
INFORMATION AND CONTROL 54, 2 5 4 7 (1982)

The Recursion-Theoretic Complexity
of the Semantics of Predicate Logic

as a Programming Language*

HOWARD A. BLAIR

Iowa State University, Ames, Iowa 50010

1. INTRODUCTION

The coupling of resolution techniques for automatic theorem proving with
what is termed the procedural interpretation of logic (Kowalski 1979) has
resulted in efforts to implement predicate logic as a programming language.
These efforts have already resulted in the language PROLOG. The semantics
of predicate logic as a programming language have been formulated with an
orientation toward the precedural interpretation of logic in van Emden and
Kowalski (1976) and Apt and van Emden (1980). The predicate logic core
of PROLOG is a restriction to universally quantified Horn sentences with
atomic conclusions, so-called definite clauses, and therefore prevents the user
from fully expressing logical negation. In the procedural interpretation of
logic, a logic program is regarded as its "if and only if'' version of which
half is explicitly presented. The precise definition of this "if and only if"
version is given in Clark (1980). The interpretations of a logic program are
then restricted to the Herbrand models of the "if and only if,' version of the
program, and the formula F is Herbrand valid in logic program P iff F is
valid in all such Herbrand interpretations of P.

Although the user does not have negation available the control features of
PROLOG do allow the user to have a useful but still limited form of
negation: to infer ~A from a proof of the unprovability of A. This is sound,
as we shall see, in the procedural interpretation of logic. Our purpose here is
to use a connection between the semantics of predicate logic as a
programming language and the well-studied theory of inductive definability
to given a measure to the incompleteness of the negation as failure rule for
proving Herbrand valid negations of formulas, and then to show that the
negation as failure rule is very highly incomplete in the sense of the measure.
Moreover, the general problem of deciding whether a formula is Herbrand

* This article is part of the NSF sponsored Workshop on Recursion Theoretic Aspects of
Computer Science held at Purdue University in May 1981.

25
0019-9958/82 $2.00

Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

26 HOWARD A. BLAIR

valid in logic program P is of maximum intractability, being H~-complete.
With little effort this generalizes to saying that the problem of deciding
whether a formula is valid in all Herbrand models of a recursively
axiomatized first order theory is Hl~-complete.

2. PRELIMINARIES

A closure of a formula A of predicate logic is a formula obtained from A
by prefixing to A a sequence of universally quantified variables which have
among them all of the free variables of A. A clause is a universal closure of a
formula of the form

A l & ... & A n ~ B 1V . . . V B m (2.1)

for m, n) 0 , where each A i and Bj is atomic. If n = 0, (2.1) is simply a
disjunction of atomic formulas. If m = 0 , (2.1) is the negation of a
conjunction of atomic formulas. We point out, since the mistake is frequently
made, that the clause

is not
VXl ... VXk(A1 & ... & A , ~)

~ V X 1 . . . V X k (A l ~¢ . . . & A m) .

It is, however, immediately equivalent to

~ 3 x ~ ... 3Xk(A 1 & ... & A~).

If m = n = 0, (2.1) is the empty clause and is defined to be false. Equation
(2.1) itself is the matrix of the corresponding clause, and it is the matrix of a
Horn clause if m ~ 1, of a definite clause if m = 1, and of a negative clause if
n > 0 and m = 0 .

A logic program is a set of definite clauses. (See above.) When we write
logic programs we omit the universal quantifiers, writing the programs in
an abbreviated form. Let P be a logic program. The language of P is the
smallest first order language without logical equality that contains the
formulas of P. Denote the language of P by L(P). The Herbrand universe of
P is the set of all variable-free terms in L(P). The Herbrand base of P is the
set of all variable-free atomic formulas in L(P).

Now let L be a first order language with, or without, logical equality. A
Herbrand structure I for L is any subset of the set of all variable-free atomic
formulas of L in which the logical equality symbol does not occur. A
Herbrand structure for L is a structure I for L in the ordinary sense where
each constant and function symbol is given its free interpretation, and the
interpretations of the relation symbols are determined by membership in I.

P R E D I C A T E L O G I C AS A P R O G R A M M I N G L A N G U A G E 27

Validity in I is defined as validity in the corresponding ordinary structure.
For example, if I is a Herbrand structure for L, B(x) is atomic, and A is
atomic and variable-free, then

I ~ A iff A E 1

and

I ~ 3xB(x) if I ~ B(t)

for some variable-free term t in L. This last point about validity in Herbrand
structures amounts to restricting the class of structures being considered to
only those structures which only contain individuals named by some
variable-free term. If t~ = t 2 is a closed formula of L, then

I ~ t~ = t 2 if t~ is, identically, t2.

We restrict all considerations of logic programs to those programs which
satisfy two technical assumptions. This does not result in any substantive
restriction and has no bearing on the theorems of Section 5. We introduce
these assumptions only because they are needed in the proofs of our
statements of the lemmas proved in Apt and van Emden (1980).

(1) There is at least one constant symbol in L(P).

(2) Every relation symbol which occurs in the hypothesis of some
clause in P also occurs in the conclusion of some clause in P.

In Clark (1980) a first order theory called the completed data base of P is
defined. This is the "if and only if'' version of P which we denote CDB(P).
The CDB(P) can be explained as follows: In the procedural interpretation of
a logic program each Horn clause is thought of as a definition of a
procedure. That is, the Horn clause

A l (U 1 Uk) & . . . ~Z, Am(u I Uk) - ' B (u 1 , u k)

is interpreted as: to satisfy B(u~ Uk) try satisfying each A I (U 1 Uk)

Al(u I , Uk). It is well established in the logic programming literature (cf.
van Emden and Kowalski, 1976) that this notion can be viewed as giving a
definition of procedure B(u~ Uk) by the sequence of procedures
A 1(Ul uk),..., A~(u~ uk). (No commitment is made to a particular order
of evaluation.) Now, of course it is possible, indeed likely, that in a logic
program P there are several Horn clauses with the same relation symbol in
the conclusion. For example, suppose the following are all the Horn clauses
in P in which B occurs in the conclusion.

28 HOWARD A. BLAIR

A 1,1 (~G . . . 84 A 1,hi --0 B(ul, 1 Ul,k)

: (2.2)

A m , 1 84 . . . 84 Am,nm---~,. B (b lm , l Urn,k).

The procedural interpretation demands that B be entirely defined by program
P. Thus P is thought of as being equipped with the extra assumption that the
only way to satisfy B(Xl Xk) is to satisfy one of the clauses in (2.2).

The CDB(P) captures this idea in the following way: For each relation
symbol B (where B is m-ary) occurring in a conclusion of some member of
P, let (2.2) be the set of all clauses in P in which B occurs in the conclusion.
Corresponding to B, including in CDB(P) the following formula:

V X l "'" V X k [E l V , , . V E m ¢.-+ B (x , Xk)]

where each Ei is of the form

~.Pi, i "'" 3 Y i , p i [X l = Ui, l 84 . . . 84 X k = Ui, k & Ai. 1 & . . , 84 A i ,n i] ,

where " = " is logical equality, the y,.j are the free variables occurring in
ui, ~ ui, k, and x I x k are new. The CDB(P) is the first order theory with
these formulas as nonlogical axioms together with nonlogical axioms forcing
a free interpretation on the terms in any structure which is a model of
CDB(P).

As an example, suppose P is

{A (y) & B (f (y)) ~ A (f (y)) , B (y) ~ A (g (y)) , A (y) ~ B(g (y)) } .

Then tile nonlogical axioms obtained from P in CDB(P) are

Vx [Yy [x = f (y) & A (y) & B (f (y))] V 3y Ix = g(y) & B(y)] *-+ A (x)]

and

Vx [By Ix = g(y) & A(y)] ~ B(x)].

DEFINITION 2.1. Let P be a logic program and let A be a formula of
L(P). Formula A is said to be Herbrand valid in P if A is valid in all
Herbrand models of CDB(P).

From logic program P, formulas of the form

3X 1 . . . ~X k [A 1 84 . - . 8 4 A m] , (2 . 3)

where the A i are atomic, can be proved by linear resolution. A far less
efficient means of proving formulas of the form (2.3) is to completely instan-
tiate the logic program in all possible ways over the Herbrand universe and

PREDICATE LOGIC AS A PROGRAMMING LANGUAGE 29

enumerate all possible sequences of inferences from these instantiations using
only modus ponens and the rule: from A 1 A , infer A1 & . - - & A , . While
this is not computationally appropriate this approach does provide a charac-
terization of the Herbrand models of CDB(P).

DEFINITION 2.2. Let P be a logic program. Define Tp on the Herbrand
structures for L(P) by

A C Tp(I) iff there is a clause B 1 & ... & B~ -+ B 0

in P, and a substitution O such that A

is B o 69 and B 1 0 B , 0 C I.

Definition 2.2 is introduced in van Emden and Kowalski (1976). Here Tp
corresponds to completely instantiating P in all possible ways over the
Herbrand universe of P, and applying modus ponens once to these instan-
tiations and the conjunctions of formulas in I. The following three lemmas
are proved in Apt and van Emden (1980):

LEMMA 2.1. Tp(l) = I i f f I is a model of CDB(P).

LEM~aA 2.2. O {I I Te (I)= I } is a f ixed point of T e.

LEMMA 2.3. 0 {II Tp(I) = I t is a f ixed point of Tp.

Lemmas 2.1 and 2.3 imply that ifA is a variable-free atomic formula, then
~A is Herbrand valid in P iff A C H ~ 0 {I1 Tp(I)=I} , where H is the
Herbrand base of P. We mention in passing that for formulas B of form
(2.3), B is Herbrand valid in P iff B is valid, in the ordinary sense, in all
models of P. This is a fundamental property of the resolution technique (cf.
Robinson, 1965). This equivalence of Herbrand validity with ordinary
validity does not apply to negations of formulas.

Let L be a complete lattice with bottom ±, and top T, and let f be a
monotonic function mapping L to L. Let e E L. Define

f y ° (e) = e, f i ° (e)-- e, (2.4)

f ~ '~ (e) = (_J { f (f T ~ (e)) J fl < a }, f ~." (e) = (-') { f (f ~. ~ (e)) j fl < a },

for each ordinal a.
Here f has a unique maximal and a unique minimal fixed point. The

minimal fixed point o f f is given by f T ~ (L), where a is the least ordinal
such t h a t f T '~ (5 _) = f y ~+1 (±), and the maximal fixed point o f f is given by
f . a (T), where 2 is the least ordinal such that f ~ a (T) = f . ~ + l (y). Let

30 HOWARD A. BLAIR

l i f t II and IIf3. II be these ordinals. These remarks apply when f is the
operator Tp and L is the power set of H, the Herbrand base of P.

In Apt and van Emden (1980) the finite-failure set of logic program P is
defined to be the set of all variable-free atomic formulas A such that there is
a linear resolution tree with A as root which is finite and every path
terminates in failure; that is, the finite failure set of P is

{A[A is atomic, variable-free, and ~ (P ~-A) is provable

by the termination in failure of linear resolution }.

Linear resolution is the proof procedure employed by the pure definite clause
part of PROLOG. Lemma 2.4 is proved in Apt and van Emden (1980).

LEMMA 2.4. Let H be the Herbrand base of logic program P, and let F
be the finitefailure set of P. Then F = H ~ Tp ~ o~ (H).

Whether [[T~ ~ [[< co or not, we have by (2.4)

Tp ~llrpill(H)= Tp 1 °'+~ (H), for some a.

By Lemma 2.4 we may regard the minimum such a as a measure of the
incompleteness of the negation as failure rule where linear resolution is the
underlying proof procedure.

Now Tp is an enumeration operator. By Eq. (4.1) and a theorem of C.
Spector (Hinman, 1978, p. 150) I ITp+l [~co l , where col is the least
nonconstructive ordinal. We shall show that, in fact, [I Tp[[= co I for certain P
that we will construct.

We assume the reader is familiar with the fundamental properties of the
arithmetical and analytical hierarchies as well as the notions of 1-1
reducibility and recursive isomorphism. If X is a H] set of numbers for
which every H~ set of numbers is 1-1 reducible to X, then X is said to be
H~-complete. It follows, therefore, that up to recursive isomorphism there is
only one Hl-complete set. Kleene's system of ordinal notations is a well-
known example of such a set.

We shall employ Turing machines to establish the principal results of
Section 3. We adopt most of the conventions of Rogers (1967) regarding
Turing machines, with the following exceptions: We identify the equivalence
class of instantaneous descriptions which represent a given tape-state
configuration with the tape-state configuration itself. Our Turing machines
are over the alphabet {M, B} with B representing "blank."

An instantaneous description is a description of a portion of the tape
containing the nonblank portion of the tape with the state inserted
immediately to the left of the scanned cell. Thus xqy, where q C N, and
x, y E {B,M}* is an instantaneous description. Thus two instantaneous

PREDICATE LOGIC AS A PROGRAMMING LANGUAGE 31

descriptions are equivalent if they only differ by the number of leading and
trailing B's. The states are nonnegative integers. In addition to the deter-
ministic Turing machines which are bijectively assigned G6del numbers, we
also consider nondeterministic Turing machines which we do not assign
G6del numbers. If F is a Turing machine, deterministic or not, F halts on
tape-state configuration c if F reaches a halting state on all computations
proceeding from c. We assume that the notion of tape-state configuration c'
reachable from tape-state configuration e in n steps by Turing machine F is
sufficiently clear not to need further elaboration. The domain(F) is the set of
all tape-state configurations represented by

0 M . . - M , (2.5)
n+l

where 0 C rN, and M ... M E {B,M}* for which F halts. As is often the case
in the discussion of Turing machines, (2.5) represents the input of the
number n to F. In particular, if F is deterministic with G6del number z, then
domain(F) = W z.

If S is a set, S* is the set of all finite strings with elements in S. The
symbol ~ denotes disjoint union; (x, y) is the code number of (x, y) as in
Rogers (1967); (., .) is bijective; ((x, y)) o = X and ((x, Y))I = Y ; and #z is
the partial recursive function computed by the deterministic Tufing machine
with G6del number z. Our notation will be somewhat more compact with

DEFINITION 2.3. Let H be the Herbrand base of logic program P, and let
R be a relation symbol. Now H R is the subset of H consisting of all formulas
in which the symbol R occurs. If R g£ L(P) , H R is empty.

3. FINITE-FAILURE SETS

The principal result of this section is that the class of all finite-failure sets
is the class of all r.e. sets under a suitable representation of nonnegative
integers by variable-free terms. This result is neither deep nor surprising, but
it does need a demonstration, and the constructions employed in the
demonstration given here provide the groundwork for proving that Herbrand
validity is Hl-complete.

Linear resolution trees are finitely branched. Thus all finite initial
segments of all linear resolution trees for logic programs P proceeding from
negative clause A-* can be recursively enumerated. Thus, if A is in the finite-
failure set of P, the finite linear resolution tree which fails A-~ will appear in
the enumeration. Consequently, each finite-failure set is r.e. It remains to

643/54/1 2/3

32 HOWARD A. BLAIR

show that the class of all r.e. sets is 1-1 reducible to the class of finite-failure
sets.

Turing machine quadruples can be represented as definite clauses
expressing transitions between instantaneous descriptions. A string over the
alphabet {M, B / can be represented by a term in a logic program using the
constant symbol a, and the letters M and B as unary function symbols. The
singleton strings M and B are represented by M(a) and B(a), respectively. If
t is a term representing the string a, then M(t) and B(t) represent the strings
Ma and Bo, respectively. An instantaneous description has the form

SlqS2, (3.1)

where Sl,SzC {M,B}*. Let s~ be the result of reversing s I and let t~,t 2
represent Sl R and s2, respectively. Represent each n E N by the term

M(... M(a)...).
n

We abbreviate this term by M"(a). Then the instantaneous description (3.1)
can be represented by the atomic formula

ID(tl, t2, Mq(a)). (3.2)

For eample, the instantaneous description

B MMMB MM 3 MB MMB MB B B

is represented by

ID(M (M(B(M(M (M (B(a))))))), M(B(M (M (B(M(B(B(B(a))))))))),
M(M(M(a)))).

We now construct a logic program PF corresponding to (possibly
nondeterministic) Turing machine F. The definition is divided into three
cases according to whether a quadruple in F contains a symbol to write or a
command to move left or right. The purpose of the additional clauses in each
case is to control the proliferation of leading and trailing B's. Since we do
not have logical equality in a logic program we cannot include the clause
~ a = B. An example follows the definition.

DEFINITION 3.1. (1) For each quadruple (p , f , g, q) in F include in PF
the clause

(a) ID(x, f (y) , MP(a))-~ ID(x, g(y), Mq(a)).
In addition: if f = B and g = B include

PREDICATE LOGIC AS A PROGRAMMING LANGUAGE 33

(b) ID(x, a, MP(a)) -~ ID(x, a, Mq(a));
i f f = B and g = M include

(c) ID(x, a, MP(a)) -- ID(x, M(a), Mq(a));
i f f = M and g = B include

(d) ID(x, M(a), MP(a)) ~ ID(x, a, Mq(a)).

(2) For each quadruple (p, f, L, q) in F include in PF the clauses

(a) ID(B(x), f (y) , MP(a)) ~ ID(x, B(f(y)), Mq(a))

(b) ID(M(x), f (y) , MP(a)) --, ID(x, M(f(y)), Mq(a)).
In addition: include

(c) ID(a, f (y) , MP(a)) ~ ID(a, B(f(y)), Mq(a));
i f f = B include

(d) ID(B(x), a, MP(a))-~ ID(x, a, Mq(a));

(e) Ih(a, a, M;'(a)) -~ ID(a, a, mq(a));

(f) ID(M(x), a, MP(a)) ~ ID(x, M(a), Mq(a)).

(3) For each quadruple (p, f R, q) in F, include in PF the clause

(a) ID(x, f (y) , MP(a))-~ IO(f(x), y, Mq(a)).
In addition: if f = B include

(b) IO(x, a, MP(a))-~ ID(B(x), a, Mq(a));

(c) ID(a, a, MP(a)) ~ ID(a, a, Mq(a));

(d) ID(a, B(y), MP(a)) -, ID(a, y, M°(a)).

This completes the definition of PF.

As an example, consider the Turing machine F defined by {(0, M, B, 0),
(O,B,R, 1), (1, M,B, 0)} which erases the M's immediately to the right of
the initially scanned cell when starting in state 0. PF is given by

(1) {ID(x,M(y), a)-~ IO(x,B(y), a),

(2) ID(x, M(a), a) --~ [O(x, a, a),

(3) ID(x, B(y), a) ~ 1D(B(x), y, M(a)),

(4) ID(x, a, a) --* ID(B(x), a, M(a)),

(5) ID(a, a, a) ~ ID(a, a, M(a)),

(6) ID(a, B(y), a) ~ ID(a, y, M(a)),

(7) ID(x, M(y), M(a)) ~ ID(x, B(y), a),

(8) IO(x, M(a), M(a)) ~ IO(x, a, a)}.

The behavior of F is illustrated by the transitions OMM ~ OBM ~ BIM ~-
BOB~-BB1. Correspondingly, from ID(a,M(M(a)),a), one can derive

34 - H O W A R D A . B L A I R

ID(B(B(a)),a,M(a)), using clauses (1), (3), and (7). The transitions of F
from OMM are also given by OMM ~- OBM ~- IM ~- 0 ~ 1. Correspondingly,
from ID(a, M(M(a)), a) one derives ID(a, a, M(a)) by clauses (1), (6), (8),
and (5).

DEFINITION 3.2. If d and e are instantaneous descriptions of the same
tape-state configuration, then d and e are equivalent. (Note that d and e
differ only by the number of leading and trailing blanks.)

DEFINITION 3.3. Let A be an instance of ID(x, y, z) representing instan-
taneous description d. Then

A ° = {BIB represents some instantaneous description equivalent to d}.

If S is a set of formulas, let S o = UA~s A°. (Note that A ° and the class of all
instantaneous descriptions equivalent to d are in one-to-one correspondence,
and can be identified.)

LEMMA 3.1. Tp~'(A°) = UA,~,4o [Tp~'({A'}] °.

DEFINITION 3.4. Let states (F) be the set of states that occur in some
quadruple in Turing machine F.

(1) For each q in states (F), select new states qL, and qR such that all
are distinct.

(2) For each (p, x, y, q) in F, where y C {M, B } include in reverse(F)
the quadruple (q, y, x, p).

(3) For each (p ,x ,L , q) in F include in reverse(F) the following
quadruples: (q, B, R, qR), (q, M, R, qe), and (qR, x, x, p).

(4) For each (p ,x ,R, q) in F include in reverse(F) the following
quadruples: (q, B, L, qL), (q, M, L, qL), and (qL, x, x, p).

(5) There are no quadruples in reverse(F) other than those that are
included by (1)-(4).

We shall show that given r.e. set W Z, a Turing machine G can be
constructed such that the finite-failure set of the corresponding logic program
PG is W z. This is accomplished by constructing G to simulate F running
backwards, where domain(F)= Wz.

LEMMA 3.2. Let c 1 and c 2 by tape-state configurations whose states
occur in ,the quadruples of F. Then

PREDICATE LOGIC AS A PROGRAMMING LANGUAGE 35

(i) i f c 2 can be reached f r o m e 1 by F in n steps, then there exists m

such that ½m ~ n ~ m and e I can be reached f r o m c 2 by reverse(F) in m
steps.

(ii) i f c I can be reached f r o m e 2 by reverse(F) in m steps, then there
exists n such that l m ~ n ~ m and c2 can be reached f r o m c 1 by F in n steps.

Now, by L e m m a 3.1, for n > 0,

Tpp l " (H) = {A]for some B E H, A ° can be reached from B °

in exactly n steps by F}.

Consequently, since Tpp ~ ~ (H) is nested as a increases,

H ~ Tpp ~. o, (H) = {A [for some n A E ~ , for every B ~ H, and every n >/n A ,

A ° cannot be reached from B ° in exactly n steps by F}

(by L e m m a 3.2) = {A C H I reverse(F) halts starting in A 0

if the state of A 0 is a state of F}.

It also follows from L e m m a 3.2 that if e is a tape-state configuration
whose state is a state occurring in the quadruples of F, then F halts starting
in e iff reverse (reverse(F)) halts starting in e. Consequently, we have

LEMMA 3.3. L e t

H P = {A [the state o f A ° is a state oecurring

in the quadruples in F}.

T h e n ,

H F (~ (97 Tp se(F) .~ o, (H)) = {A C H F I F halts starting in A o }.

Let nonnegative integer n be represented by the tape-state configuration
I D (a , M ' + l (a) , a) °. Let B C A °. Then by L e m m a 3.1

B C H F ~ (H ~ T~ reverse(F) l w (H))

iff A E H v ~ (H ~ Tp reverse,F, ,~w (H)). (3.3)

L e m m a (3.3) implies

n C d o m a i n (F) iff I D (a , M " + ~ (a) , a) C H ~ T p r e v e r s e (F) ~ (H) . (3.4)

It is in this sense that every r.e. set can be represented by a finite-failure set.
Equation (3.4) gives a 1-1 reducibility of the class of r.e. sets into the class
of finite-failure sets.

36 HOWARD A. BLAIR

Let F be a Turing machine. Obtain PNF from PF by including the
following new clauses:

ID(x, y, a) & V(x) & V(y) ~ W(x, y)

V(M(a))

V(x)-~ V(M(x)).

Let H be the Herbrand base of PNF and let H m be the Herbrand base of PF.
Then HID ('~ TpN v ~ oJ (H) = Tpv ~ ~' (HID). Also

w(q, l (H)
iff ID(tl , tz, a), V(tl), V(t2) E TeN F ~ ~' (H)

iff ID(tl , t2, a) 6 Tev ~ ~" (HID) and t I and t 2 are of the form M"'(a)

and M"2(a), respectively, for some nl, n 2 ~> 1. (3.5)

Associated with each Turing machine F there is a Turing machine F '
which halts when started in the tape-state configuration represented by

M . . . M O M . . . M (nl, n 2 >/ 1)
r/l n2

iff F halts when starting in the tape-state configuration represented by

O M . . . M .
(n I 1 , n 2 - - 1) + 1

Constructing F ' from F is a straightforward, although
which we leave to the reader.

tedious, exercise

By (3.5) and Lemma 3.3, we have

LEMMA 3.4.

w(t,, t2) TpN,everse F' 1 (/4)
ifffor some hi, n 2 >/ 1, t 1 is Mn'(a), t2 is Mn2(a),

and @ 1 - 1, n 2 -- 1) is not in domain(F).

One more lemma will put us in a position to study the range of descending
closure ordinals of the various Tp.

LEMMA 3.5. For each Turing machine F, I1TpNF~ II = oJ.

Proof. It suffices tO show

T~NF(~ i ~ (H))= T~ i ~ (H),

PREDICATE LOGIC AS A PROGRAMMING LANGUAGE 37

where H is the Herbrand base of PNF. H = HID ~ Hv~A H w , (cf. Definition
2.3). Now,

ID(t , , t2, t3) E T, NF(TpN v j.~ (H))

iff for some ID(t~, t~, t~) ~ TeN F ~o, (H),

ID(t'l , t~, t~) ~ ID(t , , t2, t3)

is a variable-free instance of the matrix of a clause in PF. (3.6)

Also,

ID(t , , t2, t3) e N TpNF ~" (H)
n<oJ

iff for each n < ~0, there is a formula ID(t l . , , t2.,t3,n)

in T~N F ~ n (H) and ID(t 1,n, t2.,, t3,n) -~ ID(t , , t2, t3)

is a variable-free istance of the matrix of a clause in PF

iff (since PF is finite) Eq. (3.6). II

DEFINITION 4.1.

by

4. LEMMAS CONCERNING ENUMERATION OPERATORS

Let S G N. Define the operator

G : P(<) -~ P(~)

Z s (X) = {Y l 3u[(y, u) e S & u CX]}.

In case S is r.e., Z s is an enumeration operator, although not all
enumeration operators are given by the various Z s (Rogers, 1967).

DEFINITION 4.2. Suppose F : P (N) ~ P (N) . Let F a (read F-dual) be
defined by

The following are easy to verify.

(r ~) d = r .

frr~r ff = f l r i ff.

I l r q II = IIV T II.
Zes(X) = { y l Vu[(y, u) e S - , u eX]}.

(4.1)

(4.2)

(4.3)

(4.4)

38 HOWARD A. BLAIR

Also, for any ordinal a,

F ~ " (IN)= IN-~F a Y '~ (0). (4.5)

For any hyperarithmetical set S, both Z s and Zs a are HI operators. It
follows that (Hinman, 1978)

z d T IlzasTII (0) is //~, and IIZs a Y I[< 6Ol, if s is hyperarithmetical. (4.6)

This section is concerned with establishing two technical results, as we
shall see in the next section, that apply to the operators Tp associated with
logic programs. We state both results now, and then present their proofs
below.

THEOREM 4.1.
that

THEOREM 4.2.

For each ordinal a <~ 6oi, there is a recursive set S such

IJzgTII = a .

There is a recursive set S such that

(i) I[Zs TIl=6o, and

(ii) Zs a T OJ1 (O) is HI-complete.

The proof of Theorem 4.2 to be presented is independent of the proof of
Theorem 4.1. The case a = 601 in Theorem 4.1 is implied by Theorem 4.2.

Proo f o f Theorem 4.1. It suffices to show that Theorem 4.1 holds for
each a < 601 . If 0 ~< a < 6o the theorem is easy to verify.

Suppose 6o ~< a < 6o 1. There is a recursive binary relation R ' which is a
strict well ordering (order-isomorphic to a) of some set of integers R ' ; R ' is
infinite and r.e. Thus, R ' and /~' can be replaced by a recursive R, order
isomorphic to a, with/~ = IN (Rogers, 1967). There is a 1-1 correspondence
between/~ and {fl[fl < a} via the order isomorphism. Let Ifl] be the element
of N corresponding to ft. Define

and

(y, x5 e s R(x, y)

"y = {x lR(x , y)}

Thus, for fl < a, Rl~ I is order isomorphic to ft. Define Ri , I = ~, which is
order isomorphic to a.

By a straightforward transfinite induction using the fact that

d R Ry y) = w {yl

PREDICATE LOGIC AS A PROGRAMMING LANGUAGE 39

we have

Consequently,

Therefore,

v o ~< a)[z1T ~' (o) = '~!/~l].

z~ T o+' (0) = z~(rN)= ~.

IIz~TII =a.

This completes the proof except for the case a = COl, which is implied by
Theorem 4.2. |

DEFINITION 4.3. Let D o m (X) = { y l W y c_X}, where X_G N.
If f : N--* IN, then f can be regarded as an operator mapping P(N) into

P(N) in the obvious way by

f (X) = {y l3x[x 6 X & y = f(x)]}.

For any set S c_ ~, let S = ~ S. Also, for operators F and G let

FG(X) = F(G(X)).

Lemma 4.1 will provide a means of choosing a recursive S to satisfy the
requirements of Theorem 4.2.

that

(i)
(ii)

Proof
satisfying

LEMMA 4.1. There exist one-to-one total recursive functions f and f such

Wi~x) is recursive, and Wy(x) = Wi(x), for every x.

Dom T '~ (0) = (f - 1 Dora) T" (0).

Let d: N X N--, N be a total, recursive, one-to-one function

n < d(n, O) < d(n, 1) < ... (4.7)

and

w o = wd~. ,o~ = w d ~ . . , ~

Let T be the Kleene normal form predicate satisfying

(4.8)

¢~(x) ~-- ~uyT(z, x, Y))o, (4.9)

where _~ means both sides are defined and equal to each other, or both sides
are undefined. Then

m C Wz ~ ~ yT(z, m, y). (4.10)

40 HOWARD A. BLAIR

Define h by

h(z, 0) = d(0, 0);

h (z , n + l) = d (x , k + 1), if h (z , n) = d (x , k) and ~T(z , (n)o, (n) i) ,

= d((n)o,Cty[d((n)o, y) > h(z, n)]), if

T(z, (n)o, (n)O and (n) 0 4= 0,

= d(d((n)o, 0), I~y[d(d((n)o, 0), y) > h(z, n)]), if

T(z, (n)o , (r/)l) and (n)0 = 0.

Claim 1. (i) h is total, and range(h)_~ range(d).

(ii) For each z, h(z, O) < h(z, 1) < h(z, 2) <

To prove Claim 1, one proves simultaneously by ordinary induction that

(i) h(z, 0),..., h(z, n) are all defined and in range(d), and

(ii) h(z, O) < h(z, 1) < ... < h(z, n). I

Let Q = {d(0, n) ln E N}; Q is recursive by (4.7, 4.8). Let

B z = range(2n(h(z, n))) (3 (IN ~ Q). (4.11)

By Claim 1, B~ is recursive, and a decision procedure for B~ can be deter-
mined uniformly from z. Therefore, there are total recursive functions f and f
such that

Wi~) = Bz (4.12)

and

Moreover,
ma 4.1(i).

Claim 2.

WT(~) = B z = W~(z). (4.13)

we can choose f and f one-to-one. This establishes Lem-

Dom(O) = f - ' Dora(O).

Proof. Suppose z C Dom(O), then Wz = 0. By (4.10) Vn -7
T(z, (n)0, (n)l). By definition of h, and (4.11) WI(z)= {d(0, 0), d(0, 1),...}
(~ = 0. Thus

f (z) C Dora(O) (4.14)

and

z E f ~ Dom(O). (4.15)

P R E D I C A T E L O G I C AS A P R O G R A M M I N G L A N G U A G E 41

Conversely, suppose (4.15). Then (4.14). Suppose Wz4: 0. For some y,
and m ~ Wz, T(z, m, y). Let n = (m, y). Then

h(z, n + 1) = d((no,l~y[d((n)o, y) > h(z, n)], if (n)0 4: 0,

=d(d((n)o ,O) , l~y[d (d ((n)o ,O) , y)>h(z ,n)]) , if (n)0 = 0.

Therefore, since d is 1-1, h(z, n + 1) ~ Q.
By (4.11), h(z, n + 1)C Wf(z) which is empty. The contradiction implies

W~ = 0, and hence z E domain(O). This completes the proof of Claim 2.

Claim 3. For all a, Dora T ~ (0) = (f - 1 Dom) T ~ (0).

Proof. We proceed by transfinite induction.
If a - 0, then the claim is trivial. Suppose a > 0. Then

(f - i Dom) T ~ (o)

= L) (f - l D o m) ((f - ' D0m)((f -1 Dora) T/3 (0))
13<a

= U (f - 1 D o m) (D o m T o (0)) (by induction)
/3<0,

-- (J f- l(DomT/3+1 (0)).
B < a

It remains to prove

f - l (D o m T/3÷1 (0)) = Dom m~÷' (0). (4.16)

We show this directly, without transfinite induction. If fl = 0, then (4.16) is
Claim 2. Assume fl > 0. It must be shown that

Wi~z) ~ Dom T/3 (0) iff wz ~ Dom T~ (0). (4.17)

By Claim 2 we can assume that neither Ws~z) nor W z is empty. Let
m C W z. As in the proof of the previous claim there is some y such that

T(z, m, y),

and letting n = (m, y) we have by (4.11)

h(z, n + 1)~ Ws, z).

Thus:

if m E W~, then h(z, n + 1) ~ Wz(z) for some n such that (n)0 = m. (4.18)

4 2 HOWARD A. BLAIR

Suppose h(z, n + 1) ~ Ws(z). For some r, s ~ ~q h(z, n + i) = d(r, s) r 4: O,
otherwise h(z, n + 1)C Q, and hence h(z, n + 1)~ Win). Let u---the least v
such that d(r, v) ~ range(2nh(z, n)). Now,

Wh~z,~+~) = Wrier,s)= Wdcr,x) = W~ for any x,

and for some t, h(z, t) = d(r, u). If t = 0, then h(z, t) = d(0, 0) and hence
r = 0 . But r4 :0 , so tv~0.

Suppose

~ T (z , (t - - 1)0, (t -- 1)i) .

Then h (z , t) = d (x , k + l) , where h (z , t - 1) = d (x , k) . So r = x , and
u -- k + 1. Therefore

d(r, u - 1) E range(~.nh(z, n))

which contradicts the choice of u. Therefore we must have

T(z, (t - 1)0, (t - 1),). (4.19)

From (4.19) and the definition of h we have

Wh(z,n+ 1) = W(t -1)0 if h(z, n + 1) ~ Wf~z) (4.20)

as we have supposed. Also by (4.19)

(t - 1)0 C W z.

Therefore, if W z ~ Dom T ~ (0), then (t - 1)0 E Dora T ~ (0). By (4.20)

h(z ,n + 1) ~ Dom 7 6 (0)

for any n such that h(z, n + 1) C Win). Every element of Win) is of the form
h(z, n + 1) for some n. Thus Win) c Dom T ~ (0).

Conversely, if Ws(~)~ Dom T ~ (O), by (4.18) for each element m in W z,
for some n

Wm = Wh(z,n+ l),

where h(z, n + 1) E Ws¢z). Consequently, W~ G Dora y ~ (0). This establishes
(4.17) and completes the proofs of Claim 3 and Lemma 4.1.]

Let S be defined by

x C S ~ (x), ~ Ws,~0 ~ .

PREDICATE LOGIC AS A PROGRAMMING LANGUAGE 43

S is recursive by Lemma 4.1(i), and z d (x) = f 1Dora(X). By Lemma
4.1(ii)

zdW ~ (O) = (f ' D o m) T ~ (O) = D o m T ~(O).

Thus

and

Zs d T o,, (o) = Dom T ' ' (~),

IIZ TI/: IIDom TII :(O1"

It is known that [[Dom ~l[=eo, and that Dom T °'~ (0), which is recur-
sively isomorphic to Kleene's system of ordinal notations 0, is the
(productive) center of the identity function, and is //l-complete (Rogers,
1967). This completes the proof of Theorem 4.2. |

5. APPLICATIONS TO rip

For each logic program PNF augment PNF to (PNF+) by adding the
clauses

N(x) + N(s(x)), (5.1)

U(x) -~ A (y), (5.2)

W(y, x) A(x) A(y), (5.3)

where N and A are new relation symbols.

LEMMA 5.1. Let G be reverse(F'). Let H be the Herbrand base of
(PNG)+. Let S = domain(F). Then for each a > O,

HA ~ TU, NG) + ~ o,+~ (H) : {a(M"+ l(a)) l n C ZV ~ '~ (N)}.

Proof. The proof is by transfinite induction. Suppose a = 1.

n C Zs-([N) +-+ 3u[(n, u) C S] ~ (by Lemma 3.4)

~u[W(M'+l (a) ,M"+l(a)) C Tpx G ~o, (H~ (H A Q)HN))] + - +

U [m (m n +1 (a) , m u +1 (a)) ~ T(pNG) + I co (H)]

A(M"+'(a)) ~ T~pNa,+ l °'+' (H).

44 HOWARD A. BLAIR

The last equivalence follows from

HA ~ T(pNa)+ ~ o~ (H) = H A .

Note that clause (5.1) forces relation N to be nonempty at each finite level of
descending iteration, and empty at every transfinite level. Consequently,
clause (5.2) forces A to consist of the entire Herbrand universe at each finite
level of descending iteration, and has no effect on A at each transfinite level.

Suppose a > 1. For any fl >/O,

A(s) E T(~Na)+(T(pN~,+ ~o~+~ (H))

iff 3t[W(s, t) E T(pN6,+ ~o~+~ (H) & A(t) C T~mv6,+ ,[~'+~(H)I

iff 3t[W(s, t) C Tpu G l 0"+~ (H) &A(t) C T(eNa,+ 1 '°+6 (n)] (5.4)

(by Lemmas 3.5, 3.4) iff

for some n I , n2 ~ N, s is Mn'+l(a)

and @1, n2) C if, and A(Mn2+l(a)) C T(eNC)+ ~,o+~ (H). (5.5)

The remainder of the proof is now straightforward using the equivalence of
(5.4) and (5.5). II

Let F be a Turing machine with doma in (F)= S, where S is a recursive
set. Fix a large, countable first order language L suitable for expressing up to
a suitable isomorphism, any logic program. Augment L to L ' by including
logical equality. Fix a G6del numbering of L ' which assigns a G6del number
to each term and formula of L ' . Identify terms and formulas with their
G6del numbers. We assume that decidable sets of syntactic objects in L
encode into recursive sets of G6del numbers, and conversely. The details are
left to the reader. Let G and H be as in Lemma 5.1.

In the following lemma and theorem, L o is either L or L ' .

THEOREM 5.1. For each a <. col there is a logic program P for which

HT III

Proof It is easy to obtain P if a is finite. If a/> co, then let P = (PNG)+,
where domain(F) = S, and S is the recursive set guaranteed by Theorem 4.1
for fl such that co + f l = a , and G is as in Lemma 5.1. II

THEOREM 5.2. There is a logic program P such that

(i)
(ii)

of P.

Proof

PREDICATE LOGIC AS A PROGRAMMING LANGUAGE 45

IIT,~II =col,
H ~ Tp ~o~ (H) is H~l-eomplete, where H is the Herbrand base

Let S he the complement of the recursive set guaranteed by
Theorem 4.2. Note that co + col
Theorem 5.1. By L e m m a 5.1

H A C3 (H ~ T~eNa)+ ; ¢01 (m)) (5.6)

is recursively isomorphic to Z~-T'°' (0). Further,

(H~I4A)~ (H~ T,,N~,+ I x (H)) (5.7)

is r.e. Thus

H ~ T(PNG)+ I wl (H) is the disjoint union of a H~-complete set,

namely, (5.6) and an r.e. set, namely, (5.7), each contained in
complementary recursive sets, and is therefore itself, Hl~-complete. II

= c o l and choose P as in the proof of

LEMMA 5.2.

Ro((C, t)) ~ (i)

and (ii)

and (iii)

Then R o is HI .

Proof. (i) is H °.

(ii) is recursive.

Define V by

Define R o by

There is a recursively axiomatizable theory T with
language L o, with index t (i.e., the axioms of T
constitute an r.e. set with index t),

e is a formula of Lo,

c is valid in ever), Herbrand model of T.

v (a , x) ~ a ~ x ,

where a ~ x means that if x is a formula of L 0, then x is valid in the
Herbrand structure for L 0 determined by

{n I a(n) = 1 & n is a closed atomic formula of Lo}.

Define V x by

Vx(~) ~ V(a, x).

46 H O W A R D A. B L A I R

If x is closed and quantifier free, V x is recursive. Clearly, then V x
arithmetical for each x. Hence V is hyperarithmetical.

(iii) is Va[a ~ T ~ V(a, c)].

Thus (iii), and R o is Hll.
|

is

THEOREM 5.3. Let F be any I1] set o f formulas containing all negations
of variable-free atomic formulas in L o . Define

R((c, P ~) ~ (i) P is a logic program (logic programs are finite),

and (ii) c C F ,

and (iii) c is Herbrand valid in P.

Then R is ll~-complete.

Proof CDB(P) (cf. Definition 2.1) is recursively axiomatized. By
Lemma 5.2, R is HI. Moreover, HA, which is recursive, maps bijectively
onto

{ (-~B, (PNG)+) I B E HA},

for each fixed P. Choose P0 by Theorem 5.2. Then

B E (5.6)~R((-~B, (PoDG)+)).

Consequently,

Eq. (5.6) 41 R. |

COROLLARY. Let R o be as in Lemma 5.2. R 0 is H~-complete.

Proof Fix t to be an index of CDB(P0), where P0 is chosen as in the
previous theorem. Then

hence

Ro((e, t)) R((c, eo)),

le l R((c, Po))} 41Ro.

So R 0 is/7~l-hard. By Lemma 5.2 R 0 is H~-complete. II

PREDICATE LOGIC AS A PROGRAMMING LANGUAGE 47

ACKNOWLEDGMENTS

The author has benefited from a private cmmunication from M. van Emden. Special thanks
are due to K. Bowen for valuable discussions. Thanks are due also to the referees for
suggestions on presenting the motivations for the results.

REFERENCES

APT K. R., AND VAN EMDEN, M. H. (1980), Contributions to the Theory of Logic
Programming, Research Report CS-80-72, University of Waterloo, Dept. of Computer
Science, Waterloo, Ontario.

CI, A~K, K. L. (1980), Negation as failure, in "Logic and Data Bases" (Gallaire and Minker,
Eds.), pp. 293-322, Plenum, New York.

H1NMAN, P. G. (1978), "Recursion-Theoretic Hierarchies," Springer-Verlag, Berlin.
KOWALSKI, R. A. (1979), "Algorithm = Logic + Control," Comm. ACM 424-436.
ROmNSON, J. A. (1965), "A Machine-Oriented Logic Based on the Resolution Principle." J.

Assoc. Comput. Math. 2341.
RoGEr, s, H. (1967), "Theory of Recursive Functions and Effective Computability,"

McGraw-Hill, New York.
VAN EMDEN, M. G., AND KOWALSKI, R. A. (1976), "The Semantics of Predicate Logic as a

Programming Language," J. Assoc. Comput. Math. 733-742.

643/54/1 2/4

