176,920 research outputs found

    Clear model fluids for peculiar rheological properties of thickened digested sludge

    Get PDF
    Optimising flow processes in wastewater treatment plants requires that designers and operators take into account the flow properties of the sludge. Moreover, due to increasingly more stringent conditions on final disposal avenues such as landfill, composting, incineration etc., practitioners need to produce safer sludge in smaller quantities. Anaerobic digestion is a key treatment process for solids treatment and pathogen reduction. Due to the inherent opacity of sludge, it is impossible to visualise the mixing and flow patterns inside an anaerobic digester. Therefore, choosing an appropriate transparent model fluid which can mimic the rheological behaviour of sludge is imperative for visualisation of the hydrodynamic functioning of an anaerobic digester. Digested sludge is a complex material with time dependent non-Newtonian thixotropic characteristics. In steady state, it can be modelled by a basic power-law. However, for short-time processes the HerscheleBulkley model can be used to model liquid-like properties. The objective of this study was to identify transparent model fluids which will mimic the behaviour of real sludge. A comparison of three model fluids, Carboxymethyl Cellulose (CMC), Carbopol gel and Laponite clay revealed that these fluids could each model certain aspects of sludge behaviour. It is concluded that the rheological behaviour of sludge can be modelled using CMC in steady state flow at high shear rates, Carbopol gel for short-time flow processes and Laponite clay suspension where time dependence is dominant

    Streakline-based closed-loop control of a bluff body flow

    Get PDF
    A novel closed-loop control methodology is introduced to stabilize a cylinder wake flow based on images of streaklines. Passive scalar tracers are injected upstream the cylinder and their concentration is monitored downstream at certain image sectors of the wake. An AutoRegressive with eXogenous inputs mathematical model is built from these images and a Generalized Predictive Controller algorithm is used to compute the actuation required to stabilize the wake by adding momentum tangentially to the cylinder wall through plasma actuators. The methodology is new and has real-world applications. It is demonstrated on a numerical simulation and the provided results show that good performances are achieved.Fil: Roca, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; ArgentinaFil: Cammilleri, Ada. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; ArgentinaFil: Duriez, Thomas Pierre Cornil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; ArgentinaFil: Mathelin, Lionel. Centre National de la Recherche Scientifique. Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur; FranciaFil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media

    Get PDF
    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application

    Mechanics of a Plant in Fluid Flow

    Full text link
    Plants live in constantly moving fluid, whether air or water. In response to the loads associated with fluid motion, plants bend and twist, often with great amplitude. These large deformations are not found in traditional engineering application and thus necessitate new specialised scientific developments. Studying Fluid-Structure Interactions (FSI) in botany, forestry and agricultural science is crucial to the optimisation of biomass production for food, energy, and construction materials. FSI are also central in the study of the ecological adaptation of plants to their environment. This review paper surveys the mechanics of FSI on individual plants. We present a short refresher on fluids mechanics then dive in the statics and dynamics of plant-fluid interactions. For every phenomenon considered, we present the appropriate dimensionless numbers to characterise the problem, discuss the implications of these phenomena on biological processes, and propose future research avenues. We cover the concept of reconfiguration while considering poroelasticity, torsion, chirality, buoyancy, and skin friction. We also cover the dynamical phenomena of wave action, flutter, and vortex-induced vibrations.Comment: 26 pages, 8 figure

    Dependence of the drag over super hydrophobic and liquid infused surfaces on the textured surface and Weber number

    Get PDF
    Direct Numerical Simulations of a turbulent channel flow have been performed. The lower wall of the channel is made of staggered cubes with a second fluid locked in the cavities. Two viscosity ratios have been considered, m=μ1/μ2=0.02 and 0.4 (the subscript 1 indicates the fluid in the cavities and 2 the overlying fluid) mimicking the viscosity ratio in super–hydrophobic surfaces (SHS) and liquid infused surfaces (LIS) respectively. A first set of simulations with a slippery interface has been performed and results agree well with those in literature for perfect slip conditions and Stokes approximations. To assess how the dynamics of the interface affects the drag, a second set of DNS has been carried out at We=40 and 400 corresponding to We+≃10−3 and 10−2. The deformation of the interface is fully coupled to the Navier-Stokes equation and tracked in time using a Level Set Method. Two gas fractions, GF=0.5 and 0.875, have been considered to assess how the spacing between the cubes affects the deformation of the interface and therefore the drag. For the dimensions of the substrate here considered, under the ideal assumption of flat interface, staggered cubes with GF=0.875 provide about 20% drag reduction for We=0. However, a rapid degradation of the performances is observed when the dynamics of the interface is considered, and the same geometry increases the drag of about 40% with respect to a smooth wall. On the other hand, the detrimental effect of the dynamics of the interface is much weaker for GF=0.5 because of the reduced pitch between the cubes
    corecore