10 research outputs found

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    Evaluating the safety impact of connected and autonomous vehicles on motorways

    Get PDF
    Recent technological advancements bring the Connected and Autonomous Vehicles (CAVs) era closer to reality. CAVs have the potential to vastly improve road safety by taking the human driver out of the driving task. However, the evaluation of their safety impacts has been a major challenge due to the lack of real-world CAV exposure data. Studies that attempt to simulate CAVs by using either a single or integrating multiple simulation platforms have limitations, and in most cases, consider a small element of a network (e.g. a junction) and do not perform safety evaluations due to inherent complexity. This paper addresses this problem by developing a decision-making CAV control algorithm in the simulation software VISSIM, using its External Driver Model Application Programming Interface. More specifically, the developed CAV control algorithm allows a CAV, for the first time, to have longitudinal control, search adjacent vehicles, identify nearby CAVs and make lateral decisions based on a ruleset associated with motorway traffic operations. A motorway corridor within M1 in England is designed in VISSIM and employed to implement the CAV control algorithm. Five simulation models are created, one for each weekday. The baseline models (i.e. CAV market penetration: 0%) are calibrated and validated using real-world minute-level inductive loop detector data and also data collected from a radar-equipped vehicle. The safety evaluation of the proposed algorithm is conducted using the Surrogate Safety Assessment Model (SSAM). The results show that CAVs bring about compelling benefit to road safety as traffic conflicts significantly reduce even at relatively low market penetration rates. Specifically, estimated traffic conflicts were reduced by 12ā€“47%, 50ā€“80%, 82ā€“92% and 90ā€“94% for 25%, 50%, 75% and 100% CAV penetration rates respectively. Finally, the results indicate that the presence of CAVs ensured efficient traffic flow

    Game Theoretic Model Predictive Control for Autonomous Driving

    Get PDF
    This study presents two closely-related solutions to autonomous vehicle control problems in highway driving scenario using game theory and model predictive control. We first develop a game theoretic four-stage model predictive controller (GT4SMPC). The controller is responsible for both longitudinal and lateral movements of Subject Vehicle (SV) . It includes a Stackelberg game as a high level controller and a model predictive controller (MPC) as a low level one. Specifically, GT4SMPC constantly establishes and solves games corresponding to multiple gaps in front of multiple-candidate vehicles (GCV) when SV is interacting with them by signaling a lane change intention through turning light or by a small lateral movement. SVā€™s payoff is the negative of the MPCā€™s cost function , which ensures strong connection between the game and that the solution of the game is more likely to be achieved by a hybrid MPC (HMPC). GCVā€™s payoff is a linear combination of the speed payoff, headway payoff and acceleration payoff. . We use decreasing acceleration model to generate our prediction of TVā€™s future motion, which is utilized in both defining TVā€™s payoffs over the prediction horizon in the game and as the reference of the MPC. Solving the games gives the optimal gap and the target vehicle (TV). In the low level , the lane change process are divided into four stages: traveling in the current lane, leaving current lane, crossing lane marking, traveling in the target lane. The division identifies the time that SV should initiate actual lateral movement for the lateral controller and specifies the constraints HMPC should deal at each step of the MPC prediction horizon. Then the four-stage HMPC controls SVā€™s actual longitudinal motion and execute the lane change at the right moment. Simulations showed the GT4SMPC is able to intelligently drive SV into the selected gap and accomplish both discretionary land change (DLC) and mandatory lane change (MLC) in a dynamic situation. Human-in-the-loop driving simulation indicated that GT4SMPC can decently control the SV to complete lane changes with the presence of human drivers. Second, we propose a differential game theoretic model predictive controller (DGTMPC) to address the drawbacks of GT4SMPC. In GT4SMPC, the games are defined as table game, which indicates each players only have limited amount of choices for a specific game and such choice remain fixed during the prediction horizon. In addition, we assume a known model for traffic vehicles but in reality driversā€™ preference is partly unknown. In order to allow the TV to make multiple decisions within the prediction horizon and to measure TVā€™s driving style on-line, we propose a differential game theoretic model predictive controller (DGTMPC). The high level of the hierarchical DGTMPC is the two-player differential lane-change Stackelberg game. We assume each player uses a MPC to control its motion and the optimal solution of leadersā€™ MPC depends on the solution of the follower. Therefore, we convert this differential game problem into a bi-level optimization problem and solves the problem with the branch and bound algorithm. Besides the game, we propose an inverse model predictive control algorithm (IMPC) to estimate the MPC weights of other drivers on-line based on surrounding vehicleā€™s real-time behavior, assuming they are controlled by MPC as well. The estimation results contribute to a more appropriate solution to the game against driver of specific type. The solution of the algorithm indicates the future motion of the TV, which can be used as the reference for the low level controller. The low level HMPC controls both the longitudinal motion of SV and his real-time lane decision. Simulations showed that the DGTMPC can well identify the weights traffic vehiclesā€™ MPC cost function and behave intelligently during the interaction. Comparison with level-k controller indicates DGTMPCā€™s Superior performance

    Safety impact of connected and autonomous vehicles on motorways: a traffic microsimulation study

    Get PDF
    Connected and Autonomous Vehicles (CAVs) promise to improve road safety greatly. Despite the numerous CAV trials around the globe, their benefit has yet to be proven using real-world data. The lack of real-world CAV data has shifted the focus of the research community from traditional safety impact assessment methods to traffic microsimulation in order to evaluate their impacts. However, a plethora of operational, tactical and strategic challenges arising from the implementation of CAV technology remain unaddressed. This thesis presents an innovative and integrated CAV traffic microsimulation framework that aims to cover the aforementioned shortcomings.A new CAV control algorithm is developed in C++ programming language containing a longitudinal and lateral control algorithm that for the first time takes into consideration sensor error and vehicle platoon formulation of various sizes. A route-based decision-making algorithm for CAVs is also developed. The algorithm is applied to a simulated network of the M1 motorway in the United Kingdom which is calibrated and validated using instrumented vehicle data and inductive loop detector data. Multiple CAV market penetration rate, platoon size and sensor error rate scenarios are formulated and evaluated. Safety evaluation is conducted using traffic conflicts as a safety surrogate measure which is a function of time-to-collision and post encroachment time. The results reveal significant safety benefit (i.e. 10-94% reduction of traffic conflicts) as CAV market penetration increases from 0% to 100%; however, it is underlined that special focus should be given in the motorway merging and diverging areas where CAVs seem to face the most challenges. Additionally, it is proven that if the correct CAV platoon size is implemented at the appropriate point in time, greater safety benefits may be achieved. Otherwise, safety might deteriorate. However, sensor error does not affect traffic conflicts for the studied network. These results could provide valuable insights to policy makers regarding the reconfiguration of existing infrastructure to accommodate CAVs, the trustworthiness of existing CAV equipment and the optimal platoon size that should be enforced according to the market penetration rate.Finally, in order to forecast the conflict reduction for any given market penetration rate and understand the underlying factors behind traffic conflicts in a traffic microsimulation environment in-depth, a hierarchical spatial Bayesian negative binomial regression model is developed, based on the simulated CAV data. The results exhibit that besides CAV market penetration rate, speed variance across lanes significantly affects the production of simulated conflicts. As speed variance increases, the safety benefit decreases. These results emphasize the importance of speed homogeneity between lanes in a motorway as well as the increased risk in the motorway merging/diverging areas.</div

    Game Theoretic Model Predictive Control for Autonomous Driving

    Get PDF
    This study presents two closely-related solutions to autonomous vehicle control problems in highway driving scenario using game theory and model predictive control. We first develop a game theoretic four-stage model predictive controller (GT4SMPC). The controller is responsible for both longitudinal and lateral movements of Subject Vehicle (SV) . It includes a Stackelberg game as a high level controller and a model predictive controller (MPC) as a low level one. Specifically, GT4SMPC constantly establishes and solves games corresponding to multiple gaps in front of multiple-candidate vehicles (GCV) when SV is interacting with them by signaling a lane change intention through turning light or by a small lateral movement. SVā€™s payoff is the negative of the MPCā€™s cost function , which ensures strong connection between the game and that the solution of the game is more likely to be achieved by a hybrid MPC (HMPC). GCVā€™s payoff is a linear combination of the speed payoff, headway payoff and acceleration payoff. . We use decreasing acceleration model to generate our prediction of TVā€™s future motion, which is utilized in both defining TVā€™s payoffs over the prediction horizon in the game and as the reference of the MPC. Solving the games gives the optimal gap and the target vehicle (TV). In the low level , the lane change process are divided into four stages: traveling in the current lane, leaving current lane, crossing lane marking, traveling in the target lane. The division identifies the time that SV should initiate actual lateral movement for the lateral controller and specifies the constraints HMPC should deal at each step of the MPC prediction horizon. Then the four-stage HMPC controls SVā€™s actual longitudinal motion and execute the lane change at the right moment. Simulations showed the GT4SMPC is able to intelligently drive SV into the selected gap and accomplish both discretionary land change (DLC) and mandatory lane change (MLC) in a dynamic situation. Human-in-the-loop driving simulation indicated that GT4SMPC can decently control the SV to complete lane changes with the presence of human drivers. Second, we propose a differential game theoretic model predictive controller (DGTMPC) to address the drawbacks of GT4SMPC. In GT4SMPC, the games are defined as table game, which indicates each players only have limited amount of choices for a specific game and such choice remain fixed during the prediction horizon. In addition, we assume a known model for traffic vehicles but in reality driversā€™ preference is partly unknown. In order to allow the TV to make multiple decisions within the prediction horizon and to measure TVā€™s driving style on-line, we propose a differential game theoretic model predictive controller (DGTMPC). The high level of the hierarchical DGTMPC is the two-player differential lane-change Stackelberg game. We assume each player uses a MPC to control its motion and the optimal solution of leadersā€™ MPC depends on the solution of the follower. Therefore, we convert this differential game problem into a bi-level optimization problem and solves the problem with the branch and bound algorithm. Besides the game, we propose an inverse model predictive control algorithm (IMPC) to estimate the MPC weights of other drivers on-line based on surrounding vehicleā€™s real-time behavior, assuming they are controlled by MPC as well. The estimation results contribute to a more appropriate solution to the game against driver of specific type. The solution of the algorithm indicates the future motion of the TV, which can be used as the reference for the low level controller. The low level HMPC controls both the longitudinal motion of SV and his real-time lane decision. Simulations showed that the DGTMPC can well identify the weights traffic vehiclesā€™ MPC cost function and behave intelligently during the interaction. Comparison with level-k controller indicates DGTMPCā€™s Superior performance

    Prediction of driversā€™ performance in highly automated vehicles

    Get PDF
    Purpose: The aim of this research was to assess the predictability of driverā€™s response to critical hazards during the transition from automated to manual driving in highly automated vehicles using their physiological data.Method: A driving simulator experiment was conducted to collect driversā€™ physiological data before, during and after the transition from automated to manual driving. A total of 33 participants between 20 and 30 years old were recruited. Participants went through a driving scenario under the influence of different non-driving related tasks. The repeated measures approach was used to assess the effect of repeatability on the driverā€™s physiological data. Statistical and machine learning methods were used to assess the predictability of driversā€™ response quality based on their physiological data collected before responding to a critical hazard. Findings: - The results showed that the observed physiological data that was gathered before the transition formed strong indicators of the driversā€™ ability to respond successfully to a potential hazard after the transition. In addition, physiological behaviour was influenced by driverā€™s secondary tasks engagement and correlated with the driverā€™s subjective measures to the difficulty of the task. The study proposes new quality measures to assess the driverā€™s response to critical hazards in highly automated driving. Machine learning results showed that response time is predictable using regression methods. In addition, the classification methods were able to classify drivers into low, medium and high-risk groups based on their quality measures values. Research Implications: Proposed models help increase the safety of automated driving systems by providing insights into the driversā€™ ability to respond to future critical hazards. More research is required to find the influence of age, driversā€™ experience of the automated vehicles and traffic density on the stability of the proposed models. Originality: The main contribution to knowledge of this study is the feasibility of predicting driversā€™ ability to respond to critical hazards using the physiological behavioural data collected before the transition from automated to manual driving. With the findings, automation systems could change the transition time based on the driverā€™s physiological state to allow for the safest transition possible. In addition, it provides an insight into driverā€™s readiness and therefore, allows the automated system to adopt the correct driving strategy and plan to enhance drivers experience and make the transition phase safer for everyone.</div

    Model predictive control for multi-lane motorways in presence of VACS

    No full text
    The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 321132, project TRAMAN21.Summarization: A widespread use of vehicle automation and communication systems (VACS) is expected in the next years. This may lead to improvements in traffic management because of the augmented possibilities of using VACS both as sensors and as actuators. To achieve this, appropriate studies, developing potential control strategies to exploit the VACS availability, are essential. This paper describes a model predictive control framework that can be used for the integrated and coordinated control of a motorway system, considering that vehicles are equipped with specific VACS. Microscopic simulation testing demonstrates the effectiveness and the computational feasibility of the proposed approach.Ī Ī±ĻĪæĻ…ĻƒĪ¹Ī¬ĻƒĻ„Ī·ĪŗĪµ ĻƒĻ„Īæ: 17th International IEEE Conference on Intelligent Transportation System

    Model predictive control for multi-lane motorways in presence of VACS

    No full text
    corecore