87 research outputs found

    A Sequent Calculus for a Negative Free Logic

    Get PDF
    This article presents a sequent calculus for a negative free logic with identity, called N. The main theorem (in part 1) is the admissibility of the Cut-rule. The second part of this essay is devoted to proofs of soundness, compactness and completeness of N relative to a standard semantics for negative free logic

    A Survey of Languages for Specifying Dynamics: A Knowledge Engineering Perspective

    Get PDF
    A number of formal specification languages for knowledge-based systems has been developed. Characteristics for knowledge-based systems are a complex knowledge base and an inference engine which uses this knowledge to solve a given problem. Specification languages for knowledge-based systems have to cover both aspects. They have to provide the means to specify a complex and large amount of knowledge and they have to provide the means to specify the dynamic reasoning behavior of a knowledge-based system. We focus on the second aspect. For this purpose, we survey existing approaches for specifying dynamic behavior in related areas of research. In fact, we have taken approaches for the specification of information systems (Language for Conceptual Modeling and TROLL), approaches for the specification of database updates and logic programming (Transaction Logic and Dynamic Database Logic) and the generic specification framework of abstract state machine

    A Computable Economist’s Perspective on Computational Complexity

    Get PDF
    A computable economist's view of the world of computational complexity theory is described. This means the model of computation underpinning theories of computational complexity plays a central role. The emergence of computational complexity theories from diverse traditions is emphasised. The unifications that emerged in the modern era was codified by means of the notions of efficiency of computations, non-deterministic computations, completeness, reducibility and verifiability - all three of the latter concepts had their origins on what may be called 'Post's Program of Research for Higher Recursion Theory'. Approximations, computations and constructions are also emphasised. The recent real model of computation as a basis for studying computational complexity in the domain of the reals is also presented and discussed, albeit critically. A brief sceptical section on algorithmic complexity theory is included in an appendix

    A Computable Economist’s Perspective on Computational Complexity

    Get PDF
    A computable economist.s view of the world of computational complexity theory is described. This means the model of computation underpinning theories of computational complexity plays a central role. The emergence of computational complexity theories from diverse traditions is emphasised. The unifications that emerged in the modern era was codified by means of the notions of efficiency of computations, non-deterministic computations, completeness, reducibility and verifiability - all three of the latter concepts had their origins on what may be called "Post's Program of Research for Higher Recursion Theory". Approximations, computations and constructions are also emphasised. The recent real model of computation as a basis for studying computational complexity in the domain of the reals is also presented and discussed, albeit critically. A brief sceptical section on algorithmic complexity theory is included in an appendix.

    Designing Dependencies

    Get PDF
    Given a binary recursively enumerable relation R, one or more logic programs over a language L can be constructed and interconnected to produce a dependency relation D on selected predicates within the Herbrand base BL of L isomorphic to R. D can be, optionally, a positive, negative or mixed dependency relation. The construction is applied to representing any effective game of the type introduced by Gurevich and Harrington, which they used to prove Rabin\u27s decision method for S2S, as the dependency relation of a logic program. We allow games over an infinite alphabet of possible moves. We use this representation to reveal a common underlying reason, having to do with the shape of a program\u27s dependency relation, for the complexity of several logic program properties

    The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information

    Get PDF
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the present such as Fermat’s last theorem, four-color theorem as well as its new-formulated generalization as “four-letter theorem”, Poincaré’s conjecture, “P vs NP” are considered over again, from and within the new-founding conceptual reference frame of information, as illustrations. Simple or crucially simplifying solutions and proofs are demonstrated. The link between the consistent completeness of the system mathematics-physics on the ground of information and all the great mathematical problems of the present (rather than the enumerated ones) is suggested
    corecore