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1. INTRODUCTION 

The coupling of resolution techniques for automatic theorem proving with 
what is termed the procedural interpretation of logic (Kowalski 1979) has 
resulted in efforts to implement predicate logic as a programming language. 
These efforts have already resulted in the language PROLOG. The semantics 
of predicate logic as a programming language have been formulated with an 
orientation toward the precedural interpretation of logic in van Emden and 
Kowalski (1976) and Apt and van Emden (1980). The predicate logic core 
of PROLOG is a restriction to universally quantified Horn sentences with 
atomic conclusions, so-called definite clauses, and therefore prevents the user 
from fully expressing logical negation. In the procedural interpretation of 
logic, a logic program is regarded as its "if and only if'' version of which 
half is explicitly presented. The precise definition of this "if and only if" 
version is given in Clark (1980). The interpretations of a logic program are 
then restricted to the Herbrand models of the "if and only if,' version of the 
program, and the formula F is Herbrand valid in logic program P iff F is 
valid in all such Herbrand interpretations of P. 

Although the user does not have negation available the control features of 
PROLOG do allow the user to have a useful but still limited form of 
negation: to infer ~A from a proof of the unprovability of A. This is sound, 
as we shall see, in the procedural interpretation of logic. Our purpose here is 
to use a connection between the semantics of predicate logic as a 
programming language and the well-studied theory of inductive definability 
to given a measure to the incompleteness of the negation as failure rule for 
proving Herbrand valid negations of formulas, and then to show that the 
negation as failure rule is very highly incomplete in the sense of the measure. 
Moreover, the general problem of deciding whether a formula is Herbrand 
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valid in logic program P is of maximum intractability, being H~-complete. 
With little effort this generalizes to saying that the problem of deciding 
whether a formula is valid in all Herbrand models of a recursively 
axiomatized first order theory is Hl~-complete. 

2. PRELIMINARIES 

A closure of a formula A of predicate logic is a formula obtained from A 
by prefixing to A a sequence of universally quantified variables which have 
among them all of the free variables of A. A clause is a universal closure of a 
formula of the form 

A l & ... & A n ~ B  1V . . .  V B  m (2.1) 

for m, n ) 0 ,  where each A i and Bj is atomic. If n = 0, (2.1) is simply a 
disjunction of atomic formulas. If  m = 0 ,  (2.1) is the negation of a 
conjunction of atomic formulas. We point out, since the mistake is frequently 
made, that the clause 

is not 
VXl ... VXk(A1 & ... & A , ~ )  

~ V X  1 . . .  V X k ( A  l ~¢ . . .  & A m ) .  

It is, however, immediately equivalent to 

~ 3 x ~  ... 3Xk(A 1 & ... & A~). 

If  m = n = 0, (2.1) is the empty clause and is defined to be false. Equation 
(2.1) itself is the matrix of the corresponding clause, and it is the matrix of a 
Horn clause if m ~ 1, of a definite clause if m = 1, and of a negative clause if 
n > 0 and m = 0 .  

A logic program is a set of definite clauses. (See above.) When we write 
logic programs we omit the universal quantifiers, writing the programs in 
an abbreviated form. Let P be a logic program. The language of P is the 
smallest first order language without logical equality that contains the 
formulas of P. Denote the language of P by L(P).  The Herbrand universe of 
P is the set of all variable-free terms in L(P).  The Herbrand base of P is the 
set of all variable-free atomic formulas in L(P).  

Now let L be a first order language with, or without, logical equality. A 
Herbrand structure I for L is any subset of the set of  all variable-free atomic 
formulas of L in which the logical equality symbol does not occur. A 
Herbrand structure for L is a structure I for L in the ordinary sense where 
each constant and function symbol is given its free interpretation, and the 
interpretations of the relation symbols are determined by membership in I. 
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Validity in I is defined as validity in the corresponding ordinary structure. 
For example, if I is a Herbrand structure for L, B(x )  is atomic, and A is 
atomic and variable-free, then 

I ~ A  iff A E 1  

and 

I ~  3xB(x )  if I ~  B(t)  

for some variable-free term t in L. This last point about validity in Herbrand 
structures amounts to restricting the class of structures being considered to 
only those structures which only contain individuals named by some 
variable-free term. If t~ = t 2 is a closed formula of L, then 

I ~ t~ = t 2 if t~ is, identically, t2. 

We restrict all considerations of logic programs to those programs which 
satisfy two technical assumptions. This does not result in any substantive 
restriction and has no bearing on the theorems of Section 5. We introduce 
these assumptions only because they are needed in the proofs of our 
statements of the lemmas proved in Apt and van Emden (1980). 

(1) There is at least one constant symbol in L(P).  

(2) Every relation symbol which occurs in the hypothesis of some 
clause in P also occurs in the conclusion of some clause in P. 

In Clark (1980) a first order theory called the completed data base of P is 
defined. This is the "if and only if'' version of P which we denote CDB(P). 
The CDB(P) can be explained as follows: In the procedural interpretation of 
a logic program each Horn clause is thought of as a definition of a 
procedure. That is, the Horn clause 

A l ( U  1 . . . . .  Uk) & . . .  ~Z, Am(u I ..... Uk ) - '  B ( u  1 .. . .  , u k )  

is interpreted as: to satisfy B(u~ ..... Uk) try satisfying each A I ( U  1 ..... Uk) ..... 

Al(u  I .... , Uk). It is well established in the logic programming literature (cf. 
van Emden and Kowalski, 1976) that this notion can be viewed as giving a 
definition of procedure B(u~ ..... Uk) by the sequence of procedures 
A 1(Ul ..... uk),..., A~(u~ ..... uk). (No commitment is made to a particular order 
of evaluation.) Now, of course it is possible, indeed likely, that in a logic 
program P there are several Horn clauses with the same relation symbol in 
the conclusion. For example, suppose the following are all the Horn clauses 
in P in which B occurs in the conclusion. 
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A 1,1 (~G . . .  84 A 1,hi --0 B(ul,  1 ..... Ul,k) 

: (2.2) 

A m ,  1 84 . . .  84 Am,nm---~,. B (b lm , l  .... .  Urn,k). 

The procedural interpretation demands that B be entirely defined by program 
P. Thus P is thought of as being equipped with the extra assumption that the 
only way to satisfy B(Xl ..... Xk) is to satisfy one of the clauses in (2.2). 

The CDB(P) captures this idea in the following way: For each relation 
symbol B (where B is m-ary) occurring in a conclusion of some member of 
P, let (2.2) be the set of all clauses in P in which B occurs in the conclusion. 
Corresponding to B, including in CDB(P) the following formula: 

V X l  "'" V X  k [ E  l V , , .  V E m ¢.-+ B ( x ,  .... .  Xk)  ] 

where each Ei is of the form 

~.Pi,  i "'" 3 Y i , p i [X l  = Ui, l 84 . . .  84 X k = Ui, k & Ai. 1 & . . ,  84 A i ,n i ] ,  

where " = "  is logical equality, the y,.j are the free variables occurring in 
ui, ~ ..... ui, k, and x I ..... x k are new. The CDB(P) is the first order theory with 
these formulas as nonlogical axioms together with nonlogical axioms forcing 
a free interpretation on the terms in any structure which is a model of 
CDB(P). 

As an example, suppose P is 

{A (y)  & B ( f ( y ) )  ~ A ( f (y) ) ,  B ( y )  ~ A ( g ( y ) ) ,  A ( y )  ~ B(g (y ) ) } .  

Then tile nonlogical axioms obtained from P in CDB(P) are 

Vx [Yy [x = f ( y )  & A (y)  & B ( f ( y ) ) ]  V 3y Ix = g(y)  & B(y)]  *-+ A (x)] 

and 

Vx [By Ix = g(y)  & A(y)] ~ B(x)]. 

DEFINITION 2.1. Let P be a logic program and let A be a formula of 
L(P). Formula A is said to be Herbrand valid in P if A is valid in all 
Herbrand models of CDB(P). 

From logic program P, formulas of the form 

3X 1 . . .  ~X k [A 1 84 . - .  8 4 A m ]  , ( 2 . 3 )  

where the A i are atomic, can be proved by linear resolution. A far less 
efficient means of proving formulas of the form (2.3) is to completely instan- 
tiate the logic program in all possible ways over the Herbrand universe and 
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enumerate all possible sequences of inferences from these instantiations using 
only modus ponens and the rule: from A 1 ..... A ,  infer A1 & . - - & A , .  While 
this is not computationally appropriate this approach does provide a charac- 
terization of the Herbrand models of CDB(P). 

DEFINITION 2.2. Let P be a logic program. Define Tp on the Herbrand 
structures for L(P)  by 

A C Tp(I) iff there is a clause B 1 & ... & B~ -+ B 0 

in P, and a substitution O such that A 

is B o 69 and B 1 0 ..... B ,  0 C I. 

Definition 2.2 is introduced in van Emden and Kowalski (1976). Here Tp 
corresponds to completely instantiating P in all possible ways over the 
Herbrand universe of P, and applying modus ponens once to these instan- 
tiations and the conjunctions of formulas in I. The following three lemmas 
are proved in Apt and van Emden (1980): 

LEMMA 2.1. Tp(l) = I  i f f  I is a model of  CDB(P).  

LEM~aA 2.2. O {I I Te ( I )=  I } is a f ixed  point of  T e. 

LEMMA 2.3. 0 {II Tp(I) = I t is a f ixed point of  Tp. 

Lemmas 2.1 and 2.3 imply that ifA is a variable-free atomic formula, then 
~A is Herbrand valid in P iff A C H ~  0 {I1 Tp( I )=I} ,  where H is the 
Herbrand base of P. We mention in passing that for formulas B of form 
(2.3), B is Herbrand valid in P iff B is valid, in the ordinary sense, in all 
models of P. This is a fundamental property of the resolution technique (cf. 
Robinson, 1965). This equivalence of Herbrand validity with ordinary 
validity does not apply to negations of formulas. 

Let L be a complete lattice with bottom ±, and top T, and let f be a 
monotonic function mapping L to L. Let e E L. Define 

f y  ° (e) = e, f i  ° (e)--  e, (2.4) 

f ~ '~ (e) = (_J { f ( f  T ~ (e)) J fl < a }, f ~." (e) = (-') { f ( f  ~. ~ (e)) j fl < a }, 

for each ordinal a. 
Here f has a unique maximal and a unique minimal fixed point. The 

minimal fixed point o f f  is given by f T ~ (L), where a is the least ordinal 
such t h a t f  T '~ ( 5 _ ) = f  y ~+1 (±), and the maximal fixed point o f f  is given by 
f . a  (T), where 2 is the least ordinal such that f ~ a  ( T ) = f . ~ + l  (y). Let 
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l i f t  II and IIf3. II be these ordinals. These remarks apply when f is the 
operator Tp and L is the power set of H, the Herbrand base of P. 

In Apt and van Emden (1980) the finite-failure set of logic program P is 
defined to be the set of all variable-free atomic formulas A such that there is 
a linear resolution tree with A as root which is finite and every path 
terminates in failure; that is, the finite failure set of P is 

{A[A is atomic, variable-free, and ~ (P ~-A) is provable 

by the termination in failure of linear resolution }. 

Linear resolution is the proof procedure employed by the pure definite clause 
part of PROLOG. Lemma 2.4 is proved in Apt and van Emden (1980). 

LEMMA 2.4. Let H be the Herbrand base of  logic program P, and let F 
be the finitefailure set of  P. Then F = H ~ Tp ~ o~ (H). 

Whether [[ T~ ~ [[ < co or not, we have by (2.4) 

Tp ~llrpill(H)= Tp 1 °'+~ (H), for some a. 

By Lemma 2.4 we may regard the minimum such a as a measure of the 
incompleteness of the negation as failure rule where linear resolution is the 
underlying proof procedure. 

Now Tp is an enumeration operator. By Eq. (4.1) and a theorem of C. 
Spector (Hinman, 1978, p. 150) I ITp+l [~co l ,  where col is the least 
nonconstructive ordinal. We shall show that, in fact, [I Tp[[ = co I for certain P 
that we will construct. 

We assume the reader is familiar with the fundamental properties of the 
arithmetical and analytical hierarchies as well as the notions of 1-1 
reducibility and recursive isomorphism. If X is a H] set of numbers for 
which every H~ set of numbers is 1-1 reducible to X, then X is said to be 
H~-complete. It follows, therefore, that up to recursive isomorphism there is 
only one Hl-complete set. Kleene's system of ordinal notations is a well- 
known example of such a set. 

We shall employ Turing machines to establish the principal results of 
Section 3. We adopt most of the conventions of Rogers (1967) regarding 
Turing machines, with the following exceptions: We identify the equivalence 
class of instantaneous descriptions which represent a given tape-state 
configuration with the tape-state configuration itself. Our Turing machines 
are over the alphabet {M, B} with B representing "blank." 

An instantaneous description is a description of a portion of the tape 
containing the nonblank portion of the tape with the state inserted 
immediately to the left of the scanned cell. Thus xqy, where q C N, and 
x, y E {B,M}* is an instantaneous description. Thus two instantaneous 
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descriptions are equivalent if they only differ by the number of leading and 
trailing B's. The states are nonnegative integers. In addition to the deter- 
ministic Turing machines which are bijectively assigned G6del numbers, we 
also consider nondeterministic Turing machines which we do not assign 
G6del numbers. If F is a Turing machine, deterministic or not, F halts on 
tape-state configuration c if F reaches a halting state on all computations 
proceeding from c. We assume that the notion of tape-state configuration c' 
reachable from tape-state configuration e in n steps by Turing machine F is 
sufficiently clear not to need further elaboration. The domain(F) is the set of 
all tape-state configurations represented by 

0 M  . . - M ,  (2.5) 
n+l  

where 0 C rN, and M ... M E  {B,M}* for which F halts. As is often the case 
in the discussion of Turing machines, (2.5) represents the input of the 
number n to F. In particular, if F is deterministic with G6del number z, then 
domain(F) = W z. 

If S is a set, S* is the set of all finite strings with elements in S. The 
symbol ~ denotes disjoint union; (x, y)  is the code number of (x, y) as in 
Rogers (1967); (., .) is bijective; ((x, y ) ) o = X  and ((x, Y))I = Y ;  and #z is 
the partial recursive function computed by the deterministic Tufing machine 
with G6del number z. Our notation will be somewhat more compact with 

DEFINITION 2.3. Let H be the Herbrand base of logic program P, and let 
R be a relation symbol. Now H R is the subset of H consisting of all formulas 
in which the symbol R occurs. If  R g£ L(P) ,  H R is empty. 

3. FINITE-FAILURE SETS 

The principal result of this section is that the class of all finite-failure sets 
is the class of all r.e. sets under a suitable representation of nonnegative 
integers by variable-free terms. This result is neither deep nor surprising, but 
it does need a demonstration, and the constructions employed in the 
demonstration given here provide the groundwork for proving that Herbrand 
validity is Hl-complete. 

Linear resolution trees are finitely branched. Thus all finite initial 
segments of all linear resolution trees for logic programs P proceeding from 
negative clause A-* can be recursively enumerated. Thus, if A is in the finite- 
failure set of P, the finite linear resolution tree which fails A-~ will appear in 
the enumeration. Consequently, each finite-failure set is r.e. It remains to 

643/54/1 2/3 
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show that the class of all r.e. sets is 1-1 reducible to the class of finite-failure 
sets. 

Turing machine quadruples can be represented as definite clauses 
expressing transitions between instantaneous descriptions. A string over the 
alphabet {M, B / can be represented by a term in a logic program using the 
constant symbol a, and the letters M and B as unary function symbols. The 
singleton strings M and B are represented by M(a) and B(a), respectively. If 
t is a term representing the string a, then M(t) and B(t) represent the strings 
Ma and Bo, respectively. An instantaneous description has the form 

SlqS2, (3.1) 

where Sl,SzC {M,B}*. Let s~ be the result of reversing s I and let t~,t 2 
represent Sl R and s2, respectively. Represent each n E N by the term 

M(... M(a)...).  
n 

We abbreviate this term by M"(a). Then the instantaneous description (3.1) 
can be represented by the atomic formula 

ID(tl, t2, Mq(a) ). (3.2) 

For eample, the instantaneous description 

B MMMB MM 3 MB MMB MB B B 

is represented by 

ID(M (M(B(M(M (M (B(a) ) ) ) ) ) ), M(B(M (M (B(M(B(B(B(a ) ) ) ) ) ) ) ) ), 
M(M(M(a)))). 

We now construct a logic program PF corresponding to (possibly 
nondeterministic) Turing machine F. The definition is divided into three 
cases according to whether a quadruple in F contains a symbol to write or a 
command to move left or right. The purpose of the additional clauses in each 
case is to control the proliferation of leading and trailing B's. Since we do 
not have logical equality in a logic program we cannot include the clause 
~ a  = B. An example follows the definition. 

DEFINITION 3.1. (1) For each quadruple ( p , f ,  g, q) in F include in PF 
the clause 

(a) ID(x, f (y) ,  MP(a))-~ ID(x, g(y), Mq(a)). 
In addition: if f =  B and g = B include 
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(b) ID(x, a, MP(a)) -~ ID(x, a, Mq(a)); 
i f f  = B and g = M include 

(c) ID(x, a, MP(a)) -- ID(x, M(a), Mq(a)); 
i f f  = M and g = B include 

(d) ID(x, M(a), MP(a)) ~ ID(x, a, Mq(a)). 

(2) For each quadruple (p, f, L, q) in F include in PF the clauses 

(a) ID(B(x), f (y) ,  MP(a)) ~ ID(x, B(f(y)),  Mq(a)) 

(b) ID(M(x), f (y) ,  MP(a)) --, ID(x, M(f(y)),  Mq(a)). 
In addition: include 

(c) ID(a, f (y) ,  MP(a)) ~ ID(a, B(f(y)),  Mq(a)); 
i f f  = B include 

(d) ID(B(x), a, MP(a))-~ ID(x, a, Mq(a)); 

(e) Ih(a, a, M;'(a)) -~ ID(a, a, mq(a)); 

(f) ID(M(x), a, MP(a)) ~ ID(x, M(a), Mq(a)). 

(3) For each quadruple (p, f R, q) in F, include in PF the clause 

(a) ID(x, f (y) ,  MP(a))-~ IO(f(x), y, Mq(a)). 
In addition: if f =  B include 

(b) IO(x, a, MP(a))-~ ID(B(x), a, Mq(a)); 

(c) ID(a, a, MP(a)) ~ ID(a, a, Mq(a)); 

(d) ID(a, B(y), MP(a)) -, ID(a, y, M°(a)). 

This completes the definition of PF. 

As an example, consider the Turing machine F defined by {(0, M, B, 0), 
(O,B,R, 1), (1, M,B,  0)} which erases the M's immediately to the right of 
the initially scanned cell when starting in state 0. PF is given by 

(1) {ID(x,M(y), a)-~ IO(x,B(y), a), 

(2) ID(x, M(a), a) --~ [O(x, a, a), 

(3) ID(x, B(y), a) ~ 1D(B(x), y, M(a)), 

(4) ID(x, a, a) --* ID(B(x), a, M(a)), 

(5) ID(a, a, a) ~ ID(a, a, M(a)), 

(6) ID(a, B(y), a) ~ ID(a, y, M(a)), 

(7) ID(x, M(y), M(a)) ~ ID(x, B(y),  a), 

(8) IO(x, M(a), M(a)) ~ IO(x, a, a)}. 

The behavior of F is illustrated by the transitions OMM ~ OBM ~ BIM ~- 
BOB~-BB1. Correspondingly, from ID(a,M(M(a)),a), one can derive 
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ID(B(B(a)),a,M(a)), using clauses (1), (3), and (7). The transitions of F 
from OMM are also given by OMM ~- OBM ~- IM ~- 0 ~ 1. Correspondingly, 
from ID(a, M(M(a)), a) one derives ID(a, a, M(a)) by clauses (1), (6), (8), 
and (5). 

DEFINITION 3.2. If d and e are instantaneous descriptions of the same 
tape-state configuration, then d and e are equivalent. (Note that d and e 
differ only by the number of leading and trailing blanks.) 

DEFINITION 3.3. Let A be an instance of ID(x, y, z) representing instan- 
taneous description d. Then 

A ° =  {BIB represents some instantaneous description equivalent to d}. 

If S is a set of formulas, let S o = UA~s A°. (Note that A ° and the class of all 
instantaneous descriptions equivalent to d are in one-to-one correspondence, 
and can be identified.) 

LEMMA 3.1. Tp~'(A°) = UA,~,4o [Tp~'({A'}] °. 

DEFINITION 3.4. Let states (F) be the set of states that occur in some 
quadruple in Turing machine F. 

(1) For each q in states (F), select new states qL, and qR such that all 
are distinct. 

(2) For each (p, x, y, q) in F, where y C {M, B } include in reverse(F) 
the quadruple (q, y, x, p). 

(3) For each (p ,x ,L ,  q) in F include in reverse(F) the following 
quadruples: (q, B, R, qR), (q, M, R, qe), and (qR, x, x, p). 

(4) For each (p ,x ,R,  q) in F include in reverse(F) the following 
quadruples: (q, B, L, qL), (q, M, L, qL), and (qL, x, x, p). 

(5) There are no quadruples in reverse(F) other than those that are 
included by (1)-(4). 

We shall show that given r.e. set W Z, a Turing machine G can be 
constructed such that the finite-failure set of the corresponding logic program 
PG is W z. This is accomplished by constructing G to simulate F running 
backwards, where domain(F)=  Wz. 

LEMMA 3.2. Let c 1 and c 2 by tape-state configurations whose states 
occur in ,the quadruples of F. Then 
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(i) i f  c 2 can be reached f r o m  e 1 by F in n steps, then there exists m 

such that ½m ~ n ~ m and e I can be reached f r o m  c 2 by reverse(F) in m 
steps. 

(ii) i f  c I can be reached f r o m  e 2 by reverse(F) in m steps, then there 
exists n such that l m  ~ n ~ m and c2 can be reached f r o m  c 1 by F in n steps. 

Now, by L e m m a  3.1, for n > 0, 

Tpp l "  (H) = {A ]for some B E H, A ° can be reached from B ° 

in exactly n steps by F}. 

Consequently,  since Tpp ~ ~ (H) is nested as a increases, 

H ~  Tpp ~. o, (H) = {A [for some n A E ~ ,  for every B ~ H, and every n >/n A , 

A ° cannot be reached from B ° in exactly n steps by F} 

(by L e m m a  3.2) = {A C H I reverse(F) halts starting in A 0 

if the state of  A 0 is a state of  F}. 

It also follows from L e m m a  3.2 that  if e is a tape-state configuration 
whose state is a state occurring in the quadruples of  F, then F halts starting 
in e iff reverse (reverse(F)) halts starting in e. Consequently,  we have 

LEMMA 3.3. L e t  

H P = {A [the state o f A  ° is a state oecurring 

in the quadruples in F}. 

T h e n ,  

H F (~ (97  Tp . . . . .  se(F) .~ o, (H))  = {A C H F I F halts starting in A o }. 

Let nonnegative integer n be represented by the tape-state configuration 
I D ( a , M ' + l ( a ) ,  a) °. Let B C A  °. Then by L e m m a  3.1 

B C H F ~ ( H ~  T~ reverse(F) l w (H)) 

iff A E H v ~ ( H ~  Tp reverse,F, ,~w (H)). (3.3) 

L e m m a  (3.3) implies 

n C d o m a i n ( F )  iff I D ( a , M " + ~ ( a ) , a ) C H ~ T p r e v e r s e ( F ) ~ ( H ) .  (3.4) 

It is in this sense that  every r.e. set can be represented by a finite-failure set. 
Equation (3.4) gives a 1-1 reducibility of  the class of  r.e. sets into the class 
of  finite-failure sets. 
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Let F be a Turing machine. Obtain PNF from PF by including the 
following new clauses: 

ID(x, y, a) & V(x) & V(y) ~ W(x, y) 

V(M(a)) 

V(x)-~ V(M(x)). 

Let H be the Herbrand base of PNF and let H m be the Herbrand base of PF. 
Then HID ('~ TpN v ~ oJ (H) = Tpv ~ ~' (HID). Also 

w(q, l (H) 
iff ID(tl ,  tz, a), V(tl), V(t2) E TeN F ~ ~' (H) 

iff ID(tl ,  t2, a) 6 Tev ~ ~" (HID) and t I and t 2 are of the form M"'(a) 

and M"2(a), respectively, for some nl,  n 2 ~> 1. (3.5) 

Associated with each Turing machine F there is a Turing machine F '  
which halts when started in the tape-state configuration represented by 

M . . .  M O M . . .  M (nl, n 2 >/ 1) 
r/l n2 

iff F halts when starting in the tape-state configuration represented by 

O M . . . M .  
(n  I 1 , n 2 - - 1 ) + 1  

Constructing F '  from F is a straightforward, although 
which we leave to the reader. 

tedious, exercise 

By (3.5) and Lemma 3.3, we have 

LEMMA 3.4. 

w(t,, t2) TpN,everse F'  1 (/4) 
ifffor some hi, n 2 >/ 1, t 1 is Mn'(a),  t2 is Mn2(a), 

and @ 1 -  1, n 2 -- 1) is not in domain(F). 

One more lemma will put us in a position to study the range of descending 
closure ordinals of the various Tp. 

LEMMA 3.5. For each Turing machine F, I1TpNF~ II = oJ. 

Proof. It suffices tO show 

T~NF(~ i ~ (H))= T~ i ~ (H), 
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where H is the Herbrand base of PNF. H = HID ~ Hv~A H w ,  (cf. Definition 
2.3). Now, 

ID( t , ,  t2, t3) E T,  NF(TpN v j.~ (H))  

iff for some ID(t~, t~, t~) ~ TeN F ~o, (H), 

ID(t'l ,  t~, t~) ~ ID( t , ,  t2, t3) 

is a variable-free instance of the matrix of a clause in PF. (3.6) 

Also, 

ID( t , ,  t2, t3) e N TpNF ~" (H) 
n<oJ 

iff for each n < ~0, there is a formula ID( t l . , ,  t2.,t3,n) 

in T~N F ~ n (H) and ID(t  1,n, t2.,, t3,n) -~ ID( t , ,  t2, t3) 

is a variable-free istance of the matrix of a clause in PF 

iff (since PF is finite) Eq. (3.6). II 

DEFINITION 4.1. 

by 

4. LEMMAS CONCERNING ENUMERATION OPERATORS 

Let S G N. Define the operator 

G :  P(<) -~ P(~)  

Z s ( X  ) = {Y l 3u[(y,  u) e S & u CX]}. 

In case S is r.e., Z s is an enumeration operator, although not all 
enumeration operators are given by the various Z s (Rogers, 1967). 

DEFINITION 4.2. Suppose F : P ( N ) ~ P ( N ) .  Let F a (read F-dual) be 
defined by 

The following are easy to verify. 

( r ~ )  d = r .  

frr~r ff = f l r i  ff. 

I l r q  II = IIV T II. 
Zes(X) = { y l Vu[ ( y, u ) e S - ,  u eX]}.  

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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Also, for any ordinal a, 

F ~ "  (IN)= IN-~F a Y '~ (0). (4.5) 

For any hyperarithmetical set S, both Z s and Zs a are HI operators. It 
follows that (Hinman, 1978) 

z d  T IlzasTII (0)  is //~, and IIZs a Y I[ < 6Ol, if s is hyperarithmetical. (4.6) 

This section is concerned with establishing two technical results, as we 
shall see in the next section, that apply to the operators Tp associated with 
logic programs. We state both results now, and then present their proofs 
below. 

THEOREM 4.1. 
that 

THEOREM 4.2. 

For each ordinal a <~ 6oi, there is a recursive set S such 

IJzgTII = a .  

There is a recursive set S such that 

(i) I[Zs TIl=6o, and 

(ii) Zs a T OJ1 (O) is HI-complete. 

The proof of Theorem 4.2 to be presented is independent of the proof of 
Theorem 4.1. The case a = 601 in Theorem 4.1 is implied by Theorem 4.2. 

Proo f  o f  Theorem 4.1. It suffices to show that Theorem 4.1 holds for 
each a < 601 . If 0 ~< a < 6o the theorem is easy to verify. 

Suppose 6o ~< a < 6o 1. There is a recursive binary relation R '  which is a 
strict well ordering (order-isomorphic to a) of some set of integers R ' ;  R '  is 
infinite and r.e. Thus, R '  and /~' can be replaced by a recursive R, order 
isomorphic to a, with/~ = IN (Rogers, 1967). There is a 1-1 correspondence 
between/~ and {fl[fl < a} via the order isomorphism. Let Ifl] be the element 
of N corresponding to ft. Define 

and 

(y, x5 e s R(x, y) 

"y = {x lR(x ,  y)} 

Thus, for fl < a, Rl~ I is order isomorphic to ft. Define Ri ,  I = ~, which is 
order isomorphic to a. 

By a straightforward transfinite induction using the fact that 

d R Ry y ) =  w {yl 
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we have 

Consequently, 

Therefore, 

v o  ~< a)[z1T ~' (o) = '~!/~l]. 

z~ T o+' ( 0 ) =  z~(rN)= ~. 

IIz~TII =a.  

This completes the proof except for the case a = COl, which is implied by 
Theorem 4.2. | 

DEFINITION 4.3. Let D o m ( X ) =  { y l W y  c_X}, where X_G N. 
If f :  N--* IN, then f can be regarded as an operator mapping P(N) into 

P(N) in the obvious way by 

f ( X )  = {y l3x[x  6 X &  y = f(x)]}.  

For any set S c_ ~, let S =  ~ S. Also, for operators F and G let 

FG(X) = F(G(X)). 

Lemma 4.1 will provide a means of choosing a recursive S to satisfy the 
requirements of Theorem 4.2. 

that 

(i) 
(ii) 

Proof 
satisfying 

LEMMA 4.1. There exist one-to-one total recursive functions f and f such 

Wi~x) is recursive, and Wy(x ) = Wi(x), for every x. 

Dom T '~ ( 0 ) =  ( f - 1  Dora) T" (0). 

Let d: N X N--, N be a total, recursive, one-to-one function 

n < d(n, O) < d(n, 1) < ... (4.7) 

and 

w o  = wd~. ,o~  = w d ~ . . , ~  . . . .  

Let T be the Kleene normal form predicate satisfying 

(4.8) 

¢~(x) ~-- ~uyT(z, x, Y))o, (4.9) 

where _~ means both sides are defined and equal to each other, or both sides 
are undefined. Then 

m C Wz ~ ~ yT(z, m, y). (4.10) 
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Define h by 

h(z, 0) = d(0, 0); 

h ( z , n + l ) = d ( x , k +  1), if h ( z , n ) = d ( x , k )  and ~T(z , (n)o, (n) i ) ,  

= d((n)o,Cty[d((n)o, y) > h(z, n)]), if 

T(z, (n)o, (n)O and (n) 0 4= 0, 

= d(d((n)o, 0), I~y[d(d((n)o, 0), y) > h(z, n)]), if 

T(z, (n)o , (r/)l) and (n)0 = 0. 

Claim 1. (i) h is total, and range(h)_~ range(d). 

(ii) For each z, h(z, O) < h(z, 1) < h(z, 2) < .... 

To prove Claim 1, one proves simultaneously by ordinary induction that 

(i) h(z, 0),..., h(z, n) are all defined and in range(d), and 

(ii) h(z, O) < h(z, 1) < ... < h(z, n). I 

Let Q = {d(0, n) ln E N}; Q is recursive by (4.7, 4.8). Let 

B z = range(2n(h(z, n))) (3 (IN ~ Q). (4.11) 

By Claim 1, B~ is recursive, and a decision procedure for B~ can be deter- 
mined uniformly from z. Therefore, there are total recursive functions f and f 
such that 

Wi~) = Bz (4.12) 

and 

Moreover, 
ma 4.1(i). 

Claim 2. 

WT(~) = B z = W~(z). (4.13) 

we can choose f and f one-to-one. This establishes Lem- 

Dom(O) = f - '  Dora(O). 

Proof. Suppose z C Dom(O), then Wz = 0. By (4.10) Vn -7 
T(z, (n)0, (n)l). By definition of h, and (4.11) WI(z)= {d(0, 0), d(0, 1),...} 
(~ = 0.  Thus 

f ( z )  C Dora(O) (4.14) 

and 

z E f ~ Dom(O). (4.15) 
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Conversely, suppose (4.15). Then (4.14). Suppose Wz4: 0. For some y, 
and m ~ Wz, T(z, m, y). Let n = (m, y). Then 

h(z, n + 1) = d((no,l~y[d((n)o, y)  > h(z, n)], if (n)0 4: 0, 

=d(d( (n )o ,O) , l~y[d (d ( (n )o ,O) , y )>h( z ,n ) ] ) ,  if (n)0 = 0. 

Therefore, since d is 1-1, h(z, n + 1) ~ Q. 
By (4.11), h(z, n + 1)C Wf(z) which is empty. The contradiction implies 

W~ = 0,  and hence z E domain(O). This completes the proof of Claim 2. 

Claim 3. For all a, Dora T ~ ( 0 ) =  ( f - 1  Dom) T ~ (0). 

Proof. We proceed by transfinite induction. 
If a - 0, then the claim is trivial. Suppose a > 0. Then 

( f - i  Dom) T ~ (o) 

= L) ( f - l  D o m ) ( ( f - '  D0m)(( f  -1 Dora) T/3 (0)) 
13<a 

= U ( f - 1 D o m ) ( D o m  T o (0)) (by induction) 
/3<0, 

-- (J f- l(DomT/3+1 (0)). 
B < a  

It remains to prove 

f - l ( D o m  T/3÷1 ( 0 ) ) =  Dom m~÷' (0). (4.16) 

We show this directly, without transfinite induction. If fl = 0, then (4.16) is 
Claim 2. Assume fl > 0. It must be shown that 

Wi~z) ~ Dom T/3 (0) iff wz ~ Dom T~ (0). (4.17) 

By Claim 2 we can assume that neither Ws~z) nor W z is empty. Let 
m C W z. As in the proof of the previous claim there is some y such that 

T(z, m, y), 

and letting n = (m, y) we have by (4.11) 

h(z, n + 1)~  Ws, z). 

Thus: 

if m E W~, then h(z, n + 1) ~ Wz(z) for some n such that (n)0 = m. (4.18) 
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Suppose h(z, n + 1) ~ Ws(z). For some r, s ~ ~q h(z, n + i)  = d(r, s) r 4: O, 
otherwise h(z, n + 1)C Q, and hence h(z, n + 1 )~  Win). Let u---the least v 
such that d(r, v) ~ range(2nh(z, n)). Now, 

Wh~z,~+~) = Wrier,s)= Wdcr,x) = W~ for any x, 

and for some t, h(z, t ) =  d(r, u). If t = 0, then h(z, t ) =  d(0, 0) and hence 
r = 0 .  But r4 :0 ,  so tv~0. 

Suppose 

~ T ( z ,  ( t - -  1)0, ( t --  1)i ) . 

Then h ( z , t ) = d ( x , k + l ) ,  where h ( z , t - 1 ) = d ( x , k ) .  So r = x ,  and 
u -- k + 1. Therefore 

d(r, u - 1) E range(~.nh(z, n)) 

which contradicts the choice of u. Therefore we must have 

T(z, ( t -  1)0, ( t -  1),). (4.19) 

From (4.19) and the definition of h we have 

Wh(z,n+ 1) = W( t -1 )0  if h(z, n + 1) ~ Wf~z) (4.20) 

as we have supposed. Also by (4.19) 

( t -  1)0 C W z. 

Therefore, if W z ~ Dom T ~ (0), then (t - 1)0 E Dora T ~ (0). By (4.20) 

h(z ,n  + 1) ~ Dom 7 6 (0)  

for any n such that h(z, n + 1) C Win). Every element of Win) is of the form 
h(z, n + 1) for some n. Thus Win) c Dom T ~ (0). 

Conversely, if Ws(~)~ Dom T ~ (O), by (4.18) for each element m in W z, 
for some n 

Wm = Wh(z,n+ l ), 

where h(z, n + 1) E Ws¢z). Consequently, W~ G Dora y ~ (0). This establishes 
(4.17) and completes the proofs of Claim 3 and Lemma 4.1. ] 

Let S be defined by 

x C S ~ (x), ~ Ws,~0 ~ . 
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S is recursive by Lemma 4.1(i), and z d ( x ) = f  1Dora(X). By Lemma 
4.1(ii) 

zdW ~ ( O ) = ( f  ' D o m )  T ~ ( O ) = D o m T  ~(O). 

Thus 

and 

Zs d T o,, ( o ) =  Dom T ' '  (~), 

IIZ  TI/:  IIDom TII :(O1" 

It is known that [[Dom ~l[=eo, and that Dom T °'~ (0), which is recur- 
sively isomorphic to Kleene's system of ordinal notations 0, is the 
(productive) center of the identity function, and is //l-complete (Rogers, 
1967). This completes the proof of Theorem 4.2. | 

5. APPLICATIONS TO rip 

For each logic program PNF augment PNF to (PNF+) by adding the 
clauses 

N(x) + N(s(x)), (5.1) 

U(x) -~ A (y), (5.2) 

W(y, x) A(x) A(y), (5.3) 

where N and A are new relation symbols. 

LEMMA 5.1. Let G be reverse(F'). Let H be the Herbrand base of 
(PNG)+. Let S = domain(F). Then for each a > O, 

HA ~ TU, NG) + ~ o,+~ ( H ) :  {a(M"+ l(a)) l n C ZV ~ '~ (N)}. 

Proof. The proof is by transfinite induction. Suppose a = 1. 

n C Zs-([N ) +-+ 3u[(n, u) C S] ~ (by Lemma 3.4) 

~u[ W(M'+l (a) ,M"+l(a) )  C Tpx G ~o, (H~ (H A Q)HN))] + - +  

U [ m ( m  n +1 (a) ,  m u +1 ( a ) )  ~ T(pNG) + I co ( H ) ]  

A(M"+'(a))  ~ T~pNa,+ l °'+' (H). 
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The last equivalence follows from 

HA ~ T(pNa)+ ~ o~ (H) = H A . 

Note that clause (5.1) forces relation N to be nonempty at each finite level of 
descending iteration, and empty at every transfinite level. Consequently, 
clause (5.2) forces A to consist of the entire Herbrand universe at each finite 
level of descending iteration, and has no effect on A at each transfinite level. 

Suppose a > 1. For any fl >/O, 

A(s) E T(~Na)+(T(pN~,+ ~o~+~ (H)) 

iff 3t[W(s, t) E T(pN6,+ ~o~+~ (H) & A(t) C T~mv6,+ ,[~'+~(H)I 

iff 3t[W(s, t) C Tpu G l 0"+~ (H) &A( t )  C T(eNa,+ 1 '°+6 (n)]  (5.4) 

(by Lemmas 3.5, 3.4) iff 

for some n I , n2 ~ N, s is Mn'+l(a) 

and @1, n2) C if, and A(Mn2+l(a)) C T(eNC)+ ~,o+~ (H). (5.5) 

The remainder of the proof is now straightforward using the equivalence of 
(5.4) and (5.5). II 

Let F be a Turing machine with doma in (F )=  S, where S is a recursive 
set. Fix a large, countable first order language L suitable for expressing up to 
a suitable isomorphism, any logic program. Augment L to L '  by including 
logical equality. Fix a G6del numbering of L '  which assigns a G6del number 
to each term and formula of L ' .  Identify terms and formulas with their 
G6del numbers. We assume that decidable sets of syntactic objects in L 
encode into recursive sets of G6del numbers, and conversely. The details are 
left to the reader. Let G and H be as in Lemma 5.1. 

In the following lemma and theorem, L o is either L or L ' .  

THEOREM 5.1. For each a <. col there is a logic program P for  which 

HT III 

Proof It is easy to obtain P if a is finite. If a/> co, then let P = (PNG)+, 
where domain(F) = S, and S is the recursive set guaranteed by Theorem 4.1 
for fl such that co + f l = a ,  and G is as in Lemma 5.1. II 

THEOREM 5.2. There is a logic program P such that 



(i) 
(ii) 

of P. 

Proof 
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IIT,~II =col,  
H ~  Tp ~o~ (H) is H~l-eomplete, where H is the Herbrand base 

Let S he the complement  of  the recursive set guaranteed by 
Theorem 4.2. Note that co + col 
Theorem 5.1. By L e m m a  5.1 

H A C3 ( H ~  T~eNa)+ ; ¢01 (m)) (5.6) 

is recursively isomorphic to Z~-T'°' (0).  Further,  

(H~I4A)~ (H~ T,,N~,+ I x (H)) (5.7) 

is r.e. Thus 

H ~  T(PNG)+ I wl (H)  is the disjoint union of a H~-complete set, 

namely, (5.6) and an r.e. set, namely,  (5.7), each contained in 
complementary  recursive sets, and is therefore itself, Hl~-complete. II 

= c o l  and choose P as in the proof  of 

LEMMA 5.2. 

Ro((C, t)) ~ (i) 

and (ii) 

and (iii) 

Then R o is HI . 

Proof. (i) is H °. 

(ii) is recursive. 

Define V by 

Define R o by 

There is a recursively axiomatizable theory T with 
language L o, with index t (i.e., the axioms of T 
constitute an r.e. set with index t), 

e is a formula of Lo, 

c is valid in ever), Herbrand model of  T. 

v ( a , x ) ~ a ~ x ,  

where a ~ x  means that if x is a formula of L 0, then x is valid in the 
Herbrand structure for L 0 determined by 

{n I a(n) = 1 & n is a closed atomic formula of  Lo}. 

Define V x by 

Vx(~) ~ V(a, x). 
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If x is closed and quantifier free, V x is recursive. Clearly, then V x 
arithmetical for each x. Hence V is hyperarithmetical. 

(iii) is Va[a ~ T ~  V(a, c)]. 

Thus (iii), and R o is Hll. 
| 

is 

THEOREM 5.3. Let F be any I1] set o f  formulas containing all negations 
of  variable-free atomic formulas in L o . Define 

R((c, P ~ ) ~  (i) P is a logic program (logic programs are finite), 

and (ii) c C F ,  

and (iii) c is Herbrand valid in P. 

Then R is ll~-complete. 

Proof CDB(P) (cf. Definition 2.1) is recursively axiomatized. By 
Lemma 5.2, R is HI.  Moreover, HA, which is recursive, maps bijectively 
onto 

{ (-~B, (PNG)+ ) I B E HA}, 

for each fixed P. Choose P0 by Theorem 5.2. Then 

B E (5.6)~R((-~B,  (PoDG)+)). 

Consequently, 

Eq. (5.6) 41 R. | 

COROLLARY. Let R o be as in Lemma 5.2. R 0 is H~-complete. 

Proof Fix t to be an index of CDB(P0), where P0 is chosen as in the 
previous theorem. Then 

hence 

Ro((e, t)) R((c, eo)), 

le l R( ( c, Po))} 41Ro. 

So R 0 is/7~l-hard. By Lemma 5.2 R 0 is H~-complete. II 
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