
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

12-1995

Designing Dependencies Designing Dependencies

Howard A. Blair
Syracuse University, School of Computer and Information Science, blair@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Blair, Howard A., "Designing Dependencies" (1995). Electrical Engineering and Computer Science -
Technical Reports. 144.
https://surface.syr.edu/eecs_techreports/144

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/144?utm_source=surface.syr.edu%2Feecs_techreports%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-95-5

Designing Dependencies

Howard A. Blair

December 1995

School of Computer and Information Science
Syracuse University

Suite 2-120, Center for Science and Technology
Syracuse, New York 13244-4100

Submitted to Fundamenta Informaticae

Designing Dependencies

Howard A. Blair1

School of Computer and Information Science
Syracuse University

Syracuse, New York 13244-4100
blair<Otop.cis.syr.edu

Abstract

Given a binary recursively enumerable relation R, one or more logic
programs over a language L can be constructed and interconnected to
produce a dependency relation D on selected predicates within the Her
brand base BL of L isomorphic to R. D can be, optionally, a positive,
negative or mixed dependency relation. The construction is applied to

representing any effective game of the type introduced by Gurevich and
Harrington, which they used to prove Rabin's decision method for S2S,
as the dependency relation of a logic program. We allow games over an
infinite alphabet of possible moves. We use this representation to reveal
a common underlying reason, having to do with the shape of a pro
gram's dependency relation, for the complexity of several logic program

properties.

1 Introduction

Results on the expressive power of logic programs and the complexity or unde
cidability of various logic program properties obviously depend to a considerable
extent on representing various relations with certain desired properties as mod
els of a program, often where the models themselves have additional properties
such as being stable. Since there is about as much variety in the proof techniques
that have been used to obtain these results as there is in the results themselves,
it would be clarifying to have a reasonably uniform means of obtaining them.

Given a binary recursively enumerable relation R, one or more logic pro
grams over a language L can be constructed and interconnected to produce a
dependency relation D on selected predicates within the Her brand base BL of L

1 Research partially supported by the U.S. Army Research Office through the Math-

ematical Sciences Institute of Cornell University.

isomorphic to R. D can be, optionally, a positive, negative or mixed dependency

relation.

We introduce a game-theoretic approach through which many results having

to do with complexity, degrees of unsolvability and expressive power of logic
programs can be obtained in a uniform way. [GH82, YY93J. After showing how

the game trees of arbitrary effective Gurevich-Harrington (GH) games can be
represented as dependency relations in programs, we will apply the games to give
two results about the degree of unsolvability of certain logic program properties.
One is previously known, but a new and simpler proof is given, and the other

appeared only in a preliminary version of this paper [Bl95].

The main contribution of this paper is to show that the game-theoretic ap
proach taken here is a useful, unifying device for complexity investigations. The

argument for this point is that two theorems, which at first sight appear to be
quite different, the one having to do with models of definite clause programs
(where negations do not occur in program clause bodies), the other having to do

with the property of local stratification (which appears to be intrinsically about
dependencies on negations within the program), are actually two instances of
the same underlying theorem about the degree of undecidability of the class of
winning strategies for the games.

One class of GH games have the feature that winning plays for one of the

players (player 0) correspond to well-founded sequences of dependencies among
atoms in the ground-instantiated version of the corresponding programs. It will
be seen that it is easy to control the degree of unsolvability of the class of

winning plays available to one of the players by adjusting the parameters of the
game. By using the correspondence and varying the logical connection between
the players, and hence varying the type of dependency relation embodied by the
overall program, the complexity of various properties of the program can be read
off.

We first define the games and give an obvious preliminary representation of
the games as logic programs. Then, since what is logically expressed by a pro
gram's clauses is to be closely related to the program's dependency relation, the
third section discusses converting a definite clause program into a binary definite
clause program, which is a convenient device for coupling logical dependency to
calling dependency.

We will then be in a position to see how to represent the game trees of
GH games as dependency relations in programs. Within such programs, certain
subprograms represent the players. By varying computable parameters within
the player programs and by varying the manner in which the player programs

are connected, we will be able to read off diverse results having to do with
complexity and degrees of unsolvability associated with logic programs. It will
become clear that the various manners in which programs may be connected are
simple and do not have to hide encodings of complex properties. In particular,
we will show that two quite distinct complete Ilf properties of logic programs,
namely unique fixed points of Horn clause programs, and local stratification, owe
their high degree of unsolvability to the same underlying property.

We assume that the reader is familiar with the basics of the foundations of
logic programming. An excellent, widely available introduction the subject is by
K. R. Apt, [Ap90). In most cases readers who are insufficiently familiar with

logic programming will have their puzzlements cleared up with a few minutes
perusal of Apt's article.

2 Gurevich-Harrington Games

To present Gurevich-Harrington games [GH82) we follow an amalgamation of
the approaches of Yakhnis and Yakhnis [YY93) and Gurevich and Harrington.

[GH82).

Definition 2.1 (GH-games). There are two players, designated for convenience

as 0 and 1. Thus, if p is a player then 1 - p is her opponent. Player 0 is assumed
to play first. Moves alternate between the players. To begin specifying a GH
game an alphabet E is fixed. The approach used in this paper permits E to
be infinite, which extends the notion of game originally presented in [GH82).
A play is an infinite sequence of elements of the alphabet E. A finite (possibly
empty) prefix of a play is a position. A move of a player consists of choosing

a letter u from E and appending it (i.e. suffixing it) to the end of a position
to form another position. Let P be the set of all plays over the alphabet E. P
may be considered as a tree whose nodes comprise the set of all positions over

E. A Gurevich-Harrington game (GH-game) is specified by (1) a game tree 9
which is a subset of P, and (2) a subset W of P which is called the winning set

for player 0. The complement of W in 9 is the winning set for player 1. (The
descriptions of P, 9 and W regard a tree as a set of paths rather than a set of
nodes.) Game trees may contain leaf nodes. The notion of a play is extended to
include positions that occur as leaf nodes in a game tree. 0

Yakhnis and Yakhnis reserved the term GH-game for those games whose winning

sets are Boolean combinations of basic sets of plays where a basic set of plays [C)
has infinitely many positions (finite initial segments) in the set C of positions,

called the kernel of [C]. We do not need to require or exploit this restriction for
our current purposes.

Note that a game tree determines the possible moves available to the players
in each position. For this reason, we may think of a GH-game G's game tree as
the rules of G. Conversely, a complete specification of the possible moves avail
able to the players from every position that they can actually reach determines

a game tree.
We want to focus on GH-games that can be played by deterministic and

nondeterministic computing procedures. Such games have recursively enumer
able game trees. In other words, there must be a uniform means of computably
generating the possible moves available in every position that could actually be
reached by the players starting from the empty position. A generate-and-test
approach to find the possible moves is sufficient. This requirement is distinct
from the more stringent requirement that the nth possible move available in
each reachable position be uniformly computable.

Definition 2.2 (Effective GH-games). Let Q be the game tree of GH-game G.
Let R be the set of all pairs (0'1 · · • u n, u) such that 0'1, ... , u n, u are elements
of the alphabet of G and 0'1 · • · O'nO' is a position in a play in Q. We refer to R
as the set of rules of G. We say that G is effective iff the set of rules of G is
recursively enumerable. D

In the preceding definition we assume that the alphabet of G, E, is effectively
given. Specifically, we could identify E with the set {0, 1, ... , k} where k is the
cardinality of E if E is finite, otherwise we could identify E with the set of

natural numbers. It turns out that if R is recursive [recursively enumerable],
then the set of positions that can be reached by the players is also recursive
[recursively enumerable]. We leave this to the reader.

When not too much violence is done to the reader's sense of grammar, we
will refer to the set of rules of G simply as the rules of G.

If player 0 moves first, positions in which player 0 moves, the collection of
which is denoted by Posa(O), are of even length, and positions in which player 1
moves, the collection of which is denoted by Posa(1), are of odd length.

Before discussing the representation of games by logic programs with their
dependency relations, we formally introduce strategies. Conceptually, a strategy
is a means by which players can select moves. The next definition makes precise
what is meant by a deterministic strategy.

Definition 2.3: Let p E {0, 1} be a player in game G. A deterministic p-strategy

is a function f : Posa(p) ----+ E such that if o: E Posa(p) then o: · pos0 (p) E

Ta . The set of positions in Ta consistent with a deterministic p-strategy f is
inductively defined by: i) the empty sequence A is consistent with f. ii) if a: is
consistent with f and a: E Posa(l - p) then every child of pis consistent with

f. iii) if a: is consistent with f and a: E Posa(p) then a:· f(a) is consistent with
f. A play is consistent with f if every position in the play is consistent with f.

A deterministic p-strategy wins G = (Ta,p, W) if every play consistent with f
is in W. Player p wins G if there is a winning deterministic p-strategy. D

After we show to represent game trees we will focus attention in this paper on
a class of games for which the winning strategy for player 0 involves entering into
what we call a well of a binary relation R which is a certain kind of well-founded
subrelation of R. The recursion-theoretic complexity of wells of recursive and
recursively enumerable binary relations can be controlled so as vary up through

the 1Il sets. We will in turn use this property of wells to control the complexity
of the winning strategies in the games on which we focus. This will enable us to
unify two quite different lif-completeness results about logic program properties.

3 Games as Logic Programs

Next, we show how to represent an effective GH-game as a logic program where
the players are represented as procedures and positions are passed between play
ers through calls of one player by another.

Suppose G is an effective GH-game. The set of rules of G is a binary relation
between positions and members of the alphabet of G.

We want to be able to compute moves from various positions. The notion

of compute that we will need for logic programs is the obvious one in terms
of least models, and was formalized in cf. [Bl87, Ap90]. Among the most ele

gant early treatments of computability in logic programming is due to Andreka
and Nemeti, [AN78]. However, in that paper, details concerning computability
over effectively presented Herbrand universes are not treated, the authors having

restricted their treatment to Herbrand universes, isomorphic to the natural num
bers, generated by a single constant and unary function symbol. The following

slight elaboration that incorporates auxiliary function and predicate symbols is
a great convenience.

Definition 3.1: Let the signature of L' be a subset of the signature of Lo Let
R be an n-ary relation over the Herbrand universe U(L') of L' and letS be the
relation computed by (P,p)o That is, for all terms t 1 , 0 0 0, tn in the Herbrand
universe U(L)

Then (P,p) computes R with respect to L' iff S n U(L')" = R. D

The following lemma can be established by a variety of means; in particular,

cf. [Bl87, Bl89]. There are difficulties that arise when dealing with languages
with infinite signatures, [Bl89]. These difficulties are avoided with the technical
restriction concerning finite signatures in the following lemma. The statement of
the lemma presupposes that the signature of the language L has been effectively
given.

Lemma 3.1 Let the signature of first-order language L' be a finite subset of
the signature of L. Let R be an n-ary recursively enumerable relation over the
Herbrand universe U(L') of L'. Then we can effectively construct a definite
(Horn) clause program P with n-ary relation symbol p such that (P,p) computes

R with respect to L'. D

Computing with respect to L' is useful when we do not want to have to keep
track of the extra tuples computed by a program due to the introduction of
cons, nil, and the various /p function symbols introduced in the construction of

binary extensional equivalent programs, discussed in section 4.

We immediately apply the lemma to computing the rules of G. All we need to

do is represent the set of rules of G as a binary relation on an Her brand universe
of a language with a finite signature. It is important not to unnecessarily multiply
the size of terms representing positions, particularly when the alphabet of G is
finite.

When the alphabet is infinite, three function symbols suffice. (Of course, we
could get away with just two, but that would uselessly complicate the narrative.)
We use the binary function symbol b, the unary function symbol s and the
constant o. We assume the symbols of G's alphabet E are represented as natural
numbers, and a natural number k is represented, in turn, by the term

s(s(···s(O)···))___....,
k

which later on we will use in the abbreviated form s"'<o>.

Now, if u E E, we will identify u with its numerical representation and just
write u instead of its numerical representation. Let .1"G be the set of function
symbols { b, s, o }. If E = { /LI. ... , /Lk } is finite we can dispense with numerical
representations altogether and just use the elements of E as constants, in which

case we take .1" G to be the set offunction symbols { b, /Ll, ... , /Lk } .

Fix a language for first-order logic, GL, whose function symbols are those in

:FG and whose predicate symbols contain all those we will use below in specifying
the representation of the effective GH-game, G.

With these notational conventions we can represent the position u1 · · · O'n by

the term b(un,b(O'n-1• ... , b(u1,0) ···)).We use the list notation of PROLOG

to abbreviate the clumsy terms involving the symbol b. The above term repre
senting a position is written [un, ... , ut]. A nonground term such as b(I, Y) is
written [IIY]. We write the sequence of moves in a position backwards when

representing the position as a list of moves because we want to append moves to
the "right" end of positions by extending finite sequences. Lists, being syntactic
terms, are much more easily prefixed with new elements than appended with
them. These representational conventions allow us to identify the rules of G, R,
with a binary relation on the Herbrand universe U(GL) which we also denote
byR.

We use the symbols p, p' with and without subscripts to refer to positions
and their representations according to the above conventions. Similarly we use
u and p with and without subscripts to refer to moves.

Since we have supposed that G is effective, R is recursive enumerable. Apply
lemma 3.1. We obtain a program POR in which a predicate symbol ro occurs
such that (POR,ro) computes R with respect to GL and no function symbol
occurs in POR other than those in :FG.

We follow the notational conventions of PROLOG, using lower case identifiers
to denote predicate and function symbols, and identifiers that begin with an
upper case letter to denote variables.

To represent game trees as dependency relations in programs where positions
are passed between players through calls of one player by another, we will need

to carefully control how a ground atom instantiating a literal occurring in the
clauses representing one player may depend on a ground atom instantiating a
literal occurring in the clauses representing the other player. The technique that
we will use requires that most of the predicate symbols occurring in one player's
representing clauses do not occur in the other player's representing clauses. To
meet this requirement, we will make a "copy" PlR of the clauses in POR, where
the clauses of PlR are obtained from the clauses of POR by renaming predicate
symbols as necessary so that no predicate symbol that occurs in PIR also occurs
in POR, since both players need to be able to use the clauses for computing R

to choose moves. In particular, we assume that rO is renamed to rl.

Definition 3.2: To represent G we collect into a program PG the clauses of
POR and PlR together with the following two clauses

playerO(Position,Move) ~ rO(Position,Move)
A playarl([MovaiPosition],Movel)

playerl(Position,Move) ~ rl(Position,Move)
A playarO([MoveiPosition],Moval)

PG is the definite clause representation of G. D

The sense in which PG represents G needs an explanation. The next proposition
provides such an explanation. After we introduce binary extensional equivalents

in the next section, we will be able to see the game tree of G represented in
the dependency relation of a set of clauses closely related to the the binary

extensional equivalent of PG.

In the statement of the proposition that follows we adopt the notation that
if e is a {0, 1} valued-expression then player€ is playerO if E = 0 and is player! if

e = 1. We will continue to use this and similar obvious notation in the remainder
of the paper.

Proposition 3.1: Suppose G is an effective GH-game and pis a position in
which player i is to choose a move. Let p' be a position in which player j is to
choose a move. (i may or may not equal j.) Then

iff

there is a path in the game tree of G from p to p' beginning with
move p.

PG U playerj(p',t) f: playeri(p,p.), for any ground term t.

D

Hereafter, we assume we are working with a fixed language L for first order logic
without identity. We assume that L contains each of the function and predicate
symbols that we will use. Although it is not strictly necessary, it is a bit more

natural to think of the binary extensional equivalent programs, to be discussed
in the next section, as being finite whenever the program from which one is

derived is finite. For this purpose, the signature of L needs to be finite, and in
fact we will use only finitely many function and predicate symbols.

4 Binary Logic Programs

Binary logic programs are definite clause programs with at most one atom oc
curring in the body of each clause. Binary programs are important because for

such programs entailment and dependency coincide. This relationship will be

made precise in proposition 4.1, below.

A difficulty with controlling dependencies in programs is due to the fact that

if conjunctions in clause bodies are replaced by disjunctions, then the dependency

relation of the resulting program is the same as that of the original, but the

models of the resulting program are, in general, vastly different. Another way to

look at the difficulty is by considering a clause such as

p(x) +- q(x,y), r(y)

contained in some program P which has a least model in which, for example,
q(a,b) is false. p(a) still depends on r(b), but this was perhaps not intended.

We would like to control dependencies through the semantics of the program.

This is achievable by converting a program P to a binary program which has

the same least model as P with respect to the predicates defined in P.

Definition 4.1: Let P be a normal logic program cf. (Ll87], and let grd(P)

be the set of ground clauses which are instances of clauses in P. The relations
refers positively to and refers negatively to are defined by

iff

A refers positively [negatively] to B

there is a clause A +- Lt, ... , Ln E grd(P) such that B [...,B]

is L; for some i E {1, ... ,n}.

Define the depends positively on relation to be the reflexive transitive closure of

the refers positively to relation, and let the depends negatively on relation be

(depends positively on) • o (refers negatively to) o (depends depends positively on)*

where Rt o R2 denotes the composition of R1 and R2 • When only definite clauses
occur in P, we say, simply, refers to in place of refers positively to and depends

on in place of depends positively on. 0

Definition 4.2: Let ground atom A depend positively on ground atom B with

respect to program P. Then the pair (A, B) is said to be a logical dependency iff

P U { B} f= A. A program is dependency sound if every pair of ground atoms in

the positive dependency relation of P is a logical dependency. o

Definition 4.3: A binary logic program is a program where each program

clause either has the form A +- B or is a unit clause A, where A and B are
atoms. 0

The following proposition shows how binary programs "equate" entailment

and dependency.

Proposition 4.1: Every binary program is dependency sound. 0

Definition 4.4: Let L be a first order language and let P1, P2 be definite clause
logic programs over L. Let L' be a sublanguage of Land suppose the restrictions
of the least models of P1 and P2 to the Her brand base of L' are the same. Then

P1 and P2 are said to be extensionally equivalent with respect to L'. 0

Definition 4.5 Let P be a definite clause program. Extend L to a language
L' by adjoining a new function symbol /p for each predicate symbol p in L.
/p has the same arity asp. Corresponding to each atom p(t1 , ••• , tn) of L, the
translation, /p(t11 ••• , tn) is a term of L'. In general, for each atom A of L,

let tA denote the translation of A. Corresponding to P the binary extensional

equivalent Q of P is defined as follows. Extend L' by adjoining a new binary
predicate symbol stack, a new binary function symbol cons and a new constant
symbol nil. Corresponding to each program clause

of P, form the clause

stack(cons(tA,Y),z)- stack(cons(tB11 cons(tB2 , ••• , cans(tBn,Y) ...)),z).

Q also contains a bridging clause for each predicate symbol p:

p(Xl, ... , In) - stack(cons(/p(X1, ... , Xn), nil), /p(X1, ... , In))

Finally, Q contains the terminating clause

stack(nil,Z).

0

Occasionally, it will be convenient to be able to ensure that the depends on

relation within binary definite clause programs is Noetherian.

Definition 4.6: A binary relation R on a set A is well-founded iff there is no
sequence {an} :=o of elements of A such that

R is Noetherian (terminology borrowed from the literature of term-rewriting

systems, cf. (Hu80]) iff the converse of R is well-founded.
A path in R from ao to an is a finite sequence

of elements of A such that

R(ai-1. ai), for all i = 0, ... , (n- 1)

Thus, R is Noetherian iff from any element a of A, every path in R that starts
from a is finite. 0

In the case of binary extensional equivalent programs, it will suffice to add a
step-counter argument to the sta.ck predicate for the depends on relation to be
Noetherian.

Definition 4. 7: The step-counter augmentation of a binary extensional equiv
alent program Q is obtained by adding a step-counter argument to each of the

clauses in Q to obtain clauses of the form

sta.ck(s(s),cons(tA,Y),z) ~

sta.ck(S, cons(tB1 , cons(tB2 , ••• , cons(tBn, Y) ...)), z).

p(X1, ... , Xn) ~

stack(S, cons(/p(X1, ... , Xn), nil), /p(X1, ... , Xn))

sta.ck(O,nil,Z).

0

Proposition 4.2: The binary extensional equivalent of Pis extensionally equiv
alent to P with respect to the language of P.

Proof: Use the bridging clauses. 0

Proposition 4.3: Let Q be the binary extensional equivalent of P and let A
and B be ground atoms in the language of P. Then

A depends on stack(nil, tB) iff Q f= A and B is A,

and similarly for step-counter augmentations. 0

The following proposition will be convenient when we come to considering
programs with unique fixed points.

Proposition 4.4 Suppose P is a binary program without unit clauses, and

therefore with an empty least model. Then P has no nonempty supported models
iff the depends on relation of P is Noetherian.

Proof: If the depends on relation of Pis not Noetherian then there is an infinite

sequence of ground atoms

Ao, ... ,A,., ...

such that Ai depends on Ai+l for all i E N. Since P is binary, T p({ Ai+1})

contains Ai, for each i. Let I be the set of atoms in the above sequence. Then
I ~ Tp(I). Hence, since Tp is monotonic, there is a fixed point of Tp above
I, which is, a fortiori, nonempty. Conversely, if T p has a nonempty fixed point
then we have immediately that the depends on relation is not Noetherian since
P has no unit clauses. 0

5 Game Trees as Dependency Relations

In this section we complete the representation of the game trees of effective
GH-games as dependency relations of logic programs. The figure below depicts
the structure of the dependency relation in the program that we will form from
the binary extensional equivalent of PG, the definite clause representation of

effective GH-game G. The idea is that dependency flows through each of the
player representions without being able to cross between them except at selected
entry and exit points.

r--~

I

I
At-B

player 0

c-

r---------- --n - E

' I

I
I

__ ______ _)

player 1

Ft-

' I
I
__ ______ _)

Definition 5.1: Let PG be the binary extensional equivalent of PG. We modify

PG by replacing the terminating clause

stack{ nil, z).

by the connecting clauses

stack{O,nil,/playeri(Position,Move)) +- player(i-l)([Move1Position],Move1).

for i = 0, 1. The resulting program is called the binary clause representation of

G, and is denoted by BRG. 0

For i = 0, llet Qi be the binary extensional equivalent of the program consisting

of the clauses in Pir together with

playeri(Position, Move) +- ri(Position, Move)
/\player{i -l)([Move1Position],Move1)

The programs Q0 and Q1 will be convenient for proving the next proposition
which establishes the correspondence between the game tree of G and the de

pendency relation of B~.

Proposition 5.1: Suppose G is an effective GH-game with rules Rand pis

a position in which playeri is to choose a move. Let p' be a position in which

playerj is to choose a move. Then

iff

iff

Proof:

there is a path in the game tree of G from p to p' beginning with

move p.

BRG U playerj(p', t) t= playeri{p, p.)

playeri{p,p.) depends on playerj{p',t) with respect to BRG.

Recall that PG is the binary extensional equivalent of PG and contains a ter
minating clause. By proposition 4.2 we have

iff
PG t= playeri{p, p.)

playeri(p, p.) depends on stack(O, nil, /playeri (p, p.) with respect

toPG.

The dependency soundness of BRG, which is given by proposition 4.1, together
with the previous equivalence implies, for any ground term t,

BRGU playerj(p',t) I= playeri(p,p,))

iff
playeri(p, p,) depends on playerj(p', t) with respect to BRG·

To complete the proof of the proposition it suffices to note that for any ground

terms t1, t2, t3, t4, ts, t6 if

and
. k' B IS stack(s (o),cons(fplayeri'(t4,ts),t6)

and
A refers to B with respect to BRG

then
i = i'
k = k' + 1

and
A refers to B with respect to Qi but not Qi-1 .

D

Observe that having set up a positive dependency relation to represent the

game tree of G we can easily set up a negative dependency relation to represent

the same game tree by negating the literals in the bodies of the connecting

clauses,

stack(O,nil,fplayeri(Position,Move)) ~ •player(i-l)([Move1Position),Move1)

to produce negative connections.
In the next section we will examine a class of GH-games which have well

founded game trees. The corresponding binary clause representation is locally

stratified [BMS92].

We present an exact definition of a class of games in terms of two parameters,

n E N, where N is a fixed set of nodes and R ~ N x N. We then illustrate the play

of the games with an example in which R is represented as a finite directed graph,

and discuss the nature of the games' winning strategies. Subsequently, we will

be interested in games for which the underlying fixed set of nodes is (countably)

infinite. Hence we will then identify N with the set of natural numbers N.

Definition 6.1: F(R,x0) is played as follows:

Initially, set z : = x0 • Player 0 moves first. The players alternate moves until one

of them wins or loses. A play of the game is either a finite sequence of moves

beginning with player O's first move and ending with a move of player 1 resulting

in a win for one of the players, or an infinite sequence of moves beginning with

player O's first move. The command choose z chooses a natural number.

player 0 executes: (x := z; choose z)

player 1 executes:

if R(x, z) then (choose z; if not R(x, z) then player 0 wins)

else (choose z; (if R(x,z) then player 1 wins else player 0 wins))

0

Example 6.1: Let R be the binary relation on the set of nodes

N ={a, b,c,d, v, w,x,y,z}

that is depicted below as a directed graph.

d

The game-tree below depicts all of the possible sequences of plays of the
game F(R, v). The edges are labeled by the player making the play, and the
nodes into which the edges lead are labeled by the value of z chosen during the
play. Additionally, the leaves are labeled by whether player 0 wins or loses.

X

0

1

1]5
wins

v

1Ja ¢-w
wins

The above game tree node labels 114 and 11s can be any of the nodes inN.

The next game tree below depicts all of the possible sequences of plays of the
game F(R, b).

wins

b
·-------------------------~

1

b
I

0

b L ____ r ___________________ J
I I L _________ J

0

Player 0 wins the game whenever player 1 makes a choice for the value of z

that breaks the relation R or, in terms of directed graphs, chooses a node that
is not immediately adjacent to the current node along the edges of the graph R.
There are two ways player 1 can win. The first way occurs when player 0 breaks
R but was not forced to. Player 1 has an immediate opportunity to re-choose
the value of z to re-establish R and win (or lose if she fails to re-establish R
during such a move.) The second way for player 1 to win occurs when he is
able to keep the game going indefinitely without player 0 explicitly winning at
any finite stage of the play. By definition, and consistent with the definition of
winning in Gurevich-Harrington (GH) games, we define such an infinite play as
a winning play for player 1. However, whether the reader thinks of an infinite
play not otherwise won by player 0 as a win for player 1, or merely as a play

without a winning outcome for either player is immaterial for our present pur
poses (although not for other purposes to which GH-games have been put in the
literature [YY93].) It follows that as soon as player 1 chooses a node., such that
all paths in R originating at 'f/ are finite, (or if the game is initialized to such a
node) then player 0 can force a win for herself. In order to keep most games from
being always winnable by player 0, player 1 is given an opportunity to "correct"
player D's choice as long as the relation R can be maintained. For example, in

the game tree for T(R, b), above, when, while at d, player 0 chooses y, player 1

has the opportunity to escape back to a node from which infinite paths originate
by implicitly backing up to d and choosing b. It should also be noted that it is

always in the interest of both players to maintain the relation R (where player 1

may implicitly back up one move to, in effect, replay player O's move), if pos
sible. Thus, in the game T(R, b), if player 0 is to avoid loss outright, then she
must choose c on her first move. Player 1 then will choose d in order to avoid

choosing a node from which no infinite paths proceed. Player 0 then chooses y in
order to try to get to such a node. (The alternative, choosing a, allows player 1

to effectively return to the initialized position of the game on his next move.)
Player 1 then "corrects" player D's choice by choosing b and the game is now

as it was when initialized. In this way, player 1 has a winning strategy (or at at
least a strategy to avoid loss) in the game T(R, b).

We introduce some terminology for binary relations that will allow us to be
more concise in describing winning strategies for the games T(R, x 0). With the
terminology made precise in the next definition we can say that the strategy for
player 1 to avoid losing is for player 1 to avoid crossing the boundary of a well

in R.

Definition 6.2: We borrow terminology from graph theory via the following

notation and terminology: The trace RA' of R on a subset A' of A is defined by

RA•(x,y) iff x E A', yEA' and R(x,y).

A subrelation R' of R is full iff R' is the trace of R on a subset A' of A.

We say that R' is a well in R iff R' is maximal in the set of full Noetherian
subrelations of R. The idea is that there are no paths leading out of wells, and

one cannot move along a path in a well indefinitely. We take maximal relations

of this kind because players of the games are interested in boundaries of wells.

The field of R, denoted by fld(R), is defined by

fld(R)={x 13yR(x,y)}U{x l3yR(y,x)}

Let R' be a subrelation of R. Then the boundary of R' is the set of elements a

of A such that {a E A l3y E fld(R')[a..., E fld(R') I\ R(a, y)]}.
A path in R from a to b crosses the boundary of a well W in R iff a is not

in the well but b is in the well. (The last element of A in the path from a to b

that is not in fld(W) is on the boundary of the well.) Note that a path does not

terminate within the field of a well iff the path can be properly extended to a

path with the same property. This completes definition 4.6. 0

Example 6.2: In the directed graph corresponding to the relation R of exam

ple 6.1 the relation Rv is the trace of the relation Ron the nodes v, w, x, y

and z. Rv is a well whose boundary consists of the nodes a, c and d. 0

Proposition 6.1: Player 0 wins T(R, x) iff xis within the field of a well in R.
0

What makes T(R, x0) interesting for investigations of degrees of unsolvability

is that computable R can be easily chosen to make the set of all xo such that
player 0 wins T(R, x0) complete llf.

First, some notation: (x,y) is the code number (using a bijective pairing

function) of the pair (x,y). If c = (x,y), then (c)o = x and (ch = y. The
function 'Pz is the zth partial recursive function with respect to a fixed acceptable
indexing. Equivalently, z is the index of Wz:, the zth recursively enumerable

subset of N. The notation is as in (Ro67].

Lemma 6.1: Let R(x, z) +-+ 'P(z)o{{z)o) converges within (zh steps. Then the

set of all n0 such that player 0 has a winning strategy in T(R, n0) is complete
llf.

Proof: (Sketch. cf. (Ro67].) Let C be the productive center of the identity func
tion. C is a complete Ill set. Player 0 has a winning strategy in r(R, n) iff
(n) 0 E C. The strategy has player 0 always choose z such that R(x, z) holds,
unless W(z)o = 0, in which case player 1 will lose on his next turn. Such a choice
can always be made if play starts from (n)o E C because (x)o E C implies ei
ther W(z)o = 0 or 3z [(z)o E W(z)o ~ C]. If player 0 chooses z by this strategy,
then for player 1 to avoid losing, he must either confirm player O's choice of z
or choose z' =f. z with the property that (z')o E W(z)o ~ C. C is structured

ck

so that it has a well-ordered partition C = U~!:o C.., such that a E C implies
a E Ca+l for some a < w~k, which, in turn, implies Wa E C0 • (w~k is the least
nonconstructive ordinal.) This property entails that eventually player 0 must be

able to choose z such that W(z)o = 0. 0

In order to exclude certain unwanted entailments within the logic program

representations of the games r(R, no), we will use the following variation of the
preceding lemma.

Corollary 6.1: Let ~(Y) = {x!x E W11 for somey E Y}. Then U:o~i({n}) is

recursively enumerable. Define f byWf(n) = U:o~i({n}) and let R..o(x,z) +-+

'P(,.,)o ((z)o) and tp f(no) ((x)o) both converge within (z h steps . Then the set of all
no such that player 0 has a winning strategy in F(R,.0 , n0) is complete Ill. 0

It should be observed that a winning strategy for player 1 in F(R, n0), is in
general complete Ill. Player O's winning strategy, if it exists, is at worst recursive
in the halting problem, and the cost of complicating R a little, can be made
recursive.

7 Representing Players

Note that, informally, the players in F(R,xo) nondeterministically map N toN.

In the following definition Po and P1 are intended to be executed when combined
with others clauses, as will become clear.

Definition 7.1: Let Po be the program consisting of only the unit clause
pO(I, zo, WinLoss). Informally, zo is the new value chosen by player 0. WinLoss
records whether player 0 wins or loses in a finite number of moves.
Let P1 be the program

pl(x,z,zo,o,o)- PR(x,z,s(o)) 11. PR(x,zo,o).
pl(I,Z,ZO,WinLoss,s(O))- PR(I,Z,s(o)) I\ PR(I,ZO,s(O)).
pl(I,Z,ZO,WinLoss,o)- Pa(x,z,o) A PR(I,ZO,WinLoss).

PR computes the characteristic function of relation R. The fifth argument of pl
is intended to record that play should continue when the second clause succeeds.

Suppose that R is a recursive relation. Let PR be a definite clause program that
computes the characteristic function of R using the predicate symbol

Assume that there are no predicate symbols that occur in both programs Po
and P1• Assume also that the only predicate symbol that occurs in both programs
P1 and PR is PR· Further assume that Po, the predicate symbol in the head of
Po does not occur in either of the programs Po or PR. The nonintersection of
the sets of predicate symbols occurring in these programs can easily be arranged
without loss of generality by renaming predicate symbols as necessary. (That a
program to compute the characteristic function of R using PR can be constructed
from an explicit definition of R can be established by a variety of techniques;
in particular, see [NS93].) The game has to get started. For this purpose we
introduce the following definition.

Definition 7.2: An initializing clause a clause of the form

start(s!l(o},WinLoss) +- pO(s!l(o),ZO,WinLoss).

for some y E N. 0

We will set up the program corresponding to F(R, x0) in two stages. In the first
stage we define the player programs assuming that the relation R is recursive
and that the corresponding program PR is at hand. In the second stage we show
how to connect the player programs together so that play may pass between
them. The means of connection will be regarded as an adjustable parameter
involving the presence or absence of negation signs. We also want to have that
the depends on relations with respect to each of the player programs, respectively,
are Noetherian. We do this by adding a step-counter to the programs representing
the players.

Definition 7.3: Let Q0 be the binary extensional equivalent of Po and let Q R,l

be the binary extensional equivalent of P1 U PR. Let player0 and playerR,l

be the step-counter augmentations of Qo and Q R,l, respectively. The predicate
symbol stack in each of the two programs is assumed to be renamed so that
the programs have no predicate symbols in common. (One might imagine the
stack symbols of playero to be colored red and the stack symbol of player R,l

to be colored blue.) We also further assume, without loss of generality, that the
only function symbols occurring in program PR are the unary symbol s and the
constant symbol o. 0

Hereafter, we will refer to the programs Po and P1 as the prototype player pro

grams, and the programs playero and playerR,l as the player programs.
The next proposition informally says that player0 and player R,l are correct

implementations of player 0 and player 1, respectively, in the game r(R, xo).

Proposition 7.1: Let L' be the sublanguage of L whose function symbols are
the unary function symbol s and constant o.

1) Using predicate symbol pO, player0 computes with respect to L' the relation
P consisting of all tuples (s"' (0), sz (0), sw (O)).

2) Using pl, playerR,l computes with respect to L' the relation Q where
Q1(s"'(O),sz(o),sz0 (0),sw(o)) holds iff any of the following conditions hold: (i)

R(x, z) and -.R(x, z0) and w = 0, (ii) R(x, z) and R(x, z0), (iii) -.R(x, z) and

R(x, zo) and w = 1, or (iv) -.R(x, z) and -.R(x, zo) and w = 1.

Proof: By proposition 4.2, it suffices to show that the prototype player programs

Po and P1 compute the relations P and Q, given in the proposition, using pO

and pl, respectively. This is nearly immediate. 0

We now show how to connect the player programs. This will be done by
replacing the empty bodies of the terminating clauses in the player programs
by calls to instances of po and pl literals.

Definition 7.4: The clauses (1)- (4), below, are called connecting clauses.

(1) stack(O,nil,/po(X,Z,WinLoss)) ~ pl(X,Z,Zl,WinLoss,s(o)).

(2) stack(O,nil,/po(X,Z,WinLoss)) ~ -.pl(X,Z,Zl,WinLoss,s(o)).

(3) stack(O,nil,/pl(X,Z,ZO,WinLoss,s(o))) ~ pO(ZO,Zl,WinLoss).

(4) stack(O,nil,/pl(X,Z,ZO,WinLoss,s(o))) ~ -.pO(ZO,Zl,WinLoss).

Connecting clauses (1) and (3) are said to be positive; connecting clauses (2)
and (4) are negative. A connection is any one of the four programs consisting of
two connecting clauses obtained by selecting one of the two clauses (1) and (2)

and by selecting one of the two clauses (3) and (4). A game program consists of
the initializing clause, and the clauses for the player programs but where the
terminating clauses of the player programs are replaced by a connection. 0

8 Unifying Two Theorems

In this section we show that two theorems that give the degree of unsolvability
of two distinctly different classes of normal logic programs are actually two
manifestations of the same underlying complexity of the dependency relations

determined by the programs in these classes. This complexity is determined by
lemma 6.1, above.

By a sufficiently large language we mean a language with at least one constant
and one nonconstant function symbol and at least one binary predicate symbol or
one binary function symbol. By independent means the following two theorems
can be established.

Theorem 8.1: If L is a sufficiently large language, the set of normal logic
programs over L that are locally stratified is complete IIf. 0

Theorem 8.2: If L is a sufficiently large language, the set of definite clause
programs over L with a unique supported Her brand model is complete IIf. 0

The first of these theorems is proved in [BMS92]. The second is contained in
an unpublished technical report, [Bl86]. In this section we observe that both
theorems are obtainable by essentially the same proof using lemma 6.1. The
point is that the lemma is very generic, and the two theorems follow nearly
immediately by the same short routine line of reasoning about game programs.
We now prove both of these theorems together.

Proof of Theorems 8.1 and 8.2: Form two programs, Q+ and Q- as follows.
First, choose y E N and form the player programs using relation Rv where
Rv is as in corollary 6.1. Next, connect the player programs by replacing their
terminating clauses by a connection consisting of the positive connecting clauses
in forming Q+ and the negative connecting clauses in forming Q-. Include the
initializing clause

start{s"(o}, WinLoss} - pO(s"(o}, ZO, WinLoss).

in Q+ and Q-. This completes the construction of Q+ and Q-. We now have
the following claims.

claim 1: Q- is locally stratified iff player 0 has a winning strategy in T(Rv, y).

claim 2: Q+ has a unique supported Herbrand model (which is empty) iff
player 0 has a winning strategy in F(Rv, y).

Proof of claims 1 and 2: We prove claim 1 first. A proof of claim 2 will then
be at hand almost immediately. A program is locally stratified iff the depends

negatively on relation is Noetherian.

iff

The depends negatively on relation (with respect

to Q-) is not Noetherian

there is an infinite sequence of ground atoms

Ao, ... ,An, ...

such that Ai depends negatively on Ai+l for all i E N

iff (see the remark immediatly following the proof.)

iff

iff

there is a sequence

po(sk0 (o),sk1 (o),s(o))
p1(sk0 (o),sk1 (o),sk~(o),s(o),s(o))

pO(sk~(o),sk2 (o),s(o))
p1(sk~(o),sk2 (o),sk~(o),s(o),s(o))

pO(sk~(o),sk•+1 (o),s(o))
p1(sk~(o),sk•+1 (0),sk~+l(O),s(o),s(o))

of atoms such that each atom in the sequence depends negatively on the

succeeding atom

there is an infinite sequence

such that Ry(ko,ki), Ry(ko,kD and for each i EN: Ry(k~,ki+r) and

Ry(ki, k~+l).

Player 0 does not have a winning strategy for the game F(Ry,y).

This completes the proof of claim 1. To prove claim 2, replace depends negatively

on by depends positively on in the above argument. The new argument goes

through because the depends positively on relation, with respect to each of the
player programs separately is always Noetherian. 0

References

[AN78)

[Ap90)

[Bl82)

[Bl86)

[Bl87)

[Bl89)

[Bl95)

[BMS92)

[CB93)

[GH82)

[Hu80)

[Ll87)

[NS93)

[Ro67)

[YY93)

Andreka H. and Nemeti 1., "The Generalized Completeness of Horn Pred

icate Logic as a Programming Language", Acta Cybernetica, vol. 4, 1978,

pp. 3-10.
Apt, K. R. "Logic Programming" in Handbook of Theoretical Computer

Science, J. van Leeuwen, ed., Elsevier, 1990, pp. 494-574.

Blair, H. A. "The Recursion-Theoretic Complexity of the Semantics of
Predicate Logic as a Programming Language." Information and Control,

July-August, 1982, pp. 25-47.
Blair, H. A. Decidability in the Herbrand Base. (Manuscript) Workshop on

Deductive Databases and Logic Programming, Washington D.C. Aug 18-

22, 1986. Syracuse University Logic Programming Research Group Tech

nical Report LPRG-TR88-13.

Blair, H. A. "Canonical Conservative Extensions of Logic Program Com

pletions". IEEE Symposium on Logic Programming, San Francisco, Au

gust, 1987. pp. 154-161.

Blair, H. A. "Metalogic Programming and Direct Universal Computabil

ity" in Meta-Programming in Logic Programming, H. Abramson & M.H.
Rogers, (eds.}, MIT Press, 1989, pp 53-63.

Blair, H. A. "Game Characterizations of Logic Program Properties" in

Logic Programming and Nonmonotonic Reasoning. Lecture Notes in Arti

ficial Intelligence no. 928. Springer, 1995, pp. 99-112.

Blair, H.A., Marek, V.W. and Schlipf, J.S. The E:r;pressiveness of Locally

Stratified Programs. Technical Report, Mathematical Sciences Institute,

Cornell University. To appear in .fi\mdamenta Informaticae.

Cholak, P. and Blair, H.A. "The Complexity of Local Stratification", Fun

damenta Informaticae. (To appear.)

Gurevich, Yuri & Harrington, Leo, "Trees, Automata and Games", Pro

ceedings of the 14th Annual ACM Symposium on Theory of Computing,

1982, pp. 60-65.

Huet, Gerard. "Confluent Reductions: Abstract Properties and Applica
tions to Term Rewriting Systems", JACM Vol. 27, no. 4 (October, 1980},

pp. 797-821.
Lloyd, J.W. Foundations of Logic Programming, (2nd. ed.} Springer

Verlag, 1987.

Nerode, Anil & Shore, Richard, Logic for Applications, Springer-Verlag,

1993.

Rogers, H. Theory of Recursive Functions and Effective Computability.

McGraw-Hill, New York, 1967.

Yakhnis, A. & Yakhnis, V. "Extension ofGurevich-Harrington's Restricted

Memory Determinacy Theorem: A Criterion for the Winning Player and an

Explicit Class of Winning Strategies", Annals of Pure and Applied Logic,

Vol. 48, 1990, pp.277-297.

	Designing Dependencies
	Recommended Citation

	SU-CIS-95-05_001c
	SU-CIS-95-05_002c
	SU-CIS-95-05_003c
	SU-CIS-95-05_004c
	SU-CIS-95-05_005c
	SU-CIS-95-05_006c
	SU-CIS-95-05_007c
	SU-CIS-95-05_008c
	SU-CIS-95-05_009c
	SU-CIS-95-05_010c
	SU-CIS-95-05_011c
	SU-CIS-95-05_012c
	SU-CIS-95-05_013c
	SU-CIS-95-05_014c
	SU-CIS-95-05_015c
	SU-CIS-95-05_016c
	SU-CIS-95-05_017c
	SU-CIS-95-05_018c
	SU-CIS-95-05_019c
	SU-CIS-95-05_020c
	SU-CIS-95-05_021c
	SU-CIS-95-05_022c
	SU-CIS-95-05_023c
	SU-CIS-95-05_024c
	SU-CIS-95-05_025c
	SU-CIS-95-05_026c

