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�John McCall, Chico Doria and Stefano Zambelli have been educating me, from di¤erent
points of view, on many fascinating visions of the thorny concept of complexity. More than
a decade and a half of constant, stimulating, discussions with John McCall on Kolmogorov �
algorithmic �complexity and theories of probability have been a source of great pleasure and
consistent intellectual adventures. Not being particularly competent in the actual program-
ming of theoretically structured computing models, I have had to rely on Stefano Zambelli
for instruction and advice on the felicitous link between theory and application that is the
hall mark of computational complexity theory. More recently, I have had the pleasure and
privilege of being able to pick Chico Doria�s fertile brain for exotic ideas about the P =?NP
question. Years ago, now bordering on almost two decades, the decision by Shu-Heng Chen
to write his UCLA dissertation on the application of algorithmic and stochastic complexity
theories, with me as his main thesis advisor, forced me to try to be at least one-step ahead
of his incredible learning abilities. Barkley Rosser�s stimulating visit to Trento last year pro-
vided much inspiration on many topics related to a broader perspective on complexity. I wish
I could blame them, and not have to plead guilty, for the infelicities and errors that remain!
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Abstract

A computable economist�s view of the world of computational complexity
theory is described. This means the model of computation underpinning theo-
ries of computational complexity plays a central role. The emergence of compu-
tational complexity theories from diverse traditions is emphasised. The uni�ca-
tions that emerged in the modern era was codi�ed by means of the notions of
e¢ ciency of computations, non-deterministic computations, completeness, re-
ducibility and veri�ability - all three of the latter concepts had their origins
on what may be called �Post�s Program of Research for Higher Recursion The-
ory�. Approximations, computations and constructions are also emphasised.
The recent real model of computation as a basis for studying computational
complexity in the domain of the reals is also presented and discussed, albeit
critically. A brief sceptical section on algorithmic complexity theory is included
in an appendix.
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1 Prologue

"There are many levels of complexity in problems, and corresponding
boundaries between them. Turing computability is an outer boundary,
... any theory that requires more power than that surely is irrelevant to
any useful de�nition of human rationality. A slightly stricter boundary
is posed by computational complexity, especially in its common �worst
case� form. We cannot expect people (and/or computers) to �nd exact
solutions for large problems in computationally complex domains. This
still leaves us far beyond what people and computers actually CAN do.
The next boundary... is computational complexity for the �average case�
.... .. That begins to bring us closer to the realities of real-world and real-
time computation. Finally, we get to the empirical boundary, measured
by laboratory experiments on humans and by observation, of the level
of complexity that humans actually can handle, with and without their
computers, and - perhaps more important �what they actually do to solve
problems that lie beyond this strict boundary even though they are within
some of the broader limits."

Herbert Simon, Letter to the author, 25 May 2000.

As it happens, Herbert Simon�s lucid letter to me, delineating a rough or-
dering along the complexity scale for problem solving by means of a machine
model of computation, was dated 25 May, 2000. The day before, on 24 May,
2000, Arthur Ja¤e, as the then President of the Clay Mathematical Institute
had announced the Seven Millennium Problems1 , the solutions for which �in
the form of a proof or a counterexample �would earn prizes of a million dollar
each. It was also �ttingly, at least in the context of this brief paper, announced
to commemorate the centennial of Hilbert�s famous lecture on �Mathematical
Problems�, [28], given at the meeting of the International Congress of Mathe-
maticians in Paris, in August, 1900. Fittingly, because the most enduring model
of computation underpinning almost all the frontier developments in computa-
tional complexity theory is the Turing Machine. This device was conceived and

1The seven millennium problems, listed alphabetically, are, [29], p.655:

1. The Birch/Swinnerton-Dyer conjecture;

2. The Hodge conjecture;

3. The Navier-Stokes equations has smooth solutions;

4. P is not NP;

5. The Poincaré conjecture;

6. The Quantum Yang-Mills theory exists with a mass gap;

7. The Riemann Hypothesis;
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implemented by Alan Turing in the process of answering the Entsheidungsprob-
lem, formulated by Hilbert, as a way of answering unambiguously and decisively,
Brouwer�s sustained criticisms of standard mathematics and its methodological
bases, particularly its proof theoretical underpinnings. The earliest formulation,
at least by Hilbert, of the Entsheidungsproblem can be traced back to the 10th
of Hilbert�s 23 Problems in that famous Paris Lecture of 1900.
The fourth in the alphabetic list of seven problems is the quintessential prob-

lem of computational complexity theory: P =?NP . Computational complexity
theory is doubly related to mathematical economics and economic theory2 : �rst,
as a theory of the e¢ ciency of computations, it is best viewed as the economic
theory of computations; secondly, having at its central core the paradigmatic
combinatorial, intractable, NP � Complete, (in)famous TSP : the Travelling
Salesperson�s Problem3 . In the former case, it must �rst be remembered that
the pure theory of computations abstracts away from all kinds of resource con-
straints; computational complexity theory, the �applied�theory of computation,
is its �nessing, taking explicit account of resource constraints, typically time
and space constraints. In other words, computational complexity theory is the
economic theory of computation.
Computational complexity theory considers problem solving, with a model

of computation explicitly underpinning it, as decision problems4 . In these two
aspects it di¤ers fundamentally from economics: in economics, whether in its
mathematical modes or not, there is no explicit model of computation underpin-
ning its optimization problem formulation �which is the second sense in which
it di¤ers from economic theory; i.e., in economics the quintessential problem
solving framework is one of constrained optimization, albeit without ever incor-
porating a model of computation which underpins the construction, detection
or computation of the optimum. Generally, the latter can be transformed in
to a form of the former (see below for an explicit and paradigmatic example
of converting an Integer Linear Programming (ILP) problem into a conjunctive
normal form (CNF ) decision problem).
Anyone who tries to learn a programming language is introduced to it, in the

2One of the modern pioneers of computational complexity theory, Richard Karp, percep-
tively noted, [32], p.464, Italics added:

"[I] do think there are some very worthwhile and interesting analogies between
complexity issues in computer science and in economics. For example, economics
traditionally assumes that the agents within an economy have universal comput-
ing power and instantaneous knowledge of what�s going on throughout the rest of
the economy. Computer scientists deny that an algorithm can have in�nite com-
puting power. They�e in fact studying the limitations that have arisen because
of computational complexity. So, there�s a clear link with economics."

3For reasons of �convenience�I may abscond from gender neutrality when referring to the
TSP.

4A decision problem asks whether there exists an algorithm to decide whether a mathe-
matical assertion does or does not have a proof; or a formal problem does or does not have a
solution. Thus the de�nition makes clear the crucial role of an underpinning model of compu-
tation; secondly, the answer is in the form of a yes/no response. Of course, there is the third
alternative of �undecidable�, too, but that is a vast issue outside the scope of this paper.
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very �rst lesson or lecture, via instructions on how to write a simple program,
such as: Print, �Hello, World�; or: Print, �n�, where �n�is an arbitrary, given,
integer. But anyone who tries to learn the theory of programming is taught,
again in the very �rst lecture, that there is no algorithm for �nding the shortest
program for printing such an integer, �n�, and halting! Put another way, this
negative answer is for the following absolutely simple �minimization�problem:

Problem 1 Find the (or one of the) shortest programs for printing a given
integer n, and halting.

At much more sophisticated level of abstract computational complexity the-
ory, there is a kind of analogue of this simple non-maximization result.

Theorem 2 Blum�s Speedup Theorem5

8 Complexity measures �i.e., criteria of optimization, 9 total recursive func-
tions s:t:; @ optimal programs �i.e., algorithms �to compute them.

Whatever the underlying model of computation, my own view is that the best
way to introduce the subject of computational complexity theory to economists
would be by way of a three stage process. First, an introduction to economics
in the computational mode6 ; this entails an underpinning of economic theory
in the mathematics of recursion theory or constructive analysis, both of which
are intrinsically algorithmic. Second, a discussion of the intrinsic complexity
of the kind of functions and sets that are in the domain of recursion theory
and constructive analysis; i.e., the intricacy of the functions and sets, quite
apart from the di¢ culty of actually computing them. Finally, an analysis of the
computational complexity of the functions and sets; i.e., the actual di¢ culty of
computing the functions or deciding membership or other properties of the sets.
But such a strategy is clearly not feasible within the limited scope of one paper.
Therefore, I will have to forego any and all discussions of the abstract approach
to computational complexity theory, an area pioneered by Manuel Blum. I
will also have to eschew any attempt at introducing an economic theory in its

5The Blum Speedup theorem should be presented in conjunction with the equally impor-
tant Gap and Compression theorems of abstract computational complexity theory, especially
when presenting the subject to an economic audience. These are the kinds of results from
abstract computational complexity theory that make Simon�s behavioural economics, under-
pinned by boundedly rational agents satis�cing in the face of decision problems, against a
backdrop of a model of computation, the natural framework for the economics of choice under
constraints. Instead, economists are weaned in the mathematics of real analysis and pure ex-
istence proofs which are then, at another stage, given computational, cognitive and numerical
content, entirely divorced from the original problem formulation.

6That which I have called �computable economics�. This is di¤erent from the currently
fashionable reference to �computational economics�where, in general, there is no underlying
model of computation. The paradigmatic examples of such computational economic models
are, in macroeconomics, the recursive computational equilibrium, RCE, model; in microeco-
nomics, the (in-)famous example is, of course, the computable general equilibrium, CGE,
model. Neither of these models are underpinned by any formal model of computation. The
connection between the mathematics of the theory and the mathematics of the computation
(or the mathematics of the numerical analysis) is non-existent.
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computational mode. Instead, I will have to remain at a fairly super�cial level
of the concrete, applied part of recursion theory. Regrettably, therefore, I shall
not be able to develop the full implications of the above kind of fundamental
theorems - the Speedup, the Gap and the Compression theorems - in this paper.
The perceptive reader will know how to keep these results at the back of the
mind �and if such an elusive person also equips herself with an idea of Simon�s
Behavioural Economic research program �or to seek them out, when, and if,
the issues I will actually discuss lead to questions about orthodox formulations
of mathematical economics in general, and choice theory in particular.
The three most important classes of decision problems that almost char-

acterise the subject of computational complexity theory are the P , NP and
NP � Complete classes. Concisely, but not quite precisely, they can be de-
scribed as follows. P de�nes the class of computable problems that are solvable
in time bounded by a polynomial function of the size of the input; NP is the
class of computable problems for which a solution can be veri�ed in polynomial
time; and a computable problem lies in the class called NP �Complete if every
problem that is in NP can be reduced to it in polynomial time.
It is important to observe the following features characterising these three

classes (and will, eventually, come to characterise every �ner, nuanced, classi�-
cation, too). Firstly, the classi�cation is of computable problems; secondly the
ubiquity of �polynomial�in the de�nitions; thirdly the role of the two notions of
�verify�and �reduce�. Finally, conspicuous by its absence is any mention of how,
in the case of the class NP , one arrived at a solution which is veri�able in poly-
nomial time. Magic, intuition, leap of faith, appeal to oracles, ESP, whatever
is allowed in �nding solutions; only algorithmic means are allowed in verifying
their truth status. One of the greatest �solution �nders�was Srinivasa Ramanu-
jam; one of the great algorithmic problem solvers was George Polya. There was
once, in fact, an interesting encounter between the magician and the problem
solver (albeit - as be�ts a magician - many years after his death). It illustrates
the real life conundrums of verifying solutions versus devising them, in the �rst
place, [80], p.73; italics added:

"One day in 1951 while Polya was visiting Oxford, he borrowed
from Hardy his copy of Ramanujan�s notebooks. A couple of days
later, Polya returned them in almost a state of panic explaining
that however long he kept them he would have to keep attempting
to verify the formulae therein and never again would have time to
establish another original result of his own."

1.1 Preamble

"The �P versus NP�question ..... focuses on a simpli�ed view of the goals of
(e¢ cient) computations. Speci�cally, [this focuses] on e¢ cient procedures
that always gives the exact answer. In practice, one may be content with
e¢ cient procedures that �typically�give an �approximate�answer."

Goldreich, [?], p.522; italics in the original.
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Economists, �ushed with the wide and easy availability of powerful sym-
bol manipulating software packages, such as Mathematica and Matlab, and the
ubiquity of the computer, approximate, compute and evaluate almost indis-
criminately. Is there any issue, of any reputable Journal in economics, with a
modicum of computations, estimations or simulations, let alone serious math-
ematical calculations, devoid of arbitrary Taylor series expansions, thought-
less linearizations and gratuitous statements about choosing analytically simple
functions (�w.l.o generality�, as the cliché goes!) that facilitate computations
without approximations?
E¢ ciency of computations and approximations are highlighted in the above

important questions posed in [6]. They are the two decisive features charac-
terising the theory of computational complexity. Moreover, it must be kept
in mind that economic theory is predominantly mathematized in terms of real
analysis. Hence, any consideration of the computational complexity of economic
processes, economically motivated functional assumptions and economic com-
putations must focus on some kind of real number model of computation. These
are the issues I shall try to discuss in this paper.
The paper is divided into three main sections, in addition to this Preamble.

Each of the main sections are sub-divided into further sub-sections dealing with
more focused topics.
The next section,§2, �Preliminaries�, is sub-divided into two sub-sections. In

the �rst subsection, �Introduction�, some of the terminological and conceptual
ideas and hurdles are outlined with examples. In the next sub-section, titled
�Exotica�, I illustrate some conceptual issues that �gure crucially in computa-
tional complexity theory; notions such as easy and fast veri�cation of a proposed
result or theorem, the speed of convergence, the nature of the growth of func-
tions and the subtle and nuanced di¤erences between deriving a theorem and
verifying its truth value.
Section 3 is a mixture of historical settings for classic problems of computa-

tional complexity theory and frontier topics in the subject.
Section 4 is a telegraphic presentation and critical discussion of a model of

real computation, recently advocated with tremendous conviction in [4].
In the concluding section 5, there is an attempt to re�ect on the future of

a more computationally oriented economic theory, where questions of the e¢ -
ciency of computations and approximations can be posed and discussed more
coherently and consistently. Related speculative thoughts on alternative, con-
structively founded, mathematical economics suggests that Herbert Simon�s re-
search program is the only hope for those of us who want to be able to analyse
the e¢ ciency of computations .
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2 Preliminaries

2.1 Approximating �;Deciding ;Calculating 264 and all
that!

"The kinds of questions we pose are:
(1). How much work (by various types of computational or approxi-

mation measures) is required to evaluate n digits of a given function or
number?

(2). How do analytic properties of a function relate to the e¢ cacy
with which it can be approximated?

(3). To what extent are analytically simple numbers or functions also
easy to compute?

(4). To what extent is it easy to compute analytically simple functions?
Even partial answers to these questions are likely to be very di¢ cult.
(6). Why is the Taylor series often the wrong way to compute familiar

functions?
..."
Borwein & Borwein, [6], p. 589; italics added.

�Given function� is a phrase that would make sense to most analytically
minded people, especially those who are in the habit of interpreting the notion
of a function as a rule (rather than the Dirichlet-Kuratowski inspired interpre-
tation as a �graph�). But what is the meaning of a �given number�, particularly
a �given real number�? Take, for example, �. By de�nition, it is �the ratio of
the circumference to the diameter of a circle�. Given this de�nition, n digits of
it can be evaluated �i.e., 9 an algorithm to evaluate it, say, to n = 20 digits:
3.14159265358979323846 .. . Is there any other way a real number can be
�given�, except by a rule de�ning it? Suppose the de�ning rule for a real number
- or, even a function - is non-constructive; what can be done to �evaluate�it?
What, indeed, can be done to �approximate� it? Archimedes inscribed poly-
gons to approximate the circumference of the inscribing circle. Is there, then,
a �fastest�algorithm to inscribe a polygon to a �given�circle? How fast does an
algorithm to evaluate the circumference of a given circle converge?
A slightly more exotic example is Euler�s constant7 , usually denoted by :

To the best of my knowledge, to this day, we do not even know whether it is
rational or not, even though the formula de�ning it has the appearance of being
a well de�ned algorithm8 .

7Which is, of course, not the same as its more famous �cousin�, Euler�s number, e.
8 is de�ned as the di¤erence between the harmonic series and the natural logarithm, in

the limit:

 = lim
n!1

" 1X
k=1

1

k

!
� logn

#
=

Z 1

1

�
1

bxc
� 1

x

�
dx

Of course, from a fairly young age most of us would have been taught the harmonic series ;
and even earlier, the natural log. An enlightened or subtle teacher could use the de�nition
to teach students, at an early age, that the notion of a �given number�may entail eternal
perplexities.
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Most readers will be aware of the famous example of the request for just one
grain of rice on the �rst square of a chess board and, then, a doubling, sequen-
tially, on each of the remaining 63 squares, by the winner of a game of chess
against a mythical King9 . We all know �depending on the initial condition �
that the 64th square would require the King to place 264 grains of rice on that
�nal one! This monstrosity emerges naturally in a �simple�and �small� typi-
cal combinatorial economic problem. There is no more paradigmatic example
of intractability than that quintessential economic combinatorial problem: the
travelling salesman�s problem (TSP). Consider the following TSP10 (see Figure
1, below).

1

2

3 6

74 85

Figure 1: Figure 1: TSP

9 I was myself taught this fascinating story in childhood as the �paal payasam�story of a
game of chess between a King and Lord Krishna. The King, having inevitably lost the game to
a God �although Hindu Gods are not infallible �was requested by Lord Krishna to prepare,
and distribute freely, the rice and milk based drink, �paal payasam�. No doubt the story, in
other traditions, is narrated with other metaphors.
10This example is taken from [2].
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The distance between each of the nodes is 10 miles. Then:

Problem 3 Can the salesman start at node 1and visit each of the nodes in a
journey of 70 miles?

This classic TSP problem can be converted to the following equivalent sat-
is�ability problem of the prepositional calculus:

Problem 4 Assign truth values to Amt s.t the following prepositional formula
is true:

E = J & V & N & A01 (1)

Where:
Amt : The salesman is at node t, after 10�m miles;
Jxy

:
=
�
Ami !

�
Am+11 _Am+12 _ :: _Am+1i�1 _Am+1i�1 _ ::: _Am+17

��
; and each

Ami is true.
Put:

J = J01&J
0
2&::::&J

0
8&J

1
1&J

1
2&:::::&J

1
8&::::::&J

6
8

Each node has to be visited:

A0i _ :::::: _A7i ; 8i = 1; :::; 7;

Put:
V = ^

�
A0i _ :::::: _A7i

�
;8i = 1; ::; 8;

Denote the condition that the salesman can only be at one node at a time
by:

N j
i =

�
Aji !� A

j
1

�
&
�
Aji !� A

j
2

�
:::::

�
Aji !� A

j
8

�
Put:

N = ^
�
N j
i

�
;8i = 1; :::; 8; j = 0; :::; 7;

How many possible truth value assignments have to be tried for (1)? There
are 64 di¤erent values of Amt , for which truth assignments of T; F have to be
tried: i.e., 264!
Frankly, almost all the questions of computability, computational complexity

and approximation theories can be framed in the context of the above seemingly
simple problems. The hallmark of the weird and wonderful world of complexity
theory is its feature - which I have tried to illustrate with the above exam-
ples - of hiding intricacies and intractabilities behind a fac¾ade of simplicities.
Lurking behind the simple formulations, assertions and frames are the curses of
dimensionality, exponential growth and logical depth.
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2.2 Decision Problems as Optimization Problems

"Alternatively, you might �nd a polynomial-time algorithm for an NP-
complete problem. If you do, then you have, in e¤ect, found polynomial-
time algorithms for all NP problems, and the Clay Mathematics Institute
will make you a millionaire. But that million will pale beside what you
you�ll gain by cracking all the cryptographic systems based on the di¢ -
culty of NP problems."

Barry Chipra, [?], p.87; italics in the original.

Consider the following three-variable Boolean formula:

:x3 ^ (x1 _ :x2 _ x3) (2)

Just as in the case of equations with integer (or rational) values, given a
truth assignment t(xi) = 1 or 0 for each of the variables xi (i = 1; ::3), the above
Boolean formula can be evaluated to be true or false, globally. For example the
following assignments gives it the value true: t(x1) = 1; t(x2) = 1; t(x3) = 0.
Boolean formulas which can be made true by some truth assignments are said
to be satis�able.
Now consider the Boolean formula:

(x1_x2_x3)^(x1 _ f:x2g)^(x2_f:x3g)^(x3_f:x1g)^(f:x1_f:x2g_f:x3g)
(3)

Remark 5 Each subformula within parenthesis is called a clause; The variables
and their negations that constitute clauses are called literals; It is �easy�to �see�
that for the truth value of the above Boolean formula to be true all the subfor-
mulas within each of the parenthesis will have to be true. It is equally �easy�to
see that no truth assignments whatsoever can satisfy the formula such that its
global value is true. This Boolean formula is unsatis�able.

Problem 6 SAT �The Satis�ability Problem

Given m clauses, Ci(i = 1; : : : :;m), containing the literals (of) xj(j =
1; : : : :; n), determine if the formula C1 ^ C2 ^ : : : : : : : ^ Cm is satis�able.
Determine means ��nd an (e¢ cient) algorithm�. To date it is not known

whether there is an e¢ cient algorithm to solve the satis�ability problem �i.e.,
to determine the truth value of a Boolean formula. In other words, it is not
known whether SAT 2 NP: But:

Theorem 7 SAT 2 NP

Now to go from here to an optimization framework is a purely mechanical
a¤air. Denoting the union operator as ordinary addition and the negation op-
erator related to arithmetic operators as: :x = (1 � x) and noting that it is

11



necessary, for each clause C, there should, at least, be one true literal, we have,
for any formula: X

x2C
x+

X
x2C

(1� x) � 1 (4)

With these conventions, the previous Boolean formula becomes the following
integer linear programming (ILP) problem:

x1 + x2 + x3 � 1 (5)

x1 + (1� x2) � 1 (6)

x2 + (1� x3) � 1 (7)

x3 + (1� x1) � 1 (8)

(1� x1) + (1� x2) + (1� x3) � 1 (9)

0 � x1; x2; x3 � 1; and integer (10)

De�nition 8 A Boolean formula consisting of many clauses connected by con-
junction (i.e., ^) is said to be in Conjunctive Normal Form (CNF).

Remark 9 A CNF is satis�able i¤ the equivalent ILP has a feasible point.

Clearly, the above system of equations and inequalities do not, as yet, rep-
resent an ILP since there is no �optimisation�. However, it can be turned into
a complete ILP in the ordinary sense by, for example, replacing the �rst of the
above inequalities into:

Max y, s:t : x1 + x2 + x3 � y (11)

Remark 10 The formula is satis�able i¤ the optimal value of y, say ŷ exists
and satis�es ŷ � 1.

Finally, we have Cook�s famous theorem, rounding o¤ all these connections
and bringing into the fold of computational complexity theory, the quintessential
combinatorial economic optimization problem:

Theorem 11 Cook�s Theorem
SAT is NP �Complete
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2.3 Exotica

2.3.1 The Question of �Fast and Easy Veri�ability�

In the Preface toMersenne�s Cogitata Physico-Mathematica, a proposition about
perfect numbers11 implies, 8p � 257; (p 2 N) ; 2p � 1 is prime only for p =
2; 3; 5; 7; 13; 17; 19; 31; 67; 127 & 257. This proposition, made in 1644, was falsi-
�ed �ve times between 1883 and 1922, for 61, 67, 89, 107 and 257. The most
memorable of the falsi�cations, at least anecdotally,([91], p.8)12 , was the one by
F.N. Cole in a talk given to the American Mathematical Society on 31 October,
1903[11]. Apparently, without uttering a word, he is reputed to have gone to
the blackboard and written:

267 � 1 = 193707721� 761838257287

Professor Cole is then supposed to have proceeded �to perform the long
multiplication of the integers on the right hand side to derive the integer on
the left.� Given the probable mathematical calibre of the audience, it is not
surprising that no questions were asked!
This example highlights six aspects of a key issue in computational complex-

ity theory, remembering that its mathematical foundations lie in computability
theory. First of all, the falsi�cation of the proposition can be achieved by show-
ing, as Cole did with p = 67 (and Kraichik did with p = 257), that one of the
eleven values ofp is composite; or, secondly, by showing that some of the other
245 possible values for p are, in fact prime (as was done for p = 61 by Pervusin,
in 1883, and, for p = 89 & 167, by Powers, in 191413). Thirdly, by devising a
general formula which provides a rigorous criterion, 8p > 2, for verifying primal-
ity of 2p�1; as was provided by D.H. Lehmer in 1931. Fourthly, the correctness
of Cole�s factorization is easy to verify quickly : easy because long multiplica-
tion is an elementary process; quick, since the required multiplication can be
speeded up almost inde�nitely. Fifth, the �proof�of Cole�s result is almost scan-
dalously short. Finally, how Cole (and Kraïchik) arrived at their results seem
to be a non-issue; it may or may not have been hard14 . On the other hand,

11A number is said to be perfect if it is equal to the sum of all its proper divisors (eg.,
6 = 1 + 2 + 3; 28 = 1 + 2 + 4 + +7 + 14).
12This example has become part of the folklore of dramatic examples in computational

complexity theory (cf, for example, [56] and [92], too).
13Characteristically illuminating discussions of all these results and formulas can be found

in the wonderfully entertaining book by Rouse Ball and Coxeter ([62], ch.1)
14Cole is supposed to have claimed that it took him �three years of Sundays� to arrive at

the result ([91], p.8). How long it may have taken Ramanujam to arrive at, for example, the
formula for p(n), the number of partitions of n, we do not know; nor do we know whether it
was hard or easy for him to �derive� them. Very little is known about the thought or other
processes used by Ramanujam to arrive at his remarkably complex formulas, except for a
poignant remark by his �mentor�at Cambridge, G.H. Hardy, regarding p(n), [80], p.52, italics
added:

"Ramanujan was the �rst and up to now, the only, mathematician to discover
any [properties of p(n)]; and his theorems were discovered in the �rst instance,
by observation."
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the Lehmer criterion, built up from the method developed by Lucas, follows the
usual mathematical development of a criterion or result as a theorem.

2.3.2 Approximation, Convergence and Divergence

Smorynski refers to Hardy�s classic text on Orders of In�nity for the following
two series and their convergence and divergence behaviours, [74], pp. 360-1.
First consider the following convergent series:

A :
1X
n=3

1

n log n (log log n)
2

This series converges to 38.43; however it requires 103:14�10
86

terms before
even a two-decimal accuracy can be achieved! What, under such circumstances,
is the numerical content and computational meaning of �convergence�?
Next, consider the series:

B :
1X
n=3

1

n log n (log log n)

This series diverges; however, �the partial sums exceed 10 only after a googol-
plex of terms have appeared�! Does it matter, for an applied science, that this
series diverges? Years ago, the distinguished Cambridge applied mathemati-
cian and polymath, Sir Harold Je¤reys made a pertinent observation regarding
divergent series in the context of applied sciences:

"Enough work has been done on asymptotic and other diver-
gent series to prove that an in�nite series may be useful in physical
applications without being convergent in the sense de�ned in works
on pure mathematics. It is less generally realized that the converse
is equally true, that a series may be convergent and yet be totally
useless for the purpose of calculating the value of the function rep-
resented.
..... In evaluating a function one is limited to expansions that

can be actually summed numerically in the time available, and it is
therefore necessary that the �rst few terms shall give a good approx-
imation to the function. Those terms once obtained, the rest of the
series is of no interest to the physicist. ...."
[30], pp.241-2; italics added.

Je¤reys con�ates, from the point of view of the applied sciences, the issues
of numerical computation, convergence, divergence, approximation and the time
constraint that should be considered in a numerical evaluation. All of these
issues are explicitly and abundantly evident in the behaviour of the two series

Incidentally, it took the PC on which I am writing this document, using Mathematica
Version 5, 0.016 seconds to factor

�
267 � 1

�
!!
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above, A & B: Computational complexity theory shares both the vices and
virtues here. Being an asymptotic theory, computational complexity theory
tends to disregard the kind of common-sense factors mentioned by Je¤reys.
But when viewed as the economics of computability theory - i.e., theories of
the e¢ ciency of computations - and against the backdrop that all e¢ ciency
theorems in economic theory are �asymptotic theories�, this is not necessarily
an incongruence. Moreover, the e¢ ciency criteria for computation considered
in computational complexity theory is very explicit in a fundamental way about
time resources. Finally, there is the issue of approximation. Here, even in
computational complexity theory - but, perhaps, not in algorithmic complexity
theory15 - the important distinction between the theory of exact approximation
and the approximations intrinsic to numerical analysis is never made explicit,
even in the new and innovative theory of computational complexity of real
computations developed by Smale and his associates, [4].

2.3.3 Growth of Functions and Orders of Growth

"If we drop the requirement of computability �well, there is Tibor Rado�s
Busy Beaver Function. This irrepressible little fellow grows more rapidly
than any theoretically computable function � a feat of not particularly
great magnitude: ...."

[75]

In economics the implications of exponential expansion is most vividly illus-
trated in the �power of compound interest�16 , via neoclassical models of pure
growth17 and in Malthusian population theory. In the theory of computational
complexity theory the key wedge between P and NP is driven by the di¤er-
ence between polynomial and exponential growth rates of resources required for
computation. In a sense, economists do not seem to realize that the di¤erence
between the modesty of �simple interest� and the �power of compound inter-
est�is exactly analogous to the mathematical di¤erence between countable and
uncountable sets, in a precise sense:

15See the remarks and discussions in the appendix.
16Keynes, in speculating on the Economic Possibilities for our Grandchildren, ([34], p.361),

perceptively noted, (italics added):

"From [the sixteenth century] until to-day the power of accumulation by com-
pound interest,..., was re-born and renewed its strength. And the power of
compound interest over two hundred years is such as to stagger the imagina-
tion."

17On a neoclassical exponential growth path, at the rate of growth of per capita income at
g, with an initial value of income at y0, we have:

y(t) = y0e
gt

Thus, countries like China, India and Brazil, growing at double-digit rates, these days,
would double their per capita income in under seven years. How long can this go on and what
kind of resources are being used to achieve these kinds of �growth miracles�, ([44]?
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"The �nite-in�nite analogy .... states that polynomial vs. exponen-
tial growth corresponds in some sense to countability vs. uncount-
ability. The basis for this analogy is that exponential growth and
uncountability both frequently arise from the power set construc-
tion."

[70], p. 62; italics added.

Put succinctly, for the purposes of computational complexity theory one
must be able to understand the sense in which 2n grows faster than n2!
In the following de�nition, formulae and theorems18 , f; g are functions from

N! N:

De�nition 12 f(n) = O (g (n)) ; if 9 c; n0 2 <, such that, f(n) � cg (n) ;8n �
n0:

De�nition 13 If f(n) = O (g (n)) & if g(n) = O (f (n)), then f & g have the
same rate of growth.

Proposition 14 Let p be a polynomial of degree r: Then p & nr have he same
rate of growth.

Theorem 15 8k > 1; kn grows faster than any polynomial p.

3 Computational Complexity Theory: A setting

"Complexity .... is ... a weaselword used to avoid commit-
ment to a definite and clear thought."

pace Fritz Machlup19

The world of theories of complexity is many-splendoured. Quite apart from
�orthodox�computational complexity theory, there are the weird and wonderful
world of algorithmic complexity theories, diophantine complexity theory, topo-
logical complexity theory �to mention a few of the �elds that are especially and
explicitly based on a formal model of computation. I am not convinced that
algorithmic complexity theory should have been referred to with the sobriquet
�complexity�adorning it in its �title�. A brief discussion of this view, bordering
on an extended comment, is attempted in the appendix to this paper. The
background necessary to discuss diophantine complexity �essentially providing
an economic context for the unsolvability of Hilbert�s tenth Problem �will make
this already over-long and fractured paper even more so. The best I can do at
this point is to refer to the brief remarks in [87], chapter 7. As for topological

18There is no need to restrict the range of f; g to N; some prefer to work with the range R:
19Fritz Machlup�s original remark was about �structure�, [45]:

"Structure ... is .. a weaselword used to avoid commitment to a de�nite and clear
thought."
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complexity, even a brief de�nition and motivating discussion of this concept
would require an extended presentation of the model of real computation in [4]
(referred to, occasionally, as the BCSS model). All I can do here is to give
a telegraphic de�nition of topological complexity in the brief discussion of the
BCSS model, given in the next main section.
Rosser�s interesting outline, [61], of this world gives a much broader and far

more illuminating perspective on complexity theory and I refer the interested
reader to it for a concise overview. In this section, after what I call a �potted
proto-history�for the setting, a version of orthodox20 computational complexity
theory, largely against the familiar backdrop of linear programming, is outlined.
As a result of the conundrums arising in this discussion, a brief sketch of a
complexity theory for models of real computation continues the themes in the
next main section.

3.1 Potted Proto-History

"The fact is that every writer creates his own precursors."

Borges, Kafka and His Precursors, in: Labyrinths, p. 201.

On Spring Equinox day, 20th March 1956, Gödel wrote, in his last letter to
von Neumann:

"It is evident that one can easily construct a Turing machine which,
for each formula F of the predicate calculus and for every natural
number n, will allow one to decide if F has a proof of length n. Let
	(F; n) be the number of steps that the machine requires for that
and let ' (n) = maxF 	(F; n) : The question is, how fast does ' (n)
grow for an optimal machine. One can show that ' (n) � Kn: If
there actually were a machine with ' (n) � Kn (or even only with
� Kn2), this would have consequences of the greatest magnitude.
That is to say, it would clearly indicate that, despite the unsolvability
of the Entsheidungsproblem, the mental e¤ort by the mathematician
is the case of yes-or-no questions could be completely replaced by
machines. One would indeed have to simply select an n so large
that, if the machine yields no result, there would then also be no
reason to think further about the problem."

[23], p.10; italics added.

Essentially, Gödel is conjecturing on the implications of the existence of a
polynomial time algorithm for the satis�ability problem! As always this �great-
est logician since Aristotle�, as von Neumann referred to him, had an uncanny
prescience about new directions in applied recursion theory �on the eve of the
emergence of the newly codi�ed �elds of computational complexity theory and
algorithmic complexity theory.

20This may well be the only time in my academic life that I �nd myself a defender of
orthodoxy!
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Furthermore, the important concepts of reducibility and completenes were
�rst introduced in Post�s seminal paper, [54], and had become, by the time these
concepts were fruitfully harnessed in the codifying of computational complexity
theory at the frontiers, part of what has come to be called �Higher recursion
Theory�, or the study of recursively enumerable sets and degrees21 . Thus, there
is, at least with hindsight, a natural transition from classic recursion theory
� from the Gödel, Church, Turing, Rosser, Kleene, Post period of 1931-1944
�to the gradual implementation of �Post�s program�on degrees of solvability,
say maturing around the period 1965-1980, to the overlapping and intertwined
conceptual development of the theoretical framework of modern computational
complexity theory.
Alexander Schrijver�s monumental 3-volume, encyclopaedic treatise on Com-

binatorial Optimization, [68] will remain the classic on many things, but, surely,
above all, on the history of every possible concept of relevance for complexity
theory from the point of view of combinatorial optimization. In particular, I
can do no better than refer any serious scholar of the history of the ideas that
shaped classical computational complexity theory to these three exhaustive and
excellent volumes for full details of every possible source, placed, described and
explained in impeccable context.
A Whig interpretation of the history of computational complexity theory

would mean a retracing of the past from the vantage point of the P =?NP
question; or, more accurately, from the point of view of the polynomial-time
computability versus NP -completeness point of view. From this latter point of
view, the modern history of computational complexity theory will have to be
told as originating in two traditions: one, the tradition of mathematical logic,
particularly recursion theory and proof theory; the other, accepting a model of
computation only implicitly, and often even on an ad hoc basis, along the spe-
cial traditions, emerging from, solving special purpose problems: the travelling
salesperson�s problem, problems in graph theory, linear and integer linear pro-
gramming problems, network �ows and transportation problems, etc. It is the
codi�cation of the notion of the e¢ ciency of computations that provided the
impetus for the merging of the two traditions, almost by accident. The explicit
recognition of the model of computation in the second tradition, and the need to
go beyond degrees of undecidability in the �rst tradition, were brought together
and fused into the one powerful and fruitful �eld of computational complexity
theory. The four pioneers who achieved this �uni�cation�of the two traditions
�I think, unwittingly, but serendipitously �were Edmonds, Constable, Cook,
Levin and Karp, standing, of course, on the shoulders of giants of the past
(and the future, even if it may sound paradoxical to be able to stand on the
shoulders of giants yet unborn). The former two codi�ed and etched the no-
tion of polynomial-time as the standard of e¢ ciency of computation; the latter
three codi�ed the conundrums of non-deterministic computations by de�ning
and characterising the NP � complete class, both theoretically and with imag-
21An elegant exposition of which can be found in [76], with a beautiful early treatment in

the classic by Hartley Rogers, [58].
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inative and exhaustive examples.
It will be a salutary lesson for economists, who will be disabused of opti-

mization in the decision model tradition of computational complexity theory, to
learn that e¢ ciency in this computational tradition and vision simply means
�good�, not the �best�! The computer scientists and their mathematicians were
mindful of that old adage: the best is the enemy of the good !22 Edmonds, the al-
most undisputed pioneer in the codi�cation of polynomial-time computation as
the criterion for e¢ ciency introduced the notion and, indeed, the whole subject,
as follows (in 1963, [18]; see also [10]):

"For practical purposes computational details are vital. However,
my purpose is only to show as attractively as I can that there is
an e¢ cient algorithm. According to the dictionary, �e¢ cient�means
�adequate in operation or performance.�This is roughly the meaning
I want �... . Perhaps a better word is �good.�
There is an obvious �nite algorithm, but that algorithm increases

in di¢ culty exponentially with the size of the graph. It is by no
means obvious whether or not there exists an algorithm whose dif-
�culty increases only algebraically with the size of the graph.
....
For practical purposes the di¤erence between algebraic and expo-

nential order is often more crucial than the di¤erence between �nite
and non-�nite."
[68], p.56; last set of italics in the original.

Three remarks on these perceptive comments by Edmonds may not be out
of place. First of all, the notion of e¢ ciency is more akin to Simon�s visions
of satis�cing processes than anything from orthodox economics; secondly, by
�algebraic�Edmonds refers, obviously, to �polynomials�; thirdly, it may be useful
to recall Sipser�s analogy between the polynmial-exponential divide and the
countable-uncountable one, whereby the exponential-uncountable nexus comes
about due to power-set constructions.
Finally, in line with the aims of being a �Potted Proto-History�, I shall make

just one salient remark on Cook�s seminal paper, which highlighted the crucial
role the satis�ability problem was to play in the development of computational
complexity theory. I think the consensus is that the most important point of
Cook�s paper was the following proposition:

P = NP iff SAT � P

Cook�s contribution achieved a neat synthesis of the two traditions I referred
to above; SAT is a quintessential problem of mathematical logic. By using the
concept of reducibility from computability theory he was able to show that any
instance of a problem in NP can be reduced to an appropriate instance of a
problem in SAT . Therefore, the instance of the NP problem is solvable if,

22Apparently the original Voltaire quote is: �the perfect is the enemy of the good�.
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and only if, the SAT instance is solvable. Finally, he also showed that the
reducibility can be achieved in polynomial time23 .
Karp,[31], who felicitously coined the su¢ x �complete�, built on Cook�s

framework and, in a sense, codi�ed the subject of computational complex-
ity theory to what it has since become. In particular, his characterisation of
NP � complete was decisive. Karp�s results showed that almost all garden-
variety combinatorial optimization problems encountered in economics are �
and will forever remain �intractable, unless P = NP . Herein lies the signi�-
cance of its inclusion in the Clay Millennium Seven.
My �nal comment in this context is the following: these conceptual inno-

vations, mathematical formalizations and computational structures gave rise to
exact results on feasible computations �or, e¢ cient computations �precisely in
the sense of Herbert Simon�s overall research program. In particular, the last
mentioned Karp result on the implications of P 6= NP compels the economic
theorist and the mathematical economist to resort to �near-optimal�, �satis-
factory�, �satis�cing�solutions and processes. That the Simon visions have not
been underpinned more formally by the results from computational complexity
theory remains an unwritten intellectual chapter in behavioural economics.

3.2 An LP Interregnum

Linear programming, LP, with the variables and the coe¢ cients de�ned over <;
had been the classic optimization problem in economics �until recently, when
it seems to have been dethroned by DP, dynamic programming, particularly in
macroeconomics �that was also coupled, almost intrinsically, with an eminently
practical numerical algorithm to implement it: the simplex method. A couple
of intertwined landmark results on the LP problem can possibly be given the
sobriquet, �proto-history of computational complexity theory�: the Klee-Minty
result on the intractability of the simplex method, then the re-absorption of
LP into the theoretically tractable fold by Khachiyan�s seminal results on LP,
where Shor�s earlier work on the ellipsoid algorithm was imaginatively exploited,
and �nally consolidated by Karmarkar�s interior point method, which was also
(claimed to be) practically tractable. It is important to remember that in all
three algorithms the variables are de�ned on <, even though the complexity
criteria were developed for discrete variable or combinatorial decision problems.
The simplex algorithm for the LP problem with a constant coe¢ cient matrix

A of dimension m� n can theoretically visit the following number of vertices:

2
�m
n

�
=

n!

m! (n�m!) >
� n
m

�m
(12)

=) � 2m; 8n � 2m

Thus, there is the possibility of intractability �i.e., computational complex-
ity � is intrinsically embedded within the structure of the simplex algorithm.

23All this in a paper that was only 7 pages in length!
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It was a recognition of this intrinsic possibility and then an exploitation of it
that enabled Klee and Minty to devise their (arti�cial) problem to show the
intractability of the simplex algorithm. They showed intractability in a class of
LP problems with m = n equality constraints in 2n non-negative variables in
which the simplex required 2n� 1 iterations; i.e., a �visit�to every vertex of the
problem. How was this achieved? Why was it attempted? The latter question
can be answered by saying that the framework of computational complexity the-
ory had been formulated and, therefore, an analyst knew what had to be sought
to show non-tractability. As for the �how�, the following geometric approach
suggests, intuitively, the way intractability was constructed.

1. Recall, �rst, that the simplex algorithm moves from vertex to vertex;
therefore, �nd a polytope that has an exponential number of vertices. For
example, a 3 � dim cube has 6�faces (2 � 3) and 8�vertices (i.e., 23).
Thus, a cube with 2d faces has 2d vertices.

2. Next, orient the polytope s.t., the direction of decreasing cost is �upwards�;
i.e., orient the sequence of the exponentially many vertices

�
2d
�
; adjacent

to one another, each higher than the previously visited vertex.

3. Then: 8d > 4; 9 a LP with 2d equations, 3d variables, and integer coe¢ -
cients with absolute values bounded by 4, s.t., the simplex algorithm can
take 2d � 1 iterations to �nd the optimum.

Not much later Khachiyan�s seminal result appeared and settled decisively
the polynomial time status of LP. Let me �rst show where exactly the need for
precise numerical analysis �i.e., analysis in <�enters the ellipsoid method24 :Locating
the source of the appeal to precise arithmetic, in <, is crucial in knowing where
and what kind of approximation has to be used in any particular instance of an
application of the ellipsoid method25 so that it is consistent with its underlying
model of computation.

De�nition 16 An ellipsoid, E, Ellip [z; D], is a set of vectors x 2 <n; s:t :

Ellip [z; D] :=
n
xj (x� z)T D�1 (x� z) � 1

o
(13)

where:
D : a positive de�nite matrix of order n;
z : the centre of Ellip [z; D] ;

Remark 17 A set E is an ellipsoid iff E is an a¢ ne transformation of the
unit ball,

�
xjxTx � 1

	
:

24 I shall follow Schrijver�s characteristically clear presentation here ([67], chapter 13), but
[51], chapter 8, is equally felicitous on this issue.
25Geometrically, the ellipsoid method is very similar to the classic method of �binary search�,

eg., [51], p.171; or, at a popular level, to variations of the �20 questions�game.
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The basic idea of �binary search�consists of �halving�a set, a domain, at each
iteration of the �search�process. This is encapsulated for the ellipsoid method
in the following proposition:

Proposition 18 Let a be a row vector of the given Ellip [z; D], and let E0 �
Ellip [z; D] \ fxjax � azg, s:t: E0 has smallest volume. Then E0 is unique and
E0 = Ellip [z0; D0] ; where:

z0 := z� 1

n+ 1
� DaTp
aDaT

(14)

D0 :=
n2

n2 � 1

�
D � 2

n+ 1
� Da

TaD

aDaT

�
(15)

and:
vol E0

vol E
< e�

1
2

1
(n+1) (16)

The point to note is the square root term in (14). No underlying model of
computation which is not capable of precise real number computation will be
able to implement the ellipsoid algorithm consistently. There are three alterna-
tives to circumvent the problem of precision:

� Appeal to, and utilize, relevant approximation results, as is done in, for
example, [67], pp.166-7;

� Build an underlying model of exact real number computation, as claimed
to have been done in [4];

� Or, �nally, resort to careful and informed ad hockery, as is expertly re-
sorted to in [51], §8.7.4;

There is a problem with the �rst of the alternatives. The second of the
two approximation lemmas on which [67] relies on, to circumvent the problem
of numerical imprecision, entailed by the inconsistency between the ellipsoid
method invoking real number domains and the implicit model of computation
relying on rational or integer number domains, is based on a non-constructive
argument at a crucial point in the proof (op.cit, bottom, p.167)26 . A similar
infelicity plagues the method of �informed ad hockery�; for example, in [51],
p.182, when a claim holding �8x 2 <; jx� x̂j = jxj � 2P ; for a given precision P:�
As for relying on an underlying real number model of computation, in a sense
the whole research program represented by [4] could be said to have emanated
from the conundrums posed by the LP problem. My own reservations about
this method is given below.
An outline of the Khachiyan solution is as follows. Consider the problem of

�nding a feasible point satisfying the following system of inequalities:

26Moreover, it is not clear to me that the rounding process invoked in the �rst theorem,
op.cit, p.166, is itself in P .
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hhi;xi � gi; i = 1; ::::; p (17)

hi 2 En; p � 2; n � 2:
Khachiyan�s algorithm �nds a feasible point, or establishes its nonexistence,

in a �nite number of iterations, polynomial in its input variables.
Denote by L : the length of the binary encoding of the input data; then:

L =

n;pX
i;j=1

log2 (jhij j = 1) +
pX
j=1

log2 (jgj j+ 1) + log2 np+ 2 (18)

where: hij is the jth element of vector hi: Then, Khachiyan�s algorithm is,
schematically:
Step 1 : Set x0 = 1;H0 = 22LI; k = 0:
Step 2 : Terminate the algorithm with xk as the feasible point, If xk satis�es:

hhixki < gi + 2�L;8i = 1; ::::; p (19)

Step 3 : If k < 4
�
n+ 1)2L

�
; then go to Step 4; otherwise, terminate the

algorithm with the negative, tractable, answer that no solution exists.
Step 4 : Choose any inequality for which:

hhixki � gi + 2�L (20)

Now, set:

xk+1 = xk �
1

(n+ 1)

Hkhi

hhi;Hkhii1=2
(21)

and:

Hk+1 =
n2

n2 � 1

�
Hk �

2

n+ 1

Hkhih
T
i Hk

xphi;Hkhi

�
(22)

Step 5 : Set k = k + 1 and go to Step 2:

Remark 19 The Khachiyan algorithm returns a feasible solution or establishes
its non-existence in 4 (n+ 1)2 L iterations.

Remark 20 With minor modi�cations the algorithm can be adapted to handle
the system above in the presence of an additional system of linear equalities:
NTx = b:

Remark 21 It is clear that the �villain of the piece�appears in the denominator
of the iteration linking xk+1 to xk in equation (21).

Next, consider the iteration in (21) �(22) as a dynamical system - in this case
a map. Suppose using one of the two approximation schemes referred to above
the initial conditions are guaranteed to be rational numbers; i.e., computable
numbers. Thus, the sequence of numbers generated by the iteration in (21) �
(22), can be guaranteed to be computable, i.e., a recursive real number. Does
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this guarantee that the limit is a recursive real number? I think not and my
conjecture is that a proof is relatively easy. I shall leave it as an unproved
conjecture for the moment.
Finally, anyone who examines in detail the complete structure of the proof

can be certain to �nd that it is replete with non-constructivites - i.e., appealing
to undecidable disjunctions. Moreover, the detailed proof given in [67] appeals,
at a crucial point, to the proof of Farkas�s Lemma; that, in turn, appeals to a
theorem which is proved using an algorithm equivalent to the simplex method,
whose intractability was our starting point in this saga on the Interregnum!
In any case, it is best to underpin these kinds of problems on a model of �real
computation�, as in [4] (see, in particular, Chapter 6).Fred Richman perceptively
observed, years ago, [57], p.125 (italics added):

�Even those who like algorithms have remarkably little appreci-
ation of the thoroughgoing algorithmic thinking that is required for
a constructive proof. ...... I would guess that most realist mathe-
maticians are unable even to recognize when a proof is constructive
in the intuitionist�s sense.
It is a lot harder than one might think to recognize when a the-

orem depends on a nonconstructive argument. One reason is that
proofs are rarely self-contained, but depend on other theorems whose
proofs depend on still other theorems. These other theorems have of-
ten been internalized to such an extent that we are not aware whether
or not nonconstructive arguments have been used, or must be used,
in their proofs. Another reason is that the law of excluded middle
[LEM] is so ingrained in our thinking that we do not distinguish
between di¤erent formulations of a theorem that are trivially equiv-
alent given LEM, although one formulation may have a constructive
proof and the other not.�

What is the meaning � and the point � of proving polynomial time com-
putability of a method which relies on non-constructive proofs, invoking unde-
cidable disjunctions?

4 The Problem of Computational Complexity of
Real Numbers and Real Functions

"The �computable�numbers may be described brie�y as the real numbers
whose expressions as a decimal are calculable by �nite means. Although
the subject of this paper is ostensibly the computable numbers, it is almost
equally easy to de�ne and investigate computable functions of an integral
variable or a real or computable variable, computable predicates, and so
forth. The fundamental problems involved are, however, the same in each
case, and I have chosen the computable numbers for explicit treatment as
involving the least cumbrous technique. I hope shortly to give an account
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of the relations of the computable numbers, functions, and so forth to one
another. This will include a development of the theory of functions of a
real variable expressed in terms of computable numbers. According to my
de�nition, a number is computable if its decimal can be written down by
a machine."

Alan Turing, [83], p.230; italics added

These fascinating and prescient opening sentences in Turing�s classic pa-
per indicate, clearly and unambiguously, that the model of computation that
he developed � now felicitously and justly called the Turing Machine model
of computation �was intimately linked with, and underpinned by, real num-
bers and real functions. These links were explored, developed and expanded, in
the immediate post-war years, even while orthodox computational complexity
theory was in its infancy, in a series of seminal books and papers by Good-
stein, Grzegorczyk, Lacombe, Mazur and Specker27 . Their modern successors
are Pour-El and Richards, Friedman and Ker-I-Ko, Weirauch, Aberth28 and
Shepherdson29 . Both prior to and parallel with these developments, in what
is now broadly referred to as recursive or computable analysis, there was the
rich vein of algorithmic analysis emanating from the Brouwer-Heyting tradi-
tion of intuitionistic constructive analysis; its de�nitive codi�cation �at least
as a constructive, even if not intuitionistic, variant � was achieved with Er-
rett Bishop�s classic work of 1967 on the Foundations of Constructive Analysis
([3]). There have, thus, been available a variety of supremely elegant, compre-
hensive and rigorous foundations for models of real number and real function
computations for the whole of the period since the Turing Model has been in
existence. Computer science � both theoretically and in its applied versions,
and even practically �has developed, pari passu, with these theories as its foun-
dation. Yet, numerical analysis and numerical analysts have gone about their
traditional and noble business, a tradition that can be traced back at least to
Newton and Gauss, without paying any attention to these developments. This
27The classic references are: [26] [27], [41], [46], and [79]. Grzegorczyk was continuing

the Polish tradition, initiated by Banach and Mazur, that had commenced almost simulta-
neously with Turing�s original contribution. In their Forward to the unfortunately relatively
little acknowledged classic by Mazur, [46], Rasiowa and Grzegorczyk made the �melancholy,
observation that (italics added):

"[Mazur�s booklet] is based on the lectures [he gave on] �Computable Analysis�
in the academic year 1949-1950 at the Institute of Mathematics of the Polish
Academy of Sciences in Warsaw. These lectures present a systematic exposition
of the results obtained by S. Banach and S. Mazur in 1936-1939 and contain
a detailed examination of recursive real numbers, recursive sequences, recursive
functionals and recursive real functions. The authors never published their re-
sults.... because the Second World War made this impossible."

28Aberth�s work is a development of the Russian Constructivists, but has become a part of
the modern theory of real computation based on the Turing Model of Computation. Russian
constructivism is clearly and concisely outlined in [7], chapter 3; copious references to the
pioneering Russian contributions, almost simultaneous with the above Polish, French and
American pioneering works are given in [1].
29Here the representative references are: [55], [38], [37], [90] and [66].
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remains a paradox, especially since the ubiquity of the digital computer has
meant that the numerical analyst�s theories have to be implemented on these
machines. Numerical analysts have always been concerned with the e¢ ciency
of algorithms, for example in terms of approximation criteria for convergence of
numerical methods, but the connection between their concerns with e¢ ciency
and those of the computer scientist�s with computational complexity theory has
never had more than a tangential connection with each other. These issues
have been raised to a new level of awareness in the work around the BCSS
model and its origins and development. However, they �the originators of the
BCSS model, Smale in particular � seem not to have paid su¢ cient attention
to the algorithmic tradition in real analysis; not even to the clearly related tra-
dition of analog computation30 . Space constraints prevent me from a proper
discussion and evaluation of the technical merits and conceptual priorities in
the two approaches �the recursive analysis and the BCSS model.
I shall, instead, simply outline �in the next subsection �some salient features

of the BCSS model and the way orthodox complexity theoretic concepts are
de�ned in it. However, I remain sceptical of the need for considering real number
and real function computation from the perspective of the BCSS model; some
of my reasons are also sketched out.

4.1 Complexity Theory of Real Computation: Notes on
the BCSS Model

"In the late 17th century, when Newton and Leibniz were �rst in-
venting calculus, part of their theory involved in�nitesimals �i.e.,
numbers that are in�nitesimal but nonzero. .... .. Indeed, Leibniz
and Newton had in�nitesimals in mind when they invented calculus;
... ."

Schechter, [64], pp.394-6; italics in the original.

Yet the whole rationale and motivation for the development of the BCSS
model of real computation seems to be based on ignoring this historical fact!
Smale, in particular, has tirelessly propagated the view that the Newtonian
�vision�of the Universe is underpinned by a �continuous real number model�. I
shall return to these issues in the concluding section. For now, let me simply
outline just the bare bones BCSS model to enable me to de�ne the classes P and
NP for real number and real function computations in this framework. Anyone
interested in delving into the deeper reaches of the BCSS model can easily do
so via the extremely readable and clearly presented monograph by Blum, et.al.,
([4]).
Contrary, also, to Turing�s original approach, whereby the real numbers are

expressed as decimal expansions, in the BCSS model they are taken as abstractly
and axiomatically given entities:

30 I have tried to �resurrect�a consideration of this tradition, again from the point of view
of a computable economist, in [88]. I shall have a little to say about this approach below.
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"[C]ontiinuing from a very di¤erent point of view, I will devise a
notion of computation taking the real numbers as something ax-
iomatically given. So, a real number to me is something not given
by a decimal expansion; a real number is just like a real number
that we use in geometry or analysis, something which is given by its
properties and not by its decimal expansion."

[73], p.62; italics added.

One would wonder, then, how properties replete with undecidable disjunc-
tions could be implemented on any kind of computer, if also the axioms are not
recursively presented. Moreover, if the starting point is an axiomatic representa-
tion of real numbers, why stop there? Why not taken an axiomatic approach to
the P =?NP problem? I shall return to this particular theme in the concluding
section.
The BCSS model is presented, at least in [4], as a �mathematical foundation

of the laws of computation of numerical analysis� (and the Turing Model is
generated as a special case). But the �main goal�of [4] is �to extend the [the
classical theory of computational complexity] to the real and complex numbers�
in a special context:

"A cornerstone of classical complexity theory is the theory of
NP-completeness and the fundamental P 6=NP? problem.
A main goal of [[4]] is to extend this theory to the real and

complex numbers and, in particular, to pose and investigate the
fundamental problem within a broader mathematical framework."
[4], p.24

With this aim in focus, the following general framework of computations
over a Ring (or Field) � in contrast to the starting point in natural numbers,
according to BCSS, of the traditional31 �Turing theory��is set up.

De�nition 22 Machines over R (say a commutative ring with unit).
A machine M over R is a �nite connected directed graph, containing the

following �ve types of nodes:
1. Input, with underlying input space IM;
2. Computation, in state space, SM;
3. Branch32 ;
3. Output, with underlying output space, OM;
4. Shift nodes,

P
M;

Where the input space, IM, and output space, OM are de�ned in R1; which
is the disjoint union:

R1 = tn�0<n

31My �delity to orthodox computational complexity theory emanates from my adherence
to orthodoxy in computability theory!
32Topological complexity is de�ned at this node.
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and the state space, SM , is de�ned in R1, the bi-in�nite direct sum space
over R, s.t., typical elements of it, x 2 R1, are of the form:

x = (::::::x�2; x�1; x0 � x1; x2; ::::::)

and:
xi 2 R;8i 2 Z (and each such xi is refereed to as a coordinate of x) &

xk = 0 for jkj su¢ ciently large;
� : is a distinguishing marker between x0 and x1;

Remark 23 The space R1 has natural left and right shift operations:

�l (x)i = xi+1 & �r (x)i = xi�1

Remark 24 Anyone familiar with the de�nition of the Turing Machine, say as
given in the classic book by Martin Davis, [17] (see also the appendix in [87]),
will �nd it easy to interpret the above de�nitions in their speci�c, more general,
domains. The mechanism is exactly identical.

Two �reminders�, particularly to economists, are apposite at this point: the
�rst is to keep in mind that in computational complexity theory of any hue, one
is dealing with decision problems; the second is that in this �eld the primary
interest is in decidable problems, i.e., problems for which their characteristic
functions are computable. The complexity of the former is usually measured by
the complexity of the latter.

De�nition 25 A decision problem over R is a set S � R1

De�nition 26 8x 2 R1; its characteristic function is de�ned as:

�S = f
1 if x 2 S
0 otherwise

De�nition 27 Polynomial functions over R
Suppose h : Rm ! R is a polynomial function of degree d over R.
Then h de�nes a polynomial function, ĥ; on R1, of dimension m and degree

d :
ĥ = R1 ! R

where: 8x 2 R1; ĥ = h (x1; x2; ::::; xm)

De�nition 28 Polynomial time
M over R works in polynomial time if, 8x 2 <n � <1, and for some �xed

c; q � 1 :
cost (x) � cnq

where, cost (x) : the number of nodes traversed during the computation.

Corresponding to a measure of bit over Z2, there is �height�, htR (x) = 1;8x 2
R:
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De�nition 29 8x 2 <n � <1; length (x) = n & size (x) = n � htR (x)
where
htR (x) : R! Z0[+ & htR (x) = max htR (xi)

De�nition 30 8x 2 <n � <1 :

costM (x) = T (x)� htmax (x)

where,
T (x) : the halting time of M on input x.

De�nition 31 Polynomial time Machine, M over R
M over R is a polynomial time machine on X � R1 if 9 c; q 2 Z+ s.t:

costM (x) � c (size (x))q ; 8x 2 X

De�nition 32 ' : X ! Y � R1 is said to be polynomial time computable �
or a p�morphism �over R, if ' is computable by a polynomial time machine
on X:

Finally, for the main relevant de�nitions, i.e., of the class P over a ring, R :

De�nition 33 The class P
A decision problem S � R1 is in class P over R �i.e., S 2 PR �if �S is a

p�morphism over R:

Before we proceed to the NP world, the notion or reducibility has to be
de�ned.

De�nition 34 p� reduction p� reducible
A morphism ' is a p� reduction, if :

' : R1 ! R1, s:t:; ' (S) � S0 & ' (R1 � S) � R1 � S0

where:
The decision problem S is, then, said to be p � reducible to the decision

problem S0

De�nition 35 The class NP
A decision problem S � R1 is in class NP over R �i.e., S 2 NPR �if 9

M over R; with (input space), IM = R1 � R1, & c; q 2 Z+; s:t :

1. if x 2 S then 9w 2 R1, s.t., �M (x;w) = 1 & costM (x;w) � c (size (x))q ;

2. if x =2 S then @w 2 R1 s.t., �M (x;w) = 1

The obvious question about TSP is immediately answered:

Proposition 36 TSP is in class NPR
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De�nition 37 NP � hard
A decision problem Ŝ is NPR � hard if every S 2 NPR is p � reducible to

it.

Finally, we have the important de�nition of NP � Completeness:

De�nition 38 NP � Completeness
A decision problem Ŝ is said to be NP�Complete over R if it is NPR�hard

& Ŝ 2 NPR

Remark 39 By considering the �special� case of Z2: the orthodox domain of
computational complexity theory based on the Turing Model of computation over
binary sequences, it is immediate that Cook�s theorem holds.

Remark 40 The earlier LP feasibility problem, when specialised over Q is eas-
ily shown, in the above framework, to be in class P

4.2 Sceptical Notes on the BCSS Model

"What is not so clear is that continuous processes (with di¤erential
equations) may also be regarded as trial and error methods of solu-
tion to static equations. The reason why it is not so easy to see is
that no human being can make continuous trials in�nite in number.
This gap in our grasp of the problem has been closed by the per-
fection of electronic and electro-mechanical computers - sometimes
called zeroing servos - which continuously �feed back�their errors as a
basis for new trials until the error has disappeared. Such a machine
is an exact analogue of a continuous dynamic process. Therefore it
seems entirely permissible to regard the motion of an economy as a
process of computing answers to the problems posed to it."

[25], pp.1-2; italics added.

What Goodwin is suggesting here is that the economic system can felici-
tously interpreted using the metaphor and model of the analogue computer -
a metaphor that had, with equal �nesse, been invoked by Walras, Pareto and
Hayek. My sceptical notes on the BCSS model revolve around three perplexities:
(a). What is wrong with the analogue model of computation over the reals

and why it was not invoked to provide the mathematical and physical foundation
for numerical analysis by the authors of the BCSS model?
(b). What is wrong with the computable and recursive analytic model, with

its rich complexity theoretic analysis of classic optimization operators routinely
used in economic theory (optimal control, dynamic programming, etc.,), of the
perennial paradoxes of the initial value problem on ordinary di¤erential equa-
tions and their solution complexities and of much else in a similar vein.
(c). I don�t think there is any historical or analytical substance to the

Newtonian vision frequently invoked as a backdrop against which to justify
the need for a new mathematical foundation for numerical analysis.
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(4). Finally, there is an important strand of research that has begun to inter-
pret numerical algorithms as dynamical systems; from this kind of interpretation
to a study of undecidability and incompleteness of numerical algorithms is an
easy and fascinating frontier research topic within the framework of computable
analysis, which owes nothing to - and has no need for - the BCSS kind of mod-
elling framework �even though there are claims to the contrary in [4] regarding
such issues33 .
The last named of the perplexities, (d), has, at present, not considered the

problem of computational complexity of numerical algorithms via an analysis of
equivalent dynamical systems; but, surely, it is only a question of time before
that step is taken. There is a cryptic acknowledgement to an important strand
in this new tradition, pioneered by da Costa and Doria, in [4], p.35:

"An undecidability result, related to chaotic dynamics ..., but very
di¤erent in methodology and spirit is in [da Costa and Doria]34 ."

4.2.1 Real Computation with Analogue Computers

One of the recurrent themes in the BCSS modelling approach is the need for
a model of computation over the reals so that classic mathematical physics �
or applied mathematical �problems like those posed by the need to solve, nu-
merically, ordinary di¤erential equations, de�ned over R:Consider the following
reasonably �complex�dynamical system, the so-called Rössler System:

dx

dt
= � (y + z)

dy

dt
= x+ 0:2y

dz

dt
= 0:2 + z (x� 5:7)

Suppose a General Purpose Analogue Computer (GPAS ) is de�ned in terms
of the usual adders, multipliers and integrators as the elementary units, similar
to the elementary operations for M de�ned above for the BCSS model which, in
turn, are analogous to the elementary operations de�ning a Turing Machine or
a partial recursive function (��recursion, minimalization, etc.,).Then it can be
shown that a GPAS consisting of 3 adders, 8 multipliers and 3 integrators can
simulate the above Rössler System. What kind of functions can be constructed
by combining such elementary units to build a GPAS to simulate continuous

33Primarily in relation to the decidabilty problems of the Mandelbrot and Julia sets, as
posed by Penrose, [53].
34That in a book published in 1998, the authors of [4] do not even manage to cite the

published version of one of the early pioneering results of da Costa and Doria, from 1991 �
the early examples are in, [14] and [15] � let alone their later work and the related work of
Chris Moore, for example [47], and several others, is, I guess, an indication of the lack of
attention paid to these other �methodologies and spirit�! But these pioneering works are on
undecidability of dynamical systems, not the computational complexity of dynamical systems.
perhaps that is the reason why not much attention was paid to these works in [4].
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functions, de�ned over <? A series of results, beginning with Shannon in 1941,
[65] and culminating in Rubel�s fundamental results on GPAS in 1988, [63], give
precise answers to this question. I have summarized the GPAS framework and
results pertaining to them in [88]. The main theorem is the following:

Theorem 41 (Rubel�s Theorem): There exists a nontrivial fourth-order, uni-
versal, algebraic di¤erential equation35 of the form:

P (y0; y00; y000; y0000) = 0 (23)

where P is a homogeneous polynomial in four variables with integer coe¢ -
cients.
The exact meaning of �universal�is the following:

De�nition 42 A universal algebraic di¤erential equation P is such that any
continuous function '(x) can be approximated to any degree of accuracy by a
C1 solution, y(x); of P:In other words:

If "(x) is any positive continuous function, 9y(x) s:t j y (x)�' (x) j< � (x) , 8x 2 (�1;1)
(24)

There is, then, a ready-made framework in which to study the real functions
traditionally used in modelling physical (and, dare I say, economic processors).
Why not develop a computational complexity theory for GPAS rather than
replicate the Turing Model for <?

4.2.2 Real Computation within the Turing Model of Computation

I have described Chris Moore�s construction of a smooth map simulating a Min-
sky program machine, i.e., a minimal Turing Machine, in [87], pp.47-8. This is
an exercise going in the reverse direction to the one pursued in BCSS modelling.
But it is directly relevant here, because the computational complexity results for
the Turing Model will carry over to the constructed, equivalent, smooth map.
In an e-mail message to me, of 20 January, 1995, Chris Moore wrote as follows:

"I consider the systems [I have constructed] highly contrived, so I�m
not sure how relevant [they] really [are] to economics, but enjoy."

35An algebraic di¤erential polynomial is an expression of the form :
nX
i=1

aix
riyq0i

�
y0
�q1i ::::�y(ki)�qkii

where ai is a real number, ri; q0i; ::::::; qkii are nonnegative integer s and y is a function
of x:
Algebraic di¤erential equations (ADEs) are ODEs of the form:

P
�
x; y; y0; y00; :::::; y(n)

�
= 0

where P is an algebraic di¤ erential polynomial not identically equal to zero.
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My feeling is that the BCSS model is also �highly contrived�and its relevance
to economics very dubious36 .
On the more concrete problem of the computational complexity of ODEs,

there have been research and impressive results within one or another recursive
analysis model for at least 40 years. For example Cleave, [?], p.447, working
within Goodstein�s recursive analysis, showed, already in 1969, how �to estimate
the computational complexity of the solution of an ordinary di¤erential equa-
tion in terms of its position in the Grzegorczyck hierarchy of primitive recursive
functions.� The extra �nesse here, from a practical, computing point of view,
is not only its basis in the Turing model of computation; but also based on
�rst constructivising the classical non-constructive Cauchy-Lipschitz existence
theorem. In my own work I have worked with ODEs and a constructivised ver-
sion of the Peano existence theorem to replicate the kind of analysis and results
achieved by Cleave and others, ever since Henrici proved, [?], that some of the
classical theorems in ODEs could be constructivised. Even more pertinent to
the claims in [4], on building mathematical foundations for numerical meth-
ods, there is Miller�s work, [?] aimed precisely at providing a recursive function
theoretic analysis of numerical methods37 .

36Thoughtless appeals to the BCSS model is not unknown in an economic text purporting
to provide a framework and an analysis of �complexity�in real economic models underpinned
by a model of computation:

"Computing with real numbers o¤ers some important advantages in the context
of scienti�c computing. ... it is also relevant to applications in economic theory.
Economic models typically use real variables and functions of them. A model
of computing in which the elementary operations are functions of real variables
allows the model to be directly applied to standard economic models, without
requiring an analysis of approximations in each application."

[49], pp. 1-2; italics added.

37There is a �grudging nod�to the long and rich tradition of considering computability and
complexity of models de�ned over <, in a variety of recursive and computable analyses, by
Smale, in [73], p.61:

"Indeed, some work has now been done to adapt the Turing machine framework
to deal with real numbers........ Thus, the foundations are probably being laid
for a theory of computation over the real numbers."

This acknowledgement comes in 1991 after almost continuous (sic!) work by recursive and
computable analysts to adapt the Turing model to domains over <: Weihrauch, himself a
notable contributor to this adapting tradition refutes what I can only call a �preposterous�
claim in [4], p.23:

"A major obstacle to reconciling scienti�c computation and computer science
is the present view of the machine, that is the digital computer. As long as
the computer is seen simply as a �nite or discrete object, it will be di¢ cult
to systematize numerical analysis. We believe that the Turing machine as a
foundation for real number algorithms can only obscure concepts."

I can only endorse, wholeheartedly, Weihrauch�s entirely justi�able claim that the �theory
presented in his book, [90], p.268, �refutes their [i.e., the above] statement.�
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4.2.3 The Contrived Newtonian Vision

"Isaac Newton made a continuous mathematical model of a dis-
crete universe using di¤erential equations to explain how things in
that universe move. ....
Real numbers are crucial to Newton�s universe of a continuous

universe. Real numbers give the picture of a continuous set of num-
bers between zero and one.
[72], pp.90-1.

Clearly, the authors of [4] have not done their homework on Newton (and
Leibnitz). That these two pioneers of the di¤erential and integral calculus strug-
gled to found their mathematics on the non-standard numbers, rather than the
conventional real number continuum, is part of the folklore of the history of
analysis �at least since Veronese, Skolem and, more recently, Abraham Robin-
son and Edward Nelson. Quite apart from the historically unsubstantiable as-
sertion that the Newton�s calculus was based on what is now called real analysis
�and, thus, the real number continuum �rather than non-standard analysis,
there is the even more contentious suggestion, in the general program enunci-
ated and propagated via the BCSS model, that continuous time modelling of
physical processes in the natural sciences is, somehow, more �realistic�or accu-
rate. I can do no better than to remind these authors of one of Komogorov�s
perceptive observations in this regard:

"Until recently, in the mathematical treatment of natural science
..., the prevailing way of modelling real phenomena was by means of
mathematical models constructed on the mathematics of the in�nite
and the continuous. For example, in studying the process of mole-
cular heat conductivity, we imagine a continuous medium in which
the temperature is subject to the equation

@u

@t
= K

�
@2u

@x2
+
@2u

@y2
+
@2u

@z2

�
(25)

Mathematicians usually regard the corresponding di¤erence scheme

�tu = K (�xxu+�yyu+�zzu) (26)

Only as arising out of the approximate solution of the �exact�
equation [25]. But the real process of heat conduction is no more
similar to its continuous model expressed by [25] that to the discrete
model directly expressed by [26]."
[40], p.30; italics added.

Not very recently, Richard Feynman ([20], p.467) wondered:

"Can physics be simulated by a universal computer?
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Feynman, in his characteristically penetrating way, then asked three obvi-
ously pertinent questions to make the above query meaningful:

� What kind of physics are we going to imitate?

� What kind of simulation do we mean?

� Is there a way of simulating rather than imitating physics?

Before providing fundamental, but tentative, answers to the above queries,
he adds a penetrating caveat (ibid, p.468; italics in original):

"I want to talk about the possibility that there is to be an exact
simulation, that the computer will do exactly the same as nature."

Feynman�s answer to part of the �rst question was that the kind of physics we
should simulate are �quantum mechanical phenomena�, because (ibid, p. 486):

"...I�m not happy with all the analyses that go with just the classical
theory, because nature isn�t classical, dammit, and if you want to
make a simulation of nature, you�d better make it quantum mechan-
ical, and by golly it�s a wonderful problem, because it doesn�t look
so easy."

But he was careful to point out, also, that there was a crucial mathematical
di¤erence between �quantizing�and �discretizing�(ibid, p. 488; italics added):

"Discretizing is the right word. Quantizing is a di¤erent kind of
mathematics. If we talk about discretizing ... of course I pointed
out that we�re going to have to change the laws of physics. Because
the laws of physics as written now have, in the classical limit, a
continuous variable everywhere ... ."

He was not the only giant in the natural sciences who wondered thus: Ein-
stein, Schrödinger, Hamming, To¤oli, Fredkin and most recently, Penrose, too,
have had speculative thoughts along similar lines. Einstein, in perhaps his last
published work, seems to suggest that a future physics may well be in terms of
the discrete:

"One can give good reasons why reality cannot be represented as a
continuous �eld. ...."

[19], p.166

Roger Penrose, in his recently published, massive, vision of The Road to
Reality, was even more explicit:
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[W]e may still ask whether the real-number system is really �cor-
rect�for the description of physical reality at its deepest level. When
quantum mechanical ideas were beginning to be introduced early in
the 20th century, there was the feeling that perhaps we were now
beginning to witness a discrete or granular nature to the physical
world at its smallest scales.... Accordingly, various physicists at-
tempted to build up an alternative picture of the world in which
discrete processes governed all action at the tiniest levels. ....
In the late 1950s, I myself tried this sort of thing, coming up

with a scheme that I referred to as the theory of �spin networks�, in
which the discrete nature of quantum-mechanical spin is taken as
the fundamental building block for a combinatorial (i.e. a discrete
rather than real-number-based) approach to physics."
[53], pp.61-2; italics in the second paragraph as in original.

These speculations on the granular structure of �reality�at some deep level
arose out of purely theoretical developments in the subject, but in continuous
interaction with the epistemology of measurement in well-designed and sound
experimental environments. Where these re�ections by Feynman, Einstein and
Penrose leave the loose epistemology and wild methodological claims in [4], I
am not at sure.

5

6 Lessons from the Past; Visions for the Future

[Takeuti says]: I am now very much interested in proving P < NP:

[Kreisel says]: I am interested in the subject only if P = NP

pace Gaisi Takeuti (Kreisel and I in: Kreiseliana: About and Around
Georg Kreisel, edited by Piergiorgio Odifreddi, A.K.Peters, 1996)

To this I may add38 :

[da Costa and Doria say]: S + [P = NP ] is a consistent theory

where, S : A �reasonably strong consistent axiomatic system that includes
arithmetic and has a recursively enumerable set of theorems.�
Where does all this leave a computable economist and his perspectives on

computational complexity theory. da Costa and Doria summarise metamathe-
matical approaches to the P =?NP question, even suggesting that S could well
be ZFC: I, as a computable economist, shudder to think how a non-computable

38 I am relying on [16] for these �exotic�remarks
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economist, non-competent in metamathematics, invoking this kind of exotic re-
sult to claim that TSP is tractable, in theory �as they do with equilibria and
e¢ ciency postulates, with no hope ever of deciding or computing any such thing.
Any analysis of the computational complexity of any theory requires that the

investigated theory should be underpinned by a model of computation. As it is
in economic theory today, not a single respectable formalization �whether ortho-
dox or not �is underpinned by a formal or informal model of computation. Ad
hoc, ex post, approximations of uncomputable, non-constructive economic theo-
ries, indiscriminate approximations using expansions and contractions without
any understanding of the computable structure of a model is routinely resorted
to, and far reaching policy conclusions are inferred. Non-constructive contrac-
tion mappings, uncomputable local equilibria, undecidable e¢ ciency postulates
�these are the staple features of analytical economics. The advent of the digital
computer, and its ubiquity, has lent a veneer of respectability to computation
and, hence, there seems to be licence to talk about the computational � and
other - complexities of such essentially non-computable models.
Is there a way out of this morass and confusion?
My own view, from the point of view of computable economics, is uncompro-

mising: one has to formulate theories with a model of computation underpinning
them. There is no point in proving the existence of a solution to the IVP of
an ODE, without also knowing how to constructivise39 the solution so that one
can investigate how easy or hard it is to determine it.
The lessons from the past are depressing. I have, myself, been bamboozled

by the dazzling beauty a mathematical format that appears to be meaningfully
numerical. This happened to me in the particular case of the ellipsoid algorithm.
When I was taught it, and then came to apply it, in particular, in policy oriented
contexts, I was not su¢ ciently alert to the fact that there was serious question
of consistent approximation involved (see the discussion above, in the section on
LP. I do not know of any advanced textbook in mathematical economics that
deals with the theory of exact approximation. Neither is there any meaningful
teaching of constructive mathematics, even of a rudimentary kind. Thus, no
able young graduate student is ever trained to think algorithmically; instead,
the substitute is indiscriminate computation and blind approximations.
The way I have structured the paper, and the idiosyncratic �almost psy-

chedelic �way the discussion proceeded, was with the intention of providing a
series of vignettes of, and brief glimpses into, a world of quantitative adven-
tures where approximations, computations and constructions rule absolutely.
Moreover, the opening quote from the letter Simon wrote to me, was given the
prominence it deserves, because my conviction is that the only kind of economic
theory amenable to a consistent analysis in terms of computational complexity

39 I have used �constructivise� very often in this paper. I think it is safe to assume that I
really mean �algorithmise�whether with a Turing model of computation as the backdrop or not.
Constructive mathematics refuses to abide by the Church-Turing thesis, but all its propositions
are algorithmic. I have, very gradually, come round to the view that the constructivist�s more
general vision, which subsumes the recursion theorist�s algorithmic world, is superior from
many points of view.
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theory is the Simon version of behavioural economics. In particular, satis�cing
is a natural concept within the framework of decision problems (in the sense in
which that phrase is de�ned in metamathematics, recursion theory and model
theory); bounded rationality, too, is best understood in a theory that is under-
pinned by a model of computation, as it was the case with any thing Simon
modelled.
The new behavioural economics is devoid of an underlying model of compu-

tation; so are game theory and experimental economics. That the latter is not
underpinned by a model of computation is, for me, a sad indictment of the puz-
zling hold that orthodox ways of thinking about mathematics can strangle the
richness of a fresh subject. It is also puzzling that the subject that de�nes itself
as that which �studies e¢ cient allocation of scarce resources�, and that which
has made much of having brought into this fold the study of information and
its husbanding, has not done so with respect to computation, computational
resources and computational structures.
In his thoughtful �Foreward� to Chaitin�s magnum opus, Jacob Schwartz

made the perceptive observation that, [69], p.vii:

"This quantitative theory of description and computation, or Com-
putational Complexity Theory as it has come to be known, studies
the various kinds of resources required to describe and execute a com-
putational process. Its most striking conclusion is that there exist
computations and classes of computations having innocent-seeming
de�nitions but nevertheless requiring inordinate quantities of some
computational resource."

But there are possible worlds and visions that may make them also realizable.
It is possible that the eternal charm of �innocent-seeming de�nitions�and simple
assumptions leading to unfathomable depths of computations and unimaginably
di¢ cult approximations may lure the sinners away from facile computations and
faulty theorising.
In my visions for the future I envisage a new generation of graduate students

willing to learn the mathematics of the computer, the philosophy of computa-
tions and the engineering of numerical analysis. They are being taught by an
older generation innocent of the metamathematical way of thinking about com-
putations. They are also being inundated with the axiomatic way of reasoning �
which I, not having been brought up on the much vaunted Greek mathematical
tradition, have never had to unlearn. I think the most important vision for the
future is to �nd a way to teach economics from a consistently and uncompro-
misingly algorithmic mode.
Yiannis Moschovakis, one of the outstanding frontier scholars of mathemat-

ical logic �in its recursion theoretic, set theoretic and model theoretic modes �
concluded his highly stimulating essay on the provocative question of �What Is
an Algorithm�with the following observation, [48], p.935 (italics added):

"I would guess that many results in the analysis of algorithms are, in
fact, discovered by staring at recursive equations (or informal pro-
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cedures which can be expressed by systems of recursive equations),
and then proofs are re-written and grounded on some speci�c model
of computation for lack of a rigorous way to explain an �informal�
argument."

Herbert Simon was the ultimate �even, perhaps, in the sense of being the
�last�, ��nal� �maestro of proceeding to theorise about decision processes in
economics in this way. In my visions of the future of and for economics, there will
be re-incarnations of Simons who may make the subject intrinsically algorithmic
so that computational complexity can become a routine part of the subject that
�e¢ ciently allocates scarce resources��where the notion of �e¢ ciency�is that
of the �good�and the �practical�. I end with visions, also, of Keynesian dentists
dominating the subject with their eminent practical sense of the possible.
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A Algorithmic Complexity Theory

"There is also a technical sense of �complexity� in logic, variously
known as Kolmogorov complexity, Solomono¤ complexity, Chaitin
complexity, ...., algorithmic complexity, information-theoretic com-
plexity, and program-size complexity. The most common designa-
tion is �Kolmogorov complexity�.... this is probably a manifestation
of the principle of �Them that�s got shall get,�since Kolmogorov is
the most famous of these mathematicians40 ."

[21]; p. 137; italics added.

This biblical reason for naming these variations on the theme of complexity
may well be plausible from some points of view. However, it appears that
Kolmogorov himself suggested that what is usually referred to as �Kolmogorov
complexity�should be called �Kolmogorov entropy�:

"[W]e call �Kolmogorov entropy�what is usually called �Kolmogorov
complexity.� This is a Moscow tradition suggested by Kol-
mogorov himself. By this tradition the term �complexity�relates
to any mode of description and �entropy�is the complexity related
to an optimal mode (i.e., to a mode that, roughly speaking, gives
the shortest description)."

[84], p. 271; italics in the original; bold emphasis, added.

Current orthodoxy of the �eld of algorithmic complexity theory, linking all
of the di¤erent variations of the themes mentioned above, is elegantly and com-
prehensively discussed, explained and described in the almost encyclopaedic
treatise by Li and Vitanyi. The �Russian Tradition�, referred to above, is also
amply discussed in works by Kolmogorov�s students and co-authors (for exam-
ple, [84], [85]). I have myself had a stab at a concise outline of the �eld, from the
point of view of randomness and induction (cf., [87], chapter 5), to which I may
refer the interested reader41 for a potted survey of the �eld. There is no point
in rehashing easily available visions and comprehensively presented interpreta-
tions42 . In this brief appendix I want to suggest that algorithmic complexity
40 In their comprehensive and admirable text on this subject, Li and Vitanyi �rst gave the

reason for subsuming all these di¤erent variations on one theme by the name �Kolmogorov
Complexity�, [42], p.84:

"Associating Kolmogorov�s name with [algorithmic] complexity may also be an
example of the �Matthew E¤ect��rst noted in the Gospel according to Matthew,
25:29-30.. ."

41John Kelly�s famous �elusive creature�!
42As in the case of computational complexity theory, there are encyclopaedic treatises, like

those by Schrijver, [68], Papadimitriou, [52], Garey & Johnson, [22], and many others, that
tell the story of the �eld, both from the point of view of the history of the forming ideas
and the exciting work at the frontiers. I am neither summarizing these excellent treatises nor
writing a survey. My aim here has been to try to give the various stories a slightly di¤erent
perspective from the point of view of a computable economist. This entails a perspective from
a generalized algorithmic vision - not just a recursion theoretic perspective.
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theory, even by any other name, has no intrinsic connection with computational
complexity theory.
The orthodox story, in an ultra-brief �almost scandalous �nutshell, is that

the origins of the �eld of algorithmic complexity theory lie in the work of Kol-
mogorov, Chaitin and Solomono¤43 , in their approaches to, respectively, the
quantity of information in �nite objects, program-size descriptions of the in-
formation content of a �nite object and induction. For an economist the most
interesting approach is that by Solomono¤, whose starting point, in fact, was
the Treatise on Probability, [33] by Keynes. These original aims developed into,
and linked with the earlier research on, the von Mises attempt to de�ne a fre-
quency theory approach to probability, randomness44 and Bayesian estimation.
All this is part of the folklore of the subject, easily gleaned from any of the
indicated references, above.
In all three traditions �i.e., the Kolmogorov, Chaitin and Solomono¤ �the

intentions were to measure the amount of information necessary to describe a
given, �nite, binary sequence (or string). A little more precisely, the idea is as
follows: given a string x, its algorithmic complexity is de�ned to be the short-
est string y from which a Universal Turing Machine45 can �produce�the given
x:On the other hand, in computational complexity theory �particularly as a
result of adherence to �Post�s Program��attention is not focused on individual
�nite strings. Instead the fundamental questions are about the computational
di¢ culty � i.e., complexity �of recognising sets. Thus, the problem is about
deciding whether a given �nite string belongs to a particular set or not. From
the main part of the paper it will be evident that in computational complexity
theory one tries to associate a function �}:N! N, to a recursive set, } such that
} is accepted by those Turing Machines, say �, that run in time 
 (�} (n)) :
Therefore, one way to link algorithmic complexity theory with computational
complexity theory will be to de�ne a notion of the former that is time-bounded
and is able to capture aspects of the complexity of the set }: In other words,
it is necessary to add a time-bounded complexity component, as is routine in
computational complexity theory, to the standard measure of algorithmic com-
plexity. If this is done, the complexity of the �nite string, x, will now be de�ned

43 I have, in my various related other writings on this subject, also tried to give due credit
to the earlier and contemporary independent work of Lars Löfgren and Hilary Putnam. The
representative references for Chaitin, Kolmogorov and Solomono¤ are, respectively, [8], [39],
[77] and [78].
44One direct link with the contents of the main part of this paper, i.e., with computational

complexity theory, was stated succinctly by Compagner, [12], p.700 (italics added):

"..[T]he mathematical description of random sequences in terms of complex-
ity, which in algorithmic theory leads to the identi�cation of randomness with
polynomial-time unpredictabilty."

Once algorithmic complexity theory is viewed as the basis for a de�nition of �nite random
sequences, then it is inevitable that the emphasis will be on prediction rather than compu-
tation. Thus, the link with orthodox computational complexity theory is not as �rm as the
inclusion of the sobriquet �complexity�in the title may suggest.
45 In the Solomono¤ tradition the corresponding �universality� resides in the concept of a

�universal distribution�.
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by the minimum of the sum of the description length and a measure of the time
required to produce that x; from the given description.
Thus, it is clear that algorithmic complexity theory is as separate a �eld

from computational complexity theory as information theory or physics � or
even economics �are. The main di¤erence is, of course, that algorithmic com-
plexity theory is, ab initio, underpinned by the Turing model of computation.
Hence, it is natural to de�ne time-constrained generation of the descriptive
complexity of members of sets. For example, as a computable economist, I con-
struct economic theories underpinned by Turing�s model of computation. Given
a computable economic theory, there will be naturally de�nable time-bounded
measures to describe the theory and, hence, immediate considerations of com-
putational complexity of such descriptions. This is the way the complexity of
solutions to ODE is studied, in the references given in the main part of the
paper. First, the ODE is constructi�ed; then the computational complexity of
the constructi�ed solution is evaluated. Again, the di¤erence is that description
is intrinsically algorithmized, in algorithmic complexity theory.
In conclusion, the following two remarks add, I hope, further substance to

my stance that the sobriquet �complexity�in algorithmic complexity theory is
somewhat unfortunate.
Firstly, I would like to add another point so as to dispel popular misconcep-

tions about correlating or juxtaposing complexity with incompleteness46 . Many
an unwary reader of Chaitin�s important works - and his speci�c program-size
approach to algorithmic information theory, the incarnation of Kolmogorov com-
plexity in Chaitin�s independent work - has had a tendency to claim that incom-
pleteness, undecidability or uncomputability propositions are only valid in so-
called �su¢ ciently complex�mathematical systems. A fortiori, that intuitively
simple computable systems are not computationally complex. This is simply
false. Very simple formal mathematical systems are capable of generating in-
completeness and undecidability propositions; just as intuitively very simple
computable systems are capable of encompassing incredibly complex computa-
tional complexities, as some of the above examples have shown. Conversely,
there are evidently complex systems that are provably complete and decidable;
and, similarly, there exist seemingly complex functions that are capable of be-
ing computed, even primitive recursively. As one obvious and famous example
illustrating incompleteness and essential undecidability in an intuitively sim-
ple, �nitely axiomatizable, simply consistent47 theory, one can take Robinson�s

46Or, simplicity with completeness. I am, of course, referring to incompleteness in the strict
metamathematical sense.
47See [36], p.287, footnote 216 and [35], p.470, Theorem 53. The part played by simple con-

sistency and the analogy with Rosser�s result of the essential undecidability of N, [60], is also
discussed in the relevant parts of [36]. Furthermore, despite some unfortunate misprints and
unclarity, Franzén�s �ne exposition of the use and abuse of Gödel�s Incompleteness theorems
has a good discussion of the way the Rosser sentence (rather than the more famous Gödel
sentence) is used in proving �by reference to [81] �undecidability in Robinson�s Arithmetic
([21], pp.158-9).
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Arithmetic,[59], as shown in some of the classic books of metamathematics48 ,
eg., [35], [36], pp. 280-1, [5], p.215,¤.
The issues and points raised in the previous paragraph are, in my opin-

ion, relevant as a preface to any discussion of algorithmic complexity, especially
because, as indicated in Franzén�s perceptive observation in the above open-
ing quote, this whole area is really about �a technical sense of �complexity�in
logic�49 . I believe it adds substance to the �Russian tradition�of not using the
word �complexity�to refer to this vast and fascinating �eld.
Secondly, If the distant modern origins of computational complexity theory,

via computability theory, can be found in Hilbert�s Tenth Problem, then modern
exact approximation theory is even more directly linked to Hilbert�s Thirteenth
Problem50 . Hilbert�s aim in formulating the 13th Problem �based on problems

48 I cite this example also because Robinson�s Arithmetic is su¢ cient to represent every
recursive function. It �gures in the very �rst, �Introductory�, pages of Odifreddi�s compre-
hensive, yet pedagogical, textbooks of classical recursion theory, [50], §I.1, p.23. There are
many equivalent ways of setting out the axioms of Robinson�s Arithmetic (see, for example,
the discussion in [50]); the following is the de�nition in the exceptionally clear presentation
of [5], p.215, ¤ (the prime denotes the successor operation):

1. x = 0 _ 9y; s:t:; x = y0

2. 0 6= x0

3. x0 = y0 ! x = y

4. x+0 = x

5. x+ y0 = (x+ y)0

6. x � 0 = 0

7. x � y0 = (x � y)+x
8. x < y $ 9z; (z0 + x = y)

49However, I believe Chaitin�s reference to his own pioneering work as �algorithmic infor-
mation theory�, is a much better encapsulation of the contents of the �eld and the intentions
of the pioneers. Indeed, the natural precursor is Shannon, rather than von Mises, but Whig
history is a messy a¤air and straightening out historical threads is a di¢ cult task, even in a
contemporary �eld.
50 If one reads the main content of the 13th Problem by replacing the word �nomography�

with �algorithm�, then the connection with the subject matter of this paper becomes fairly
clear, [28], p.424:

"[I]t is probable that the root of the equation of the seventh degree is a function
of its coe¢ cients which does not belong to the class of functions capable of
nomographic construction, i.e., that it cannot be constructed by a �nite number
of insertions of functions of two arguments. In order to prove this, the proof
would be necessary that the equation of the seventh degree f7 + xf3 + yf2 +
zf +1 = 0 is not solvable with the help of any continuous functions of only two
arguments. I may be allowed to add that I have satis�ed myself by a rigorous
process that there exist analytical functions of three arguments x; y; z which
cannot be obtained by a �nite chain of only two arguments."

Kolmogorov and Arnold refuted Hilbert�s conjecture by constructing representations of
continuous functions of several variables by the superposition of functions of one variable and
sums of functions.
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of nomography51 - was to characterise functions in terms of their complexity in
a natural way: �nd those de�ning characteristics of a function, such that, the
given function can be built up from simpler functions and simple operations,
rather like �once again �the way partial recursive functions are built up from a
collection of base functions and elementary operations, like ��recursion, mini-
malisation, etc.. Hilbert�s honed intuition suggested the formulation of the 13th
Problem; it was �like the 10th Problem �solved �negatively�, by Kolmogorov
and Arnold. The point to be emphasised here is, however, not the direct and
obvious connection with computational complexity theory52 ; but, to strengthen
my thesis that the �Russian Tradition� of referring to Kolmogorov entropy is
entirely justi�ed even from the point of view of his work on approximation the-
ory. Essentially, Kolmogorov introduced the concept of �"�entropy�of a metric
space53 �to evaluate the order of increase of the volume of the [nomographic]
table for an increase in the accuracy of [nomographic] tabulation.� In other
words, in his work on approximation theory, preceding his work on algorithmic
complexity theory by only a few years, Kolmogorov de�ned the �size�of a �nite
body �actually a subset of a Banach space �in terms of its �metric entropy�;
on the other hand, in his work on algorithmic complexity theory, he de�ned
the information content in a �nite string in terms on �entropy�(in the Shannon
tradition), too.
Finally, I don�t even think the notion of randomness of �nite strings needs

to be based on algorithmic complexity theory. I believe the more constructive
notion of lawless sequences, �rst enunciated by Brouwer, provides quite an ade-
quate basis for de�ning randomness of �nite sequences54 . However, this is quite
separate from the use of algorithmic complexity theory to provide rigorous foun-
dations for the von Mises notion of �Kollektives�and thereby make it possible to
remove the circularities that plagued early de�nitions of the frequency theory
of probability.

51 In the opening lines of the section stating the 13th Problem, Hilbert gives an intuitive
idea of �nomography�, [28], p.424:

"Nomography deals with the problem: to solve equations by means of drawings
of families of curves depending on an arbitrary parameter."

Those of us who indulge in drawing vector �elds might see the similarities!
52A beautiful discussion of approximation theory from this point of view �albeit implicitly

� is given in an unfortunately little reference work by Vitushkin, [89]; a more technical and
comprehensive survey of Kolmogorov�s work on approximation theory is in [82].
53See [89], p. xiii and [43], chapters 9 & 10. �Order of increase�, �increase in the accu-

racy�, �most favourable system of approximation�, �rapidity of convergence� are some of the
phrases used in Kolmogorov approximation theory. These are the considerations that make
approximation theoretical considerations naturally algorithmic and, therefore, also amenable
to computational complexity analysis.
54This is a distinctly undigested conjecture; but see [86] for rigorous suggestions along these

lines.
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