence behavior. Small

population size is good enough to balance the explorative and exploitative behavior of the ABC

algorithms in order to obtain good results in reasonable time frame. Secondly, the three initializa-

tion schemes provide different but well-balanced trade-off between the quality of the best objective
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Table 5.9: S-Race on 2-Objective ABC Selection: AverageR, E, T and |PBFA|Values for Varying
∆ Values

∆
D

2 5 30 50 100

0.7

R 0.98 0.99 0.98 1.00 0.99
E 0.06 0.12 0.22 0.11 0.07
T 0.36 0.52 0.64 0.50 0.42

|PBFA| 3.70 11.50 15.63 14.83 14.93

0.8

R 0.98 0.99 0.96 0.99 0.98
E 0.08 0.15 0.21 0.09 0.06
T 0.38 0.54 0.67 0.52 0.44

|PBFA| 3.87 11.87 16.83 15.33 15.50

0.9

R 0.97 0.99 0.97 0.99 0.99
E 0.08 0.14 0.20 0.08 0.04
T 0.40 0.57 0.70 0.55 0.45

|PBFA| 4.37 13.07 18.13 15.97 16.13

1− 0.19

R 1.00 1.00 1.00 1.00 1.00
E 0.07 0.15 0.04 0.13 0.00
T 0.91 0.99 0.99 0.98 0.88

|PBFA| 21.23 43.20 51.90 44.77 18.00

value obtained and the computational time required. Random sampling is easy to implement and

the resulting population converges to a local optimum quickly. On the contrary, opposition-based

sampling affords more diversity and better results. Latin Square sampling falls somewhere in be-

tween. Thirdly, proportional selection and disruptive selection are recommended. The former

one has the advantage of being fast in convergence, and the latter one possesses more diversity.

Fourthly, the original mutation operator and the best-based mutation operator are preferred over

the dist-based mutation operator. This is because the original mutation operator and the best-based

mutation operator demonstrate better trade-off between exploration and exploitation in searching

for an optimum objective value.
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Table 5.10: The Differences of Average E and T Values of S-Race Without and With the Adaptive
α Scheme on ABC Selection

∆
E T

Avg Max Min Avg Max Min

0.7 0.105 0.265 0.040 0.016 0.021 0.006
0.8 0.100 0.249 0.031 0.016 0.021 0.002
0.9 0.091 0.256 0.030 0.015 0.020 0.002

1− 0.19 0.002 0.015 0.006 0.001 0.001 0.001

Hybrid Recommendation System for Recommendation Tasks

One common practice in RS research is the hybrid RS approach which combines different recom-

mendation techniques to overcome common shortcomings (e.g. cold start [113], sparsity [82]), and

thus achieves improved performance [18, 14, 107]. A variety of basic RS techniques have been pro-

posed in the literature: Collaborative Filtering (CF), content-based, knowledge-based and demo-

graphic techniques [108]. Netflix, for instance, is a good example of hybrid RS which hybridizes

CF and content-based systems. A popular hybridization technique is weighted hybridization in

which the final predicted rating is a linear combination of the ratings returned by the component

RSs. The performance of such hybrid RS is determined by the assigned weights of its component

RSs. Finding the optimal set of weights is actually a multi-objective optimization problem in prac-

tice. There are several criteria for measuring the goodness of a RS, such as prediction accuracy,

ranking accuracy, diversity, and utility score, etc. Therefore, S-Race is appropriate for finding the

optimal weighted hybrid RSs with respect to multiple optimization criteria.

In this section, we applied S-Race on Pareto optimal hybrid RSs selection to illustrate its perfor-

mance. In this set of experiments, the candidate models were weighted hybridization of 7 CF RSs

available in the PREA package [81]: User-based CF, Item-based CF, Slope One, Regularized Sin-

gular Value Decomposition, Probabilistic Matrix Factorization, Singleton Global Local Low-Rank
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Matrix Approximation, and Rank-based Recommenders. Moreover, three RS performance metrics

provided in the PREA package [81] were selected, which are Asymmetric measures (Asym), Half-

life Utility (HLU ) and Kendall’s Tau (KT ). They are used to measure the prediction accuracy,

utility score and ranking accuracy, respectively. For consistency and simplicity, the performance

vector of each candidate RS contains Asym, 1 − HLU and KT . Therefore, the resulting hybrid

RS selection problem is a ternary-objective minimization problem. Two movie recommendation

dataset were used: MovieLens and Netflix. In the MovieLens dataset, there are a total of 6039

users, 3883 items, and 1000209 ratings. In the Netflix dataset, there are a total of 8662 users, 3000

items and 293299 ratings. Each dataset was randomly split into two parts: 75% of the ratings were

used as a training set for model selection, and the remaining 25% of the ratings were used as a

testing set for evaluating the set of Pareto optimal models returned by S-Race. The training set

was divided into 100 batches and, at each step of racing, one batch is randomly sampled without

replacement to assess the performances of the remaining models. 100 hybrid RSs were initialized

whose weights were generated via Latin Square sampling. Similarly, the ∆ value was selected

from the discrete set {0.7, 0.8, 0.9, 1− 0.19}.

The resulting R, E, T and |PBFA| values, averaged over 30 runs, are shown in Table 5.11. All

the R values in the Movielens dataset are close to 1, indicating S-Race is able to return all of the

Pareto front hybrid RSs as the BFA identifies. For the the Netflix movie recommendation task,

the resulting R values are all above 0.92 and slightly increase with increasing ∆ as expected.

Meanwhile, most of the E values are below 0.10, indicating that S-Race fails at eliminating a

small portion of dominated models. Moreover, S-Race consumes only half of the computational

resources that BFA uses according to the T values reported, except when ∆ is extremely close to

1.

To further illustrate the Pareto optimality of the hybrid RSs returned by S-Race, we compare the

performances of dominated hybrid RSs and non-dominated hybrid RSs on a test set, as depicted in
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Table 5.11: S-Race on 3-Objective Hybrid RS Selection: Average R, E, T and |PBFA| Values for
Varying ∆ Values

∆
Dataset

MovieLens Netflix

0.7

R 1.00 0.92
E 0.06 0.11
T 0.35 0.50

|PBFA| 6.67 6.50

0.8

R 0.98 0.94
E 0.07 0.10
T 0.35 0.52

|PBFA| 7.07 6.97

0.9

R 1.00 0.94
E 0.07 0.10
T 0.38 0.55

|PBFA| 7.67 7.93

1− 0.19

R 1.00 0.98
E 0.06 0.04
T 0.79 0.89

|PBFA| 26.30 41.43

Figure 5.3 and Figure 5.4. For each dataset, we collect the results of a single trial of S-Race with

∆ = 0.9 and ∆ = 1−0.19. In Figure 5.3 and Figure 5.4, the performance vectors of the dominated

models are denoted by black circles ( ), while those of the non-dominated models are denoted by

red-filled circles ( ). First of all, it is observed that the non-dominated models identified by S-

Race concentrated around (0.55, 0.305,0.335) in Figure 5.3 and (0.62, 0.174, 0.186) in Figure 5.4,

where all three objectives are minimized simultaneously. Therefore, it can be concluded that the

models that are Pareto optimal on the training set are also Pareto optimal on the test set as desired.

Moreover, it is obvious that more models will be returned by S-Race as non-dominated models

when ∆ increases. This is because S-Race can hardly make any null hypothesis rejections when

∆ approaches 1 and, correspondingly, when α approaches 0.
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(b) ∆ = 0.8

Figure 5.1: Change of average R, E, T and P values in S-Race for MiniBooNE dataset for ∆ =
0.7, 0.8.
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Figure 5.2: Change of average R, E, T and P values in S-Race for MiniBooNE dataset for ∆ =
0.9, 1− 0.19.
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Figure 5.3: Comparison of the performance of dominated and non-dominated hybrid RSs on the
test set for MovieLens dataset.
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Figure 5.4: Comparison of the performance of dominated and non-dominated hybrid RSs on the
test set for NetFlix dataset.
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CHAPTER 6: MULTI-OBJECTIVE RACING BASED ON SEQUENTIAL

PROBABILITY RATIO TEST WITH INDIFFERENCE ZONE

In this chapter, we introduce a novel Multi-Objective Racing Algorithm (MORA) based on the

Sequential Probability Ratio with INdifference zone Test, named SPRINT-Race. SPRINT-Race is

the first MORA with a fixed confidence setting in which the size of the validation set for model

selection is not available a priori and the number of validation samples could be possibly infinite.

In the fixed-confidence setting, the goal of the forecaster is to minimize the number of validation

instances required to achieve a fixed confidence about the optimality of the returned models. Dis-

tinct from S-Race introduced in Chapter 5, SPRINT-Race is applicable for situations where the

samples arrive sequentially in an online fashion (e.g. online controlled experiments, etc.).

In SPRINT-Race, both the dominance and non-dominance relationship between a pair of models

is statistically inferred via a ternary-decision non-parametric dual-SPRT with Trinomial distribu-

tion. The comparison between a pair of models will stop automatically when either dominance

or non-dominance relation is established with prescribed confidence. The employment of Se-

quential Probability Ratio Test (SPRT) in SPRINT-Race only necessitates a near-minimal sample

complexity. Moreover, the concept of indifference zone is utilized in SPRINT-Race, which al-

lows near-optimal models to be returned with the benefit of reduced sample complexity. Using an

indifference zone reduces the risk of loosing optimal models due to the existence of noise in per-

formance measurements, as well as the computational efforts required for a thorough comparison.

Additionally, the overall probability of making any Type I or Type II errors is strictly controlled via

the sequential Holm’s step-down Family-Wise Error Rate (FWER) control procedure. In SPRINT-

Race, the maximum probability of falsely eliminating any non-dominated model or mistakenly

returning any dominated model is predefined.
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Sequential Probability Ratio Test

Given a sequence of identically and independently distributed (i.i.d.) random variables (RVs)

xi, i = 1, · · · , N following an unknown distribution gθ (x) parameterized by θ only, a pair of

simple hypotheses is made about the value of θ: H0 : θ = θ0 and H1 : θ = θ1. In a traditional

fixed-sample test, a collection of samples is gathered in advance as evidence supporting either H0

or H1. A test statistic will be computed based on all the samples, and either H0 or H1 is accepted.

Let us denote the maximum probability of a Type I error by α ∈ [0, 1] and the maximum probabil-

ity of a Type II error by β ∈ [0, 1] for any testing procedure. In a fixed-sample test, β is generally

a function of α and the sample size N . Typically for fixed-sample test, the one that minimizes β

is always preferred as the most powerful test with given α and N . As indicated by the Neyman-

Pearson lemma [99], the most powerful fixed-sample test for H0 and H1 is the likelihood ratio test

with the following test statistics

λ ,
N∑
i=1

(ln gθ1(xi)− ln gθ0(xi)) (6.1)

which is the natural log of the ratio of the likelihood of observed data under H1 and H0.

Distinguished from the fixed-sample test, the number of samples required by a sequential test

procedure is a RV. Each individual sample arrives sequentially until a decision is made, and either

H0 or H1 is accepted. At each step of a sequential test, after the test statistic is updated based

on the newly sampled data, there are three possible actions to take: accept H0, accept H1, or

continue sampling. Compared with the fixed-sample test, the sequential test takes advantage of

the accumulated information during the data sampling process, and thus it is expected to require

a smaller sample complexity. In this work, the SPRT [132], which is the most popular sequential

testing procedure, is employed for pairwise dominance/non-dominance relationship inference. For
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a pair of simple hypotheses H0 and H1, the SPRT utilizes a likelihood ratio test statistic with the

following decision rules: assume that λn denotes the test statistic at the nth step, if λn ≤ A, H0 is

accepted; if λn ≥ B, H1 is accepted; otherwise, we continue sampling and n = n + 1. Generally,

by setting A = ln β
1−α and B = ln 1−β

α
, it is guaranteed that the maximum probability of Type I

and Type II errors do not exceed α and β, respectively.

Statistical Inference of Dominance and Non-Dominance in SPRINT-Race

Dual-SPRT

Since we are dealing with stochastic performance vectors, the dominance and non-dominance

relation between a pair of models should be established via formal tests of hypothesis. As we

discussed in Section 5 of Chapter 5, a non-parametric pairwise test is preferred for its robustness.

According to the concept of probabilistic dominance, there are three outcomes of a pairwise com-

parison between the ith model Mi and the j th model Mj: Mi �Mj , if and only if

P (f(Mi) � f(Mj)) > P (f(Mi) ≺ f(Mj)); Mi ≺ Mj , if and only if P (f(Mi) � f(Mj)) <

P (f(Mi) ≺ f(Mj)); and Mi ∼ Mj , if and only if P (f(Mi) � f(Mj)) = P (f(Mi) ≺ f(Mj)).

Let Nij denote the RV which represents the number of times that f(Mi) � f(Mj), with observed

value nij . Additionally, let S denote the total number of comparisons between Mi and Mj with

observed value s. Let us assume that pij , P (Nij = 1|S = 1) and pji , P (Nji = 1|S = 1).

Then, (Nij, Nji, S −Nij −Nji) ∼ Trinomial (pij, pji, 1− pij − pji) with the following Proba-

bility Mass Function (PMF) when s = 1

f (nij, nji; pij, pji) =
1

nij!nji!(1− nij − nji)
p
nij
ij p

nji
ji (1− pij − pji)1−nij−nji (6.2)
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where nij ∈ {0, 1}, nji ∈ {0, 1}, nij + nji ≤ 1 and 0 ≤ pij ≤ 1− pji ≤ 1.

In order to conclude any pairwise dominance and non-dominance relationship, we are only inter-

ested in the equivalence of pij and pji. Thus, the PMF can be rewritten as

f (nij, nji; γ, η) =

(
1

nij + nji

)
γnij+nji(1− γ)1−nij−nji

(
nij + nji
nij

)
ηnij(1− η)nji (6.3)

where γ , pij + pji and η , pij
pij+pji

.

Therefore, the nuisance parameter γ will disappear in the test statistic shown in Equation (6.1),

since
∑N

n=1

(
nnij + nnji

)
is a Fraser-sufficient statistic [46] of γ at the N th step of the SPRT where

nnij and nnji denote the nij and nji values at the nth step. Moreover, due to the existence of the

monotone likelihood ratio, the locally most efficient SPRT test procedure of testing H0 : η ≤ η0

vs. H1 : η ≥ η1 (0 < η0 < η1 < 1) is equivalent to testing H0 : η = η0 vs. H1 : η = η1 using the

following test statistic

λN = ln
η1

η0

N∑
n=1

nnij + ln
1− η1

1− η0

N∑
n=1

nnji (6.4)

Regarding the three outcomes of a pairwise comparison between Mi and Mj , the problem of in-

ferring pairwise dominance and non-dominance relationship is equivalent to making a decision

among the following three mutually exclusive hypotheses

H0 : η <
1

2
, H1 : η =

1

2
, H2 : η >

1

2
(6.5)
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If H0 is accepted, it is inferred that Mi dominates Mj and Mj will be eliminated; if H2 is accepted,

it is inferred that Mj dominates Mi and Mi will be eliminated; and if H1 is accepted, it is inferred

that neither one dominates the other, and both of Mi and Mj need to remain in the race.

Moreover, when the concept of indifference zone is utilized, the three hypotheses in Equation (6.5)

become

H0 : η ≤ 1

2
− δ, H1 : η =

1

2
, H2 : η ≥ 1

2
+ δ (6.6)

The reason of introducing indifference zone is twofold: i) in practical application, the computa-

tional burden of a thorough investigation is high and the user is usually satisfied with near-optimal

solutions; and ii) it reduces the risks of mistakenly eliminating non-dominated models due to inac-

curate performance measurements (e.g. noise). The intervals
(

1
2
− δ, 1

2

)
and

(
1
2
, 1

2
+ δ
)

are called

indifference zones. When η ∈
(

1
2
− δ, 1

2

)
, there is no difference if H0 or H1 is accepted, but the

rejection ofH2 is strongly preferred. Similarly, if η ∈
(

1
2
, 1

2
+ δ
)
, no mistake is committed if either

H1 or H2 is accepted. The selection of a proper δ value is not a statistical problem. It is totally

dependent on practical concerns of the users.

The above described ternary-decision test procedure is called a dual-SPRT and is tackled by the

Sobel-Wald test procedure [119]. In the dual-SPRT, two binary-decision SPRTs are combined as

follows

SPRT1 H1
0 : η ≤ 1

2
− δ H1

1 : η ≥ 1
2

SPRT2 H2
0 : η ≤ 1

2
H2

1 : η ≥ 1
2

+ δ
(6.7)

As a result, the decision rules of the dual-SPRT is summarized in Table 6.1.
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Table 6.1: Decision Rules of Dual-SPRT

SPRT 1 accepts SPRT 2 accepts dual-SPRT accepts
H1

0 : η ≤ 1
2
− δ H2

0 : η ≤ 1
2

H0 : η ≤ 1
2
− δ

H1
1 : η ≥ 1

2
H2

0 : η ≤ 1
2

H1 : η = 1
2

H1
1 : η ≥ 1

2
H2

1 : η ≥ 1
2

+ δ H2 : η ≥ 1
2

+ δ

The decision rules are graphically presented in Figure 6.1. Starting from the origin, crossing EI

and then AB leads to acceptance of H0; crossing EI and then ID, or EI and then CI , or CI and

then IF , or CI and then EI leads to acceptance of H1; and crossing CI and then GH leads to

acceptance of H2. It is easy to show that H1
0 and H2

1 can not be accepted at the same time.

Figure 6.1: Decision rules of a ternary-decision Dual-SPRT
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Sequential Holm’s Step-Down Procedure

Assume that SPRINT-Race starts off with K models, there will be a total of
(
K
2

)
dual-SPRTs

and, correspondingly, K(K + 1) component SPRTs. As a typical multiple hypotheses problem,

multiple comparison correction is required to control the overall probability of making any Type I

or Type II errors. There are two types of FWER involved in multiple sequential test: Family-Wise

Type I Error Rate (FWER-I) and Family-Wise Type II Error Rate (FWER-II) which are denoted

by FWERI and FWERII respectively.

FWERI , P

K(K−1)⋃
i=1

reject H i
0

∣∣∣∣H i
0


FWERII , P

K(K−1)⋃
i=1

reject H i
1

∣∣∣∣H i
1

 (6.8)

As shown in Equation (6.8), FWER-I refers to the overall probability of making any Type I errors,

and FWER-II denotes the overall probability of making any Type II errors. Distinct from the non-

sequential FWER control methods, both FWER-I and FWER-II are expected to be controlled by

the sequential FWER control approaches at predefined levels with low sampling complexity [38,

39, 15]. In SPRINT-Race, a sequential Holm’s step-down procedure [15] is employed to control

FWER-I at level α and FWER-II at level β. Similar to the non-sequential Holm’s procedure, the

sequential Holm’s FWER control method is a closed testing procedure that controls both FWER-I

and FWER-II in a strong sense without any assumptions of the interdependency among multiple

hypotheses and their samples. Moreover, it was shown by the authors that the sequential Holm’s

procedure is more powerful than other sequential FWER control methods proposed in the literature,

as well as its non-sequential analogues. A detailed description of the sequential Holm’s procedure

is provide in Table 6.2.
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Table 6.2: Sequential Holm’s Step-Down Procedure

Given a predefined maximum FWER-I α, FWER-II β,
and a family of k tests of hypothesis

Step 1 For s = 1, 2, · · · , k compute k adjusted confidence levels
αs = (k−s+1−β)α

(k−s+1)(k−β)
, βs = (k−s+1−α)β

(k−s+1)(k−α)

Step 2 Subsequently, for s = 1, 2, · · · , k compute k adjusted stopping boundaries
As = ln β

(k−s+1)(1−αs) , Bs = ln (k−s+1)(1−βs)
α

Step 3 At nth step of sequential testing, assume that an null hypotheses have been accepted,
and rn null hypotheses have been rejected.
Accept the remaining null hypotheses of the tests with λn ≤ Aan+1,
and reject those with λn ≥ Brn+1

SPRINT-Race Specifics

The framework of SPRINT-Race is provided in Algorithm 4. Initially, SPRINT-Race starts off

with K candidate models. During racing, the problem instances are randomly sampled from the

problem space and the remaining models are evaluated, and the test statistics for the corresponding

dual-SPRTs are updated according to the resulting performance vectors. In each dual-SPRT of Mi

and Mj , if H0 is accepted, Mi will be inferred as being dominated by Mj and thus be eliminated

from racing. Subsequently, all the dual-SPRTs involvingMi will be stopped. IfH2 is accepted, Mj

will be removed and all the dual-SPRTs involving Mj will be ceased. If H1 is accepted, however,

it is determined that Mi and Mj are non-dominated to each other and thus only the current dual-

SPRT involving both of them is terminated. The racing process repeats until all dual-SPRTs are

terminated and no more pairwise comparison is needed. Note that the individual boundary values

A andB of each SPRT are adjusted according to the sequential Holm’s procedure SeqHolms(α, β)

with given α and β to ensure that FWERI ≤ α and FWERII ≤ β.

As a fixed-confidence Multi-Objective Model Selection (MOMS) algorithm, the overall probability

of making any false discoveries of SPRINT-Race is strictly controlled at a user-specified level via
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Algorithm 4: SPRINT-Race Pseudo-code
input : α, β, δ, a stochastic multi-objective optimization function f , a possibly infinite problem

space I, and Pool← {M1,M2, · · · ,MK} (K ≥ 2)
output: Pool

1 Initialize N = 1
2 repeat
3 Randomly sample a problem instance IN ∈ I
4 foreach model Mi ∈ Pool do
5 foreach each model Mj ∈ Pool s.t. i < j do
6 if the corresponding dual-SPRT continues then
7 Evaluate Mi and Mj on IN
8 Update the corresponding λN in Equation (6.4)
9 Obtain A,B ∈ SeqHolms(α, β)

10 if H0 is accepted then
11 Pool← Pool \ {Mi}
12 Stop all dual-SPRTs involving Mi

13 else if H2 is accepted then
14 Pool← Pool \ {Mj}
15 Stop all dual-SPRTs involving Mj

16 else if H1 is accepted then
17 Stop the dual-SPRT involving Mi and Mj

18 end
19 end
20 end
21 N = N + 1

22 until All dual-SPRTs are terminated

the set of dual-SPRTs and the sequential Holm’s step-down FWER control method. There are

multiple possible false discoveries in a ternary-decision dual-SPRT when compared to a binary-

decision SPRT with only Type I and Type II errors. Therefore, the probability of any erroneous

decisions of a dual-SPRT, denoted by ω(η), is carefully analyzed in Table 6.3 [119, 23].
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Table 6.3: Error Probability Analysis of Dual-SPRT

Interval Wrong Decisions ω(η)
η ≤ 1

2
− δ accept H1 or H2 ω(η) = 1− P (H1

0 |η, γ) ≤ α1
1
2
− δ < η < 1

2
accept H2 ω(η) = P (H2

1 |η, γ) < α2

η = 1
2

accept H0 or H2

ω(η) ≤ P (H1
0 |η, γ) + P (H2

1 |η, γ)

≤ α2 + β1
1
2
< η < 1

2
+ δ accept H0 ω(η) = P (H1

0 |η, γ) < β1

η ≥ 1
2

+ δ accept H0 or H1 ω(η) = 1− P (H2
1 |η, γ) ≤ β2

The significance level of the dual-SPRT, denoted by ω∗, is measured as the maximum possible

ω(η) with η ∈ (0, 1). In other words, we have

ω∗ , max
η∈[0,1]

ω(η)

= max(α1, α2, α2 + β1, β1, β2)

≤ α1 + β1 + α2 + β2

(6.9)

Let Ω denote the overall probability of falsely eliminating any non-dominated models or returning

any dominated models in SPRINT-Race. Obviously, Ω is dependent on the significance level

of each individual dual-SPRT as well as the overall FWERI and FWERII . According to the

Bonferroni inequality, we have

Ω , P {at least one Type I or Type II error in SPRINT-Race}

= P {at least one Type I or Type II error in any SPRTs}

≤ FWERI + FWERII

≤ α + β

(6.10)
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Therefore, we can see that the overall probability of SPRINT-Race of failing to return exactly the

true set of Pareto optimal models is strictly controlled at level α + β.

Since the number of samples required by the dual-SPRT, denoted as N , is a RV, we are interested

in its expected value, denoted as E(N), which implicitly reflects the overall sample complexity

of SPRINT-Race. Since N , max (N1, N2) with N1 and N2 indicating the number of samples

required by its component SPRTs, we have

E(N) = E(max(N1, N2))

= E(N1) + E(N2)− E(min(N1, N2))

≤ E(N1) + E(N2)

(6.11)

Given A1 = ln β1

1−α1
, B1 = ln 1−β1

α1
for SPRT 1, and A2 = ln β2

1−α2
, B2 = ln 1−β2

α2
for SPRT 2, the

well-known Wald approximations for E(N1) and E(N2) [133] is given as

E(N1) =
Q1(η)A1 + (1−Q1(η))B1

γ
(
η ln 1

1−2δ
+ (1− η) ln 1

1+2δ

) (6.12)

where Q1 =
A
h1(η)
1 −1

B
h1(η)
1 −Ah1(η)

1

, and h1(η) is the unique non-zero solution of (1 − η)
(

1
1+2δ

)h1 +

η
(

1
1−2δ

)h1 = 1, and

E(N2) =
Q2(η)A2 + (1−Q2(η))B2

γ (η ln(1 + 2δ) + (1− η) ln(1− 2δ))
(6.13)

where Q2 =
B
h2(η)
2 −1

B
h2(η)
2 −Ah2(η)

2

, and h2(η) is the unique non-zero solution of (1 − η) (1− 2δ)h2 +

η (1 + 2δ)h2 = 1.
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Based on Equation (6.11), Equation (6.12) and Equation (6.13), we now have an upper bound

on the sample complexity of each dual-SPRT. Since there will be a total of
(
K
2

)
dual-SPRTs

in a SPRINT-Race with K initial models, the upper bound of the overall sample complexity of

SPRINT-Race is available. Note that the exact value of E(N) can be numerically calculated via

the direct method introduced in [23, 6]. Moreover, it was shown that E(N) has a local minimum

at η = 1
2
, and two local maximum when η ∈

(
1
2
− δ, 1

2

)
and η ∈

(
1
2
, 1

2
+ δ
)
.

Intuitively, E(N) is directly dependent on α and β. SPRINT-Race with smaller α and β has

higher probability of returning the exact true Pareto front of the initial ensemble of models, but it

necessitates larger E(N). On the contrary, larger α and β reduce the overall sample complexity

but they result in higher probability of losing any non-dominated models or falsely returning any

dominated models. To sum up, the selection of α and β requires a tradeoff between the accuracy

of SPRINT-Race and its computational effort.

Experiments and Applications

In this section, we illustrate the performance of SPRINT-Race on three MOMS problems: an artifi-

cially constructed MOMS problem with known ground truth, a hybrid Recommender System (RS)

construction problem for Top-S recommendation, and a multi-criteria stock selection problem.

Performance Metrics

Similar to S-Race, the goal of SPRINT-Race is to correctly identify the set of Pareto optimal

models from a given ensemble of models. Therefore, in order to measure its selection accuracy,

three metrics are used in this research which are False Positive Rate (see Equation (6.14)), False

Negative Rate (see Equation (6.15)) and False Identification Rate (see Equation (6.16)).
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FPR ,
|PPF \ PR|
|PPF |

(6.14)

FNR ,
|PR \ PPF |
|PCPF |

(6.15)

FIR , 1− |PR ∩ PPF |+ |P
C
R ∩ PCPF |

|P|
(6.16)

where P denotes the entire set of initial models, PPF ⊆ P refers to the true set of Pareto front

models, PR ⊆ P refers to the set of models returned by SPRINT-Race, and PCR and PCPF are their

complementary sets in P , respectively.

Apparently, FPR measures the proportion of Pareto front models that are mistakenly eliminated

by SPRINT-Race, FNRmeasures the proportion of dominated models that are falsely identified as

Pareto optimal, and FIR measures the overall proportion models that are not correctly identified.

Therefore, FIR is regulated by α + β, the predefined upper bound of FWER-I and FWER-II. In

ideal conditions, it is expected to have FPR = 0, FNR = 0 and FIR = 0, indicating that no

Type I or Type II error is committed. In reality, however, low FPR, FNR and FIR values are

acceptable as long as certain confidence level is guaranteed.

The sample complexity N is employed as an additional performance metric to assess the computa-

tional cost of SPRINT-Race. For a dual-SPRT, the sample complexity is calculated as the number

of paired observations required to reach a conclusion. Accordingly, the sample complexity of

SPRINT-Race is measured as the total number of samples consumed by all the dual-SPRTs.
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Artificially Constructed Multi-Objective Model Selection Problems

In this section, SPRINT-Race is applied on an artificially constructed MOMS problem with known

ground truth. To better illustrate its efficiency, SPRINT-Race is compared with a multi-objective

Brute Force Approach (BFA) which allocates the overall computational resources uniformly among

the candidate models and typically serves as a baseline algorithm in the Model Selection (MS) lit-

erature. Moreover, the influence of several parameters (i.e. the number of objectives D, the size of

the initial ensemble K, significance levels α and β, and indifference zone size δ) are thoroughly

studied.

For a D-objective MS problem with K models,
(
K
2

)
Trinomial distributions are randomly gen-

erated to mimic the pairwise dominance and non-dominance relationships among the candidate

models. All the distribution information is stored in a matrix, denoted as P . For any pair of

models Mi and Mj , Pij > Pji if Mi � Mj; Pij < Pji if Mi ≺ Mj; and Pij = Pji if no one

dominates the other. Therefore, PPF ,
{
Mi | Pij ≥ 1

2
, i, j ∈ {1, 2, · · · , K}

}
. Every P presents

a unique MOMS problem and, whenever a new sample is needed in SPRINT-Race, the new sample

is randomly generated from the corresponding Trinomial distribution provided in P .

Impact of the Number of Objectives

In this set of experiments, we studied the impact of the number of objectives, denoted byD. We set

K = 50, δ = 0.01, α = 0.01, β = 0.01, and D ∈ {2, 3, · · · , 14}. 30 experiments were conducted

for each D value.

In Table 6.4, we report the average error metrics FPR, FNR, and FIR values, as well as the

average sample complexity N and the size of the true Pareto front |PPF | values. It can be seen

from Table 6.4 that, for varying D values, all of the FPR values are close to 0. In other words,
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SPRINT-Race is always able to identify almost all the true Pareto optimal models. Meanwhile, all

of the FNR values tend to 0, indicating that dominated models are correctly identified and thus

are removed by SPRINT-Race. Therefore, the consequent FIR is close to 0 since PR is almost

the same as PPF . The experimental results demonstrate that SPRINT-Race is able to control the

overall probability of making any Type I or Type II errors strictly below the predefined error bound

α + β. The resulting FIR is, however, far less than α + β, which reveals the conservativeness of

SPRINT-Race, meaning that the true probability of making any false decisions in SPRINT-Race

is always smaller than the prescribed significance level. This conservativeness is partly because

the upper bound of the error probability provided in Equation (6.10) is not tight enough. Another

reason for such conservativeness is that the power of the sequential Holm’s step-down procedure is

somehow reduced. In the sequential Holm’s procedure, the number of accepted null hypotheses an

and the number of rejected null hypotheses rn at the n-th step SPRINT-Race is needed to obtain the

correct stopping boundaries. an and rn are, however, not always timely updated in SPRINT-Race

because some of the dual-SPRTs will be terminated before a final decision is reached (i.e. line 12

and 15 in Algorithm 4). How to improve the power of SPRINT-Race is worth further investigation.

However, it needs to be emphasized that, compared to the Bonferroni procedure employed in [148],

the sequential Holm’s procedure is more powerful.

It is obvious that the size of the Pareto front of the given ensemble of models increases with

growing D values. When D = 14, all the initial models become Pareto optimal. This explains

why the FNR values are all 0 when D ≥ 7. Moreover, it explains why the sample complexity

N is monotonically increasing as the dimensionality ranges from D = 2 to D = 14, as reported

in Table 6.4. This is because, generally, more samples are required to conclude a pairwise non-

dominance relation than inferring a pairwise dominance relation. The growth of N is, however,

not dramatic because the pairwise comparisons will cease automatically once a non-dominance

relationship is identified.
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Table 6.4: SPRINT-Race on D-Objective Model Selection: Average FPR%, FNR%, FIR%, N
and |PPF | Values

D FPR% FNR% FIR% N |PPF|

2 0.00 0.00 0.00 1.76e6 4.43
3 0.00 0.18 0.13 7.32e6 11.70
4 0.00 0.12 0.07 2.01e7 20.00
5 0.09 0.78 0.33 3.77e7 27.57
6 0.00 0.32 0.13 5.97e7 35.30
7 0.00 1.00 0.27 7.63e7 39.97
8 0.08 0.00 0.07 8.98e7 43.80
9 0.14 0.00 0.13 1.04e8 47.20

10 0.14 0.00 0.13 1.10e8 48.43
11 0.20 0.00 0.20 1.11e8 48.67
12 0.07 0.00 0.07 1.15e8 49.50
13 0.02 0.00 0.02 1.15e8 49.73
14 0.12 0.00 0.12 1.17e8 50.00

To better demonstrate the efficiency of SPRINT-Race, we compare its performance with a multi-

objective BFA which is commonly used as a baseline and allocates the same amount of computa-

tional resources for each candidate model. The BFA used in this work is also a fixed-confidence

MS algorithm based on a fixed-sample test with strict control over the probability of making any

Type I and Type II errors [51, p. 49]. In the BFA, the required sample size and the corresponding

decision region are determined by the given values of (η0, η1, α, β). In Table 6.5, we provide the

differences of the average FPR%, FNR%, FIR% values between SPRINT-Race and the BFA. In

addition, we report the ratio of the sample complexity between SPRINT-Race and the BFA. It can

be seen from Table 6.5 that SPRINT-Race almost always achieves smaller error rates (i.e. FPR,

FNR, FIR) than the BFA. However, the gap is negligible. Both SPRINT-Race and the BFA have

successfully identified the entire Pareto front with high accuracy. Regarding the ratios of the N

values in Table 6.5, the numbers demonstrate that SPRINT-Race has significant advantages over
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the BFA in terms of computational efficiency. However, the differences in N get smaller gradually

with increasing D.

Table 6.5: Differences of Average FPR%, FNR%, FIR% Values, and Ratios of the Average N
Values Between SPRINT-Race and the BFA

D Difference Ratio
FPR% FNR% FIR% N

2 -0.00 -0.00 -0.00 0.009
3 -0.28 +0.10 -0.13 0.039
4 -0.18 -0.00 -0.07 0.107
5 -0.37 +0.10 -0.02 0.198
6 -0.11 +0.20 -0.00 0.314
7 -0.15 -0.00 -0.13 0.401
8 -0.07 -0.00 -0.07 0.473
9 -0.00 -0.00 -0.00 0.549

10 -0.21 -0.00 -0.20 0.578
11 -0.22 -0.00 -0.20 0.582
12 -0.13 -0.00 -0.13 0.603
13 -0.07 -0.00 -0.07 0.606
14 -0.24 -0.00 -0.24 0.683

To visualize how N changes during the racing process, we depicted the changes of N values at

each step of SPRINT-Race. The step-wise N values of 4 runs of SPRINT-Race with K = 50,

D = 2, α = 0.05, β = 0.05, and δ = 0.01 are drawn in Figure 6.2. Since SPRINT-Race

discards under-performing models once sufficient statistical evidence has been collected, the N

values drop gradually during racing. As shown from Figure 6.2, a sudden drop of the N value

commonly happens around the 20%-th step, which illustrates that SPRINT-Race cuts down the

computational cost significantly in an early stage of racing by quickly eliminating the dominated

models. However, it takes more steps to infer pairwise non-dominance relationships.
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Figure 6.2: Changes of N values at each step of SPRINT-Race for D = 2

Impact of the Initial Ensemble Size

In this set of experiments, we study the impact of the number of initial models on the performance

of SPRINT-Race. We allowed D to vary over {2, 3, 4, 5, 6} and K ranged from 10 to 200 with a

step size of 10. Regarding α, β, and δ, we held them fixed at 0.01. We report the average FPR,

FNR, FIR, and |PPF | values, as well as the average N values in Table 6.6. They are averaged

over 30 trials. Additionally, the ratios of the sample complexity N between SPRINT-Race and the

BFA are provided in Table 6.6.

First of all, it can been seen from Table 6.6 that all the FPR, FNR and FIR values are extremely

close to 0 while the N ratios are no larger than 16% in all the cases, implying that SPRINT-Race

returns almost exactly the true Pareto front but at a significantly reduced computational cost when

compared to the BFA. The initial ensemble size K has little impact on the selection accuracy
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of SPRINT-Race. However, the N values increase monotonically with growing K values. It is

obvious that larger K results in larger N to establish pairwise dominance and non-dominance re-

lationships. Moreover, the computational advantage of SPRINT-Race over the BFA becomes more

pronounced with increasing K, as demonstrated by the experimental results. Similar conclusions

could be drawn for D ∈ {2, 4, 5, 6}.

Table 6.6: SPRINT-Race on 3-Objective Model Selection: Average FPR%, FNR%, FIR%, N
with ratios, and |PPF | Values for Varying K

K FPR% FNR% FIR% N Ratio of N |PPF|

10 0.00 0.00 0.00 6.42e5 0.152 4.83
20 0.00 0.00 0.00 1.63e6 0.071 6.37
30 0.00 0.37 0.33 3.73e6 0.063 9.03
40 0.00 0.32 0.25 6.90e6 0.060 11.73
50 0.00 0.26 0.20 7.36e6 0.039 11.27
60 0.00 0.23 0.17 1.01e7 0.035 13.10
70 0.67 0.00 0.25 1.27e7 0.031 14.80
80 0.00 0.15 0.13 1.14e7 0.021 12.93
90 0.00 0.00 0.00 1.50e7 0.021 15.03
100 0.35 0.00 0.30 1.78e7 0.020 15.57
110 0.00 0.00 0.00 1.80e7 0.016 15.80
120 0.00 0.09 0.08 1.85e7 0.014 14.70
130 0.00 0.00 0.00 2.16e7 0.013 16.37
140 0.29 0.27 0.29 1.78e7 0.013 13.27
150 0.07 0.00 0.07 2.82e7 0.013 17.80
160 0.00 0.00 0.00 3.42e7 0.012 19.97
170 0.06 0.00 0.06 3.21e7 0.011 18.43
180 0.36 0.24 0.25 2.92e7 0.009 15.80
190 0.00 0.12 0.11 3.35e7 0.009 16.83
200 0.00 0.20 0.15 3.63e7 0.009 17.90

The changes of the ratios between the average sample complexity of SPRINT-Race and the BFA

with increasing K values are depicted in Figure 6.3 with D ∈ {2, 3, 4, 5, 6}. As Figure 6.3 shows,

SPRINT-Race always requires a smaller sample size than the BFA. The computational advantage

of SPRINT-Race over the BFA becomes more pronounced with increasing K. When K = 200,

102



SPRINT-Race saves more than 90% of the samples required by the BFA to achieve the same

confidence level for MS. Another observation from Figure 6.3 is that the computational savings of

SPRINT-Race with respect to the BFA get less significant with rising D values. When D ∈ {2, 3},

which is a common scenario in real-world problems, however, SPRINT-Race saves more than 80%

of the samples taken by the BFA for varyingK values. Even whenD = 6, SPRINT-Race still saves

more than 60% of the samples needed by the BFA, which is significant.
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Figure 6.3: Changes of the ratios between the average N values of SPRINT-Race and the BFA
with increasing K values for D ∈ {2, 3, 4, 5, 6}.

Impact of α and β Values

In order to study the impact of the upper bounds of the probability of making any Type I and

Type II errors, we conducted a series of experiments with varying α and β values. In the first set of
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experiments, we had α = 0.1 and β ∈ {0.01, 0.03, · · · , 0.15}, and in the second set of experiments,

we had β = 0.1 and α ∈ {0.01, 0.03, · · · , 0.15}. The other parameters were held fixed at K = 50,

δ = 0.01 and D ∈ {2, 3}. The average FPR, FNR and FIR values over 30 trials with varying

α are reported in Table 6.7. It can be seen from Table 6.7 that there is no significant correlation

between α and the resulting error rates. The observed FPR, FNR and FIR values are always

strictly below the prescribed significance level and vary within a reasonable range. This is another

manifestation of SPRINT-Race’s conservativeness. Similar observations are available for the set

of experiments with fixed α and varying β values.

Table 6.7: SPRINT-Race on 2, 3-Objective Model Selection: Average FPR%, FNR%, FIR%
Values for Varying α

α 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15

D = 2
FPR% 0.00 0.00 0.00 0.00 0.87 0.00 1.16 0.00
FNR% 1.39 0.95 1.31 1.39 0.00 1.16 0.00 1.31
FIR% 1.27 0.87 1.20 1.27 0.80 0.10 1.07 1.20

D = 3
FPR% 0.00 0.00 0.00 2.19 0.00 0.00 1.95 0.00
FNR% 1.81 1.79 2.32 0.00 1.42 1.33 0.00 2.96
FIR% 1.47 1.40 1.87 1.67 1.13 1.07 1.47 2.27

The impact of the selection of α and β can be hardly identified via the error rates in Table 6.7.

Their impact on the sample complexity of SPRINT-Race is, however, more evident. In Figure 6.4,

we depicted the changes of the average N values with increasing α and β values. As you can

see from Figure 6.4, the N values decrease with rising α or β values. This is reasonable because,

when we raise the upper bounds of the probability of making any Type I and Type II errors, fewer

samples are required to establish any pairwise dominance and non-dominance relationships via the

dual-SPRT as a consequence.
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Figure 6.4: Changes of the average sample complexity N of SPRINT-Race with increasing α / β
values for D ∈ {2, 3}.

Impact of δ Values

In this set of experiments, we studied the effect of δ on the performance of SPRINT-Race. The

experimental setting was as follows: K = 50, α = 0.05, β = 0.05, D ∈ {2, 3} and δ is selected

from the discrete set {0.02, 0.03, · · · , 0.15}.

The changes of the average FIR and FNR values over 30 runs with varying δ values are depicted

in Figure 6.5. The average FPR values are not reported because all of them are nearly 0. The

uptrend of the error rates with increasing δ values can be observed from Figure 6.5. When the size

of the indifference zone grows with increasing δ, it is highly likely that more dominated models

that are located in the indifference zone will be returned as Pareto front models. Consequently,
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increasing δ results in higher FNR values since |PR \ PPF | gets larger. As a result, FIR values

increase as well. However, the observed probability of making any false eliminations of non-

dominated models or any false acceptances of dominated models is always strictly controlled at

the predefined significance level.

Moreover, the changes of theN values, as well as the ratios between theN values of SPRINT-Race

and the BFA with varying δ values, are shown in Figure 6.6. It can been seen that N decreases

greatly with increasing δ since it is easier for a dual-SPRT to reach a decision with a broader

indifference zone. However, the computational savings of SPRINT-Race, compared to the BFA,

are reduced since the sample complexity of the BFA decreases faster with growing δ. Even so,

SPRINT-Race saves at least 85% of the samples when compared to the BFA.

Hybrid Recommender System Construction for Top-S Recommendation

The motivation of the weighted hybridization of RSs has been emphasized in Section 16 of Chap-

ter 5. In this section, we illustrate the performance of SPRINT-Race on Pareto optimal hybrid RSs

selection for Top-S recommendation.

In Top-S recommendation, the task is to identify a list of S items as recommendations to a partic-

ular user. Top-S recommendation used to be solved as a single-objective problem in which only

the prediction accuracy is considered. The other important aspects, such as novelty and diver-

sity, are largely ignored until recently. The advantages of optimizing prediction accuracy, novelty

and diversity simultaneously have been emphasized in a large amount of research [107, 49, 130].

Therefore, in this set of experiments, we applied SPRINT-Race on selecting the set of Pareto op-

timal weighted hybrid RSs. This is a ternary-objective maximization problem which optimizes

prediction accuracy, novelty and diversity simultaneously.

106



0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

δ

F
IR

%

 

 

D = 2
D = 3

(a) Change of FIR with varying δ

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

δ

F
N

R
%

 

 

D = 2
D = 3

(b) Change of FNR with varying δ

Figure 6.5: Change of average FIR and FNR values with varying δ.
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(a) Change of sample complexity N with varying δ

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

δ

R
at

io
 o

f 
N

 

 

D = 2
D = 3

(b) Change of the ratios between sample complexity N of SPRINT-Race
and the BFA with varying δ

Figure 6.6: Change of average sample complexity N and the ratio between the N values of
SPRINT-Race and the BFA with varying δ.
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The candidate models were weighted hybridization of 8 RSs selected from the PREA package [81],

including User-based Collaborative Filtering (CF), Item-based CF, Slope One, Regularized SVD,

Non-negative Matrix Factorization, Probabilistic Matrix Factorization, Rank-based Recommender

with asymmetric loss, and Singleton Global Local Low-Rank Matrix Approximation. The initial

weights were generated via Latin Square sampling. Three performance metrics were employed for

Top-S recommendation [107]: precision(R(S)) for prediction accuracy, nov(R(S)) for novelty

and div(R(S)) for diversity, where R(S) refers to the list of S items recommended. The Movie-

Lens and Netflix dataset introduced in Section 16 of Chapter 5 were used and were randomly split

into a training set and a test set 75% and 25% of the available data respectively. At each step of

SPRINT-Race, a batch of 50 training samples was randomly chosen with replacement for model

training and validation. The other parameters were set as K = 200, α = 0.05, β = 0.05, δ = 0.05,

and each experiment was repeated for 45 trials.

The average N and |PR| values for the MovieLens dataset are 7.92 × 107 and 2.73, while , for

the Netflix dataset, the same values are 1.07 × 108 and 11.4. Since the true Pareto front is un-

known, we did not compute FIR, FPR or FNR. Instead, we compared the performances of the

resulting dominated hybrid RSs and non-dominated hybrid RSs on the test set. For each dataset,

we depicted the results of a single trial of SPRINT-Race. In Figure 6.7, the performance vectors

of the dominated models on the entire test set are denoted by black circles ( ), while those of the

non-dominated models are indicated by red-filled circles ( ). As depicted in Figure 6.7, the non-

dominated hybrid RSs mostly gather around (0.635, 0.957, 0.77) in MovieLens dataset and (0.69,

0.835, 0.475) in Netflix dataset, where all three objectives are maximized simultaneously. The ex-

perimental results demonstrate that the models that are Pareto optimal on the training set are also

Pareto optimal on the test set.

109



0.590.5950.60.6050.610.6150.620.6250.630.635

0.953

0.954

0.955

0.956

0.957

0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77  

precision
nov

 

d
iv

dominated models
non−dominated models

(a) MovieLens dataset

0.660.6650.670.6750.680.6850.69

0.815

0.82

0.825

0.83

0.835

0.44

0.445

0.45

0.455

0.46

0.465

0.47

0.475

 

precisionnov

 

d
iv

dominated models
non−dominated models

(b) Netflix dataset

Figure 6.7: Comparison of the performances of dominated and non-dominated hybrid RSs on the
test set.
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Multi-Criteria Stock Selection

Playing the stock market is thrilling. Many stock-picking strategies have been proposed for finding

good stocks according to a selected set of criteria. Based on the historically popular Mean-Variance

paradigm [89], the objectives of stock selection is to maximize the average return and to minimize

the risk. The stock with the best risk-return trade-off is more preferable. Therefore, stock selection

is, typically, a binary-objective problem.

Let xi(t) denote the price of the ith stock at time t. Then, its log return ri(t) is defined as

ri(t) , log
xi(t)

xi(t− 1)
= x̃i(t)− x̃i(t− 1) (6.17)

where x̃i(t) , log xi(t) is referred to as the log price. Accordingly, the weekly return r̄i and risk

σi are defined as

r̄i ,
1

7

d+6∑
t=d

ri(t), σi ,

√∑d+6
t=d (ri(t)− r̄i)2

6
(6.18)

where d indexes starting days, and r̄i and σi are calculated based on the daily stock prices over a

week.

According to random walk theory, rt(t), t = 1, 2, · · · could be regarded as i.i.d. samples from a

heavy-tailed distribution [87, 53, 111]. Therefore, due to the stochasticity of the two optimization

objectives (return and risk), SPRINT-Race is a proper tool for Pareto optimal stocks selection. In

this binary-objective MS problem, each model is a stock and its performance vector consists of its

weekly return and risk defined in Equation (6.18).
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We selected 100 stocks and collected 4826 daily open price data for each stock from [141] between

08-29-1996 to 10-29-2015. Based on the collected data, we estimated the underlying Trinomial

distribution of each pair of stocks via Monte Carlo estimation. The estimated distributions, repre-

senting pairwise dominance and non-dominance relationships, are used to identify the true Pareto

front PPF . Given α = 0.05, β = 0.05 and δ = 0.05, the average FPR, FNR, FIR, N and

|PR| values of SPRINT-Race over 30 trials are 0, 6.4%, 6.3%, 1.82 × 106 and 1.63, respectively.

Furthermore, the average runtime of SPRINT-Race is 5.91 minutes per run, using MATLAB2013b

on two quad-core Intel Xeon E5-2609 with 32 GB of RAM.

When compared with the BFA on stock selection, SPRINT-Race achieves similar selection ac-

curacy with respect to the FCR, FNR and FIR values, but with a significant reduced sample

complexity. SPRINT-Race saves more than 90% of the samples needed by the BFA. The exper-

imental results confirm that SPRINT-Race is capable of speeding up the binary-objective stock

selection process and correctly identifying the set of Pareto optimal stocks with the best risk-return

trade-offs.

To provide a better demonstration of SPRINT-Race’s accuracy in Pareto optimal stock selection,

we graph the minimum probability of dominance of each model, denoted as ηmin, in Figure 6.8

across models. For the ith modelMi, its minimum probability of dominance is computed as ηmin ,

mini 6=j
pij

pij+pji
. Given δ = 0.05, any model with ηmin ≤ 0.45 is expected to be eliminated as

dominated model, and any model with ηmin ≥ 0.50 should be returned as a non-dominated model.

Besides, any model with ηmin ∈ (0.45, 0.5) resides in the indifference zone of at least one dual-

SPRT, and it can be identified as either dominated or non-dominated model with no error being

committed. From Figure 6.8, it can be observed that SPRINT-Race returns all the Pareto front

models accurately without falsely including any dominated models.
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CHAPTER 7: CONCLUSION

This research largely addresses the issues and practical applications of Racing Algorithms (RAs)

for Extreme Model Selection (EMS) and Multi-Objective Model Selection (MOMS). This research

is shown to be important since EMS and MOMS are important problems in machine learning, and

they are also natural frameworks of many real-world applications. However, little work has been

done in the literature of RAs for EMS and MOMS.

In EMS, the goal is to maximize the final objective value of the given problem instance by auto-

matically allocating the overall computational resources among an ensemble of problem solvers.

Ideally, we would allocate all computational resources to the model that will give us the overall

best solution.

In this work, we propose the first RA for EMS, named Max-Race. Distinct from existing RAs,

Max-Race performs Model Selection (MS) during model comparison in terms of extreme per-

formance. Max-Race is an online per-instance based RA, aiming at maximizing the final out-

come while solving a particular optimization problem. It achieves the goal by eliminating under-

performing models as early as possible, and thus distributing the computational resources optimally

among the competing models. In Max-Race, the underlying distribution of a model’s performance

is approximated via the Point Over Threshold (POT) approach in Extreme Value Theory (EVT)

and, thus, its extreme performance is referred to as the right endpoint of the distribution. Addi-

tionally, a parametric hypothesis test under the Generalized Pareto Distribution (GPD) assumption

is developed to infer significant difference between the extreme performances of a pair of models.

The model with inferior extreme performance will be eliminated as early as possible in order to

concentrate more computational resources on the optimal model(s). In this work, Max-Race is ap-

plied to constructing a population-based Algorithm Portfolio (AP) in which each competing model
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is an Evolutionary Computation (EC) algorithm. We assess the performance of Max-Race by

comparing it to the Brute Force Approach (BFA), two baseline algorithms (i.e. BestEC, RandEC),

and three popular population-based APs (i.e. A Multi-algorithm Genetically Adaptive Method for

Single Objective Optimization (AMALGAM-SO), Population-based Algorithm Portfolio (PAP),

Multiple Evolutionary Algorithm (MultiEA)). The experimental results demonstrate that Max-

Race is able to retain the optimal model with high precision and low computational overhead. By

accurately identifying the optimal models with the best extreme performances and eliminating the

under-performing ones as soon as possible, Max-Race is able to maximize the quality of the final

solution obtained.

Another type of MS considered in this research is MOMS in which multiple conflicting optimiza-

tion objectives are considered simultaneously during MS. In other words, more than one optimiza-

tion criterion is used to measure the goodness of models. Consequently, in MOMS, the entire set

of Pareto optimal models is expected to be returned without including any dominated models.

First of all, we put forward the first Multi-Objective Racing Algorithm (MORA) in a fixed-budget

setting, called S-Race, which addresses the problem of MOMS in the proper sense of Pareto opti-

mality. Given stochastic objectives, S-Race adopts the non-parametric pairwise sign test to estab-

lish pairwise dominance relationships. Moreover, the discrete Holm’s Step-Down procedure for

Family-Wise Error Rate (FWER) control is employed to control the overall probability of mak-

ing any Type I errors. That is, the probability of falsely eliminating any non-dominated model

in S-Race is strictly controlled at a user-specified level. The performance of S-Race is compared

to the corresponding BFA on three MOMS problems which are hyper-parameter tuning for Sup-

port Vector Machines (SVMs) on binary- and ternary-classification tasks, optimal Artificial Bee

Colony (ABC) selection for numerical optimization, and hybrid Recommender Systems (RSs) con-

struction for movie recommendations. As the experimental results demonstrate, S-Race presents

significant computational advantages over the BFA and high accuracy in identifying almost the
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same ensemble of Pareto optimal models. First of all, we put forward the first MORA in a fixed-

budget setting, called S-Race, which addresses the problem of MOMS in the proper sense of Pareto

optimality. Given stochastic objectives, S-Race adopts the non-parametric pairwise sign test to es-

tablish pairwise dominance relationships. Moreover, the discrete Holm’s Step-Down procedure for

FWER control is employed to control the overall probability of making any Type I errors. That is,

the probability of falsely eliminating any non-dominated model in S-Race is strictly controlled at

a user-specified level. The performance of S-Race is compared to the corresponding BFA on three

MOMS problems which are hyper-parameter tuning for SVMs on binary- and ternary-classification

tasks, optimal ABC selection for numerical optimization, and hybrid RSs construction for movie

recommendations. As the experimental results demonstrate, S-Race presents significant compu-

tational advantages over the BFA and high accuracy in identifying almost the same ensemble of

Pareto optimal models.

Next, another novel MORA based on the Sequential Probability Ratio Test (SPRT) with Indiffer-

ence zone, namely SPRINT-Race, is proposed with a fixed confidence setting. In SPRINT-Race,

the dominance and non-dominance relationships between any pair of models are established via

a non-parametric ternary-decision test with Trinomial distribution assumption, called dual-SPRT.

SPRINT-Race offers strong control over the overall probability of making any Type I or Type II

errors via the sequential Holm’s step-down FWER control method. In other words, SPRINT-Race

is able to strictly control the probability of mistakenly eliminating any non-dominated models

or falsely retaining any dominated models at a prescribed significance level. The efficiency of

SPRINT-Race is first studied on a set of artificially constructed MOMSs with known ground truth.

Furthermore, we assess the performance of SPRINT-Race on two real-world problems: hybrid RSs

construction for Top-S recommendation and multi-criteria stock selection. The experimental re-

sults confirm that SPRINT-Race is able to identify the entire Pareto front with high likelihood and

significant computational savings when compared to a multi-objective BFA. Moreover, the Pareto
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optimal models returned by SPRINT-Race exhibit good generalized performances on unseen prob-

lem instances. SPRINT-Race is a robust and efficient tool for MOMS.

The main limitation of the proposed RAs in this work is the assumption that the samples or ob-

servations are identically and independently distributed (i.i.d.) outcomes of stochastic optimizers,

which may be invalid for some real-world applications. Hence, it could be beneficial to generalize

our approaches to MS problems where no i.i.d. stochastic assumption is made (i.e. in Marko-

vian settings [52, 127], or in adversarial settings [11, 26]). Moreover, another direction for future

work is incorporating efficient probabilistic modelling techniques (e.g. Restricted Boltzmann Ma-

chines, Bayesian networks) into iterative RAs, as inspired by Sequential Model-based Optimiza-

tion (SMBO) [63], Estimations of Distribution Algorithms [115] and I/F-Race [12]. Therefore,

the search space of RAs will not be confined to the initial ensemble of models and will be signif-

icantly enlarged by in-race sampling of newly promising models from the continuously updated

probabilistic model.
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[54] T. A. F. Gomes, R. B. C. Prudêncio, C. Soares, A. L. D. Rossi, and A. Carvalho. Combin-

ing meta-learning and search techniques to select parameters for support vector machines.

Neurocomputing, 75(1):3 – 13, 2012.

[55] A. Gopalan, S. Mannor, and Y. Mansour. Thompson sampling for complex online problems.

Journal of Machine Learning Research (JMLR): Workshop and Conference Proceedings,

32:100–108, 2014.

[56] I. Guyon. A practical guide to model selection. In Proceedings of the Machine Learning

Summer School Springer Text in Statistics, 2009.

123



[57] E. Haasdijk, A Atta ul Qayyum, and A. E. Eiben. Racing to improve on-line, on-board

evolutionary robotics. In Proceedings of the 13th Annual Conference on Genetic and Evo-

lutionary Computation (GECCO’11), pages 187–194, 2011.

[58] P. Hall and A. H. Welsh. Best attainable rates of convergence for estimates of parameters of

regular variation. The Annals of Statistics, 12(3):1079–1084, 1984.

[59] N. Hansen, S.D. Müller, and P. Koumoutsakos. Reducing the time complexity of the de-

randomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary

Computation, 11:77–112, 2003.

[60] V. Heidrich-Meisner and C. Igel. Hoeffding and Bernstein races for selecting policies in

evolutionary direct policy search. In Proceedings of the 26th Annual International Confer-

ence on Machine Learning (ICML’09), pages 401–408, 2009.

[61] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of

the American Statistical Associations, 58:13–30, 1963.

[62] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of

Statistics, 2:65–70, 1979.

[63] H. H. Hoos. Autonomous Search, chapter Automated Algorithm Configuration and Param-

eter Tuning, pages 37–71. Springer Berlin Heidelberg, 2012.

[64] D. Huang, T. T. Allen, W. I. Notz, and N. Zeng. Global optimization of stochastic black-box

systems via sequential kriging meta-models. Journal of Global Optimization, 34:441–446,

2006.

[65] E. J. Hughes. Evolutionary multi-objective ranking with uncertainty and noise. Evolutionary

Multi-criterion Optimization, 1999:329–343, 2001.

124
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