910 research outputs found

    Optimal and scalable management of smart power grids with electric vehicles

    Get PDF

    Secure Real-Time Monitoring and Management of Smart Distribution Grid Using Shared Cellular Network

    Get PDF
    The electricity production and distribution is facing two major changes. First, the production is shifting from classical energy sources such as coal and nuclear power towards renewable resources such as solar and wind. Secondly, the consumption in the low voltage grid is expected to grow significantly due to expected introduction of electrical vehicles. The first step towards more efficient operational capabilities is to introduce an observability of the distribution system and allow for leveraging the flexibility of end connection points with manageable consumption, generation and storage capabilities. Thanks to the advanced measurement devices, management framework, and secure communication infrastructure developed in the FP7 SUNSEED project, the Distribution System Operator (DSO) now has full observability of the energy flows at the medium/low voltage grid. Furthermore, the prosumers are able to participate pro-actively and coordinate with the DSO and other stakeholders in the grid. The monitoring and management functionalities have strong requirements to the communication latency, reliability and security. This paper presents novel solutions and analyses of these aspects for the SUNSEED scenario, where the smart grid ICT solutions are provided through shared cellular LTE networks

    A SGAM-based test platform to develop a scheme for wide area measurement-free monitoring of smart grids under high PV penetration

    Get PDF
    © 2019 by the authors. In order to systematically shift existing control and management paradigms in distribution systems to new interoperable communication supported schemes in smart grids, we need to map newly developed use cases to standard reference models like Smart Grid Architecture Model (SGAM). From the other side, any new use cases should be tested and validated ex-ante before being deployed in the real-world system. Considering various types of actors in smart grids, use cases are usually tested using co-simulation platforms. Currently, there is no efficient co-simulation platform which supports interoperability analysis based on SGAM. In this paper, we present our developed test platform which offers a support to design new use cases based on SGAM. We used this platform to develop a new scheme for wide area monitoring of existing distribution systems under growing penetration of Photovoltaic production. Off-the-shelf solutions of state estimation for wide area monitoring are either used for passive distribution grids or applied to the active networks with wide measurement of distributed generators. Our proposed distribution state estimation algorithm does not require wide area measurements and relies on the data provided by a PV simulator we developed. This practical scheme is tested experimentally on a realistic urban distribution grid. The monitoring results shows a very low error rate of about 1% by using our PV simulator under high penetration of PV with about 30% error of load forecast. Using our SGAM-based platform, we could propose and examine an Internet-of-Things-based infrastructure to deploy the use case

    IoT-Enabled Real-Time Management of Smart Grids with Demand Response Aggregators

    Get PDF
    Integration of widely distributed small-scale Renewable Energy Sources like rooftop Photovoltaic panels and emerging loads like plug-in Electric Vehicles would cause more volatility in total net demand of distribution networks. Utility-owned storage units and control devices like tap changers and capacitors may not be sufficient to manage the system in real-time. Exploitation of available flexibility in demand side through aggregators is a new measure that distribution system operators are interested in. In this paper, we present a developed real-time management schema based on Internet of Things solutions which facilitate interactions between system operators and aggregators for ancillary services like power balance at primary substation or voltage regulation at secondary substations. Two algorithms for power balance and voltage regulation are developed based on modified Optimal Power Flow and voltage sensitivity matrix, respectively. To demonstrate the applicability of the schema, we set-up a real-time simulation- based test bed and realised the performance of this approach in a real-like environment using real data of a network with residential buildings

    Distributed Control Methods for Integrating Renewable Generations and ICT Systems

    Get PDF
    With increased energy demand and decreased fossil fuels usages, the penetration of distributed generators (DGs) attracts more and more attention. Currently centralized control approaches can no longer meet real-time requirements for future power system. A proper decentralized control strategy needs to be proposed in order to enhance system voltage stability, reduce system power loss and increase operational security. This thesis has three key contributions: Firstly, a decentralized coordinated reactive power control strategy is proposed to tackle voltage fluctuation issues due to the uncertainty of output of DG. Case study shows results of coordinated control methods which can regulate the voltage level effectively whilst also enlarging the total reactive power capability to reduce the possibility of active power curtailment. Subsequently, the communication system time-delay is considered when analyzing the impact of voltage regulation. Secondly, a consensus distributed alternating direction multiplier method (ADMM) algorithm is improved to solve the optimal power ow (OPF) problem. Both synchronous and asynchronous algorithms are proposed to study the performance of convergence rate. Four different strategies are proposed to mitigate the impact of time-delay. Simulation results show that the optimization of reactive power allocation can minimize system power loss effectively and the proposed weighted autoregressive (AR) strategies can achieve an effective convergence result. Thirdly, a neighboring monitoring scheme based on the reputation rating is proposed to detect and mitigate the potential false data injection attack. The simulation results show that the predictive value can effectively replace the manipulated data. The convergence results based on the predictive value can be very close to the results of normal case without cyber attack

    Decentralized Greedy-Based Algorithm for Smart Energy Management in Plug-in Electric Vehicle Energy Distribution Systems

    Get PDF
    Variations in electricity tariffs arising due to stochastic demand loads on the power grids have stimulated research in finding optimal charging/discharging scheduling solutions for electric vehicles (EVs). Most of the current EV scheduling solutions are either centralized, which suffer from low reliability and high complexity, while existing decentralized solutions do not facilitate the efficient scheduling of on-move EVs in large-scale networks considering a smart energy distribution system. Motivated by smart cities applications, we consider in this paper the optimal scheduling of EVs in a geographically large-scale smart energy distribution system where EVs have the flexibility of charging/discharging at spatially-deployed smart charging stations (CSs) operated by individual aggregators. In such a scenario, we define the social welfare maximization problem as the total profit of both supply and demand sides in the form of a mixed integer non-linear programming (MINLP) model. Due to the intractability, we then propose an online decentralized algorithm with low complexity which utilizes effective heuristics to forward each EV to the most profitable CS in a smart manner. Results of simulations on the IEEE 37 bus distribution network verify that the proposed algorithm improves the social welfare by about 30% on average with respect to an alternative scheduling strategy under the equal participation of EVs in charging and discharging operations. Considering the best-case performance where only EV profit maximization is concerned, our solution also achieves upto 20% improvement in flatting the final electricity load. Furthermore, the results reveal the existence of an optimal number of CSs and an optimal vehicle-to-grid penetration threshold for which the overall profit can be maximized. Our findings serve as guidelines for V2G system designers in smart city scenarios to plan a cost-effective strategy for large-scale EVs distributed energy management

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Towards ‘Smarter’ Systems: Key Cyber-Physical Performance-Cost Tradeoffs in Smart Electric Vehicle Charging with Distributed Generation

    Get PDF
    The growing penetration of electric vehicles (EV) into the market is driving sharper spikes in consumer power demand. Meanwhile, growing renewable distributed generation (DG) is driving sharper spikes in localised power supply. This leads to growing temporally unsynchronised spikes in generation and consumption, which manifest as localised over- or undervoltage and disrupt grid service quality. Smart Grid solutions can respond to voltage conditions by curtailing charging EVs or available DG through a network of cyber-enabled sensors and actuators. How to optimise efficiency, ensure stable operation, deliver required performance outputs and minimally overhaul existing hardware remains an open research topic. This thesis models key performance-cost tradeoffs relating to Smart EV Charging with DG, including architectural design challenges in the underpinning Information and Communications Technology (ICT). Crucial deployment optimisation balancing various Key Performance Indicators (KPI) is achieved. The contributions are as follows: • Two Smart EV Charging schemes are designed for secondary voltage control in the distribution network. One is optimised for the network operator, the other for consumers/generators. This is used to evaluate resulting performance implications via targeted case study. • To support these schemes, a multi-tier hierarchical distributed ICT architecture is designed that alleviates computation and traffic load from the central controller and achieves user fairness in the network. In this way it is scalable and adaptable to a wide range of network sizes. • Both schemes are modelled under practical latency constraints to derive interlocking effects on various KPIs. Multiple latency-mitigation strategies are designed in each case. • KPIs, including voltage control, peak shaving, user inconvenience, renewable energy input, CO2 emissions and EV & DG capacity are evaluated statistically under 172 days of power readings. This is used to establish key performancecost tradeoffs relevant to multiple invested bodies in the power grid. • Finally, the ICT architecture is modelled for growing network sizes. Quality-of- Service (QoS) provision is studied for various multi-tier hierarchical topologies under increasing number of end devices to gauge performance-cost tradeoffs related to demand-response latency and network deployment
    corecore