35 research outputs found

    Sparsity in the Delay-Doppler Domain for Measured 60 GHz Vehicle-to-Infrastructure Communication Channels

    Full text link
    We report results from millimeter wave vehicle-to-infrastructure (V2I) channel measurements conducted on Sept. 25, 2018 in an urban street environment, down-town Vienna, Austria. Measurements of a frequency-division multiplexed multiple-input single-output channel have been acquired with a time-domain channel sounder at 60 GHz with a bandwidth of 100 MHz and a frequency resolution of 5 MHz. Two horn antennas were used on a moving transmitter vehicle: one horn emitted a beam towards the horizon and the second horn emitted an elevated beam at 15-degrees up-tilt. This configuration was chosen to assess the impact of beam elevation on V2I communication channel characteristics: propagation loss and sparsity of the local scattering function in the delay-Doppler domain. The measurement results within urban speed limits show high sparsity in the delay-Doppler domain.Comment: submitted to IEEE International Conference on Communication

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Bayesian Learning Strategies in Wireless Networks

    Get PDF
    This thesis collects the research works I performed as a Ph.D. candidate, where the common thread running through all the works is Bayesian reasoning with applications in wireless networks. The pivotal role in Bayesian reasoning is inference: reasoning about what we don’t know, given what we know. When we make inference about the nature of the world, then we learn new features about the environment within which the agent gains experience, as this is what allows us to benefit from the gathered information, thus adapting to new conditions. As we leverage the gathered information, our belief about the environment should change to reflect our improved knowledge. This thesis focuses on the probabilistic aspects of information processing with applications to the following topics: Machine learning based network analysis using millimeter-wave narrow-band energy traces; Bayesian forecasting and anomaly detection in vehicular monitoring networks; Online power management strategies for energy harvesting mobile networks; Beam training and data transmission optimization in millimeter-wave vehicular networks. In these research works, we deal with pattern recognition aspects in real-world data via supervised/unsupervised learning methods (classification, forecasting and anomaly detection, multi-step ahead prediction via kernel methods). Finally, the mathematical framework of Markov Decision Processes (MDPs), which also serves as the basis for reinforcement learning, is introduced, where Partially Observable MDPs use the notion of belief to make decisions about the state of the world in millimeter-wave vehicular networks. The goal of this thesis is to investigate the considerable potential of inference from insightful perspectives, detailing the mathematical framework and how Bayesian reasoning conveniently adapts to various research domains in wireless networks

    Novel improvements of empirical wireless channel models and proposals of machine-learning-based path loss prediction models for future communication networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Path loss is the primary factor that determines the overall coverage of networks. Therefore, designing reliable wireless communication systems requires accurate path loss prediction models. Future wireless mobile systems will rely mainly on the super-high frequency (SHF) and the millimeter-wave (mmWave) frequency bands due to the massively available bandwidths that will meet projected users’ demands, such as the needs of the fifth-generation (5G) wireless systems and other high-speed multimedia services. However, these bands are more sensitive and exhibit a different propagation behavior compared to the frequency bands below 6 GHz. Hence, improving the existing models and developing new models are vital for characterizing the wireless communication channel in both indoor and outdoor environments for future SHF and mmWave services. This dissertation proposes new path loss and LOS probability models and efficiently improves the well-known close-in (CI) free space reference distance model and the floating-intercept (FI) model. Real measured data was taken for both line-of-sight (LOS) and non-line-of-sight (NLOS) communication scenarios in a typical indoor corridor environment at three selected frequencies within the SHF band, namely 14 GHz, 18 GHz, and 22 GHz. The research finding of this work reveals that the proposed models have better performance in terms of their accuracy in fitting real measured data collected from measurement campaigns. In addition, this research studies the impact of the angle of arrival and the antenna heights on the current and improved CI and FI models. The results show that the proposed improved models provide better stability and sensitivity to the change of these parameters. Furthermore, the mean square error between the models and their improved versions was presented as another proof of the superiority of the proposed improvement. Moreover, this research shows that shadow fading’s standard deviation can have a notable reduction in both the LOS and NLOS scenarios (especially in the NLOS), which means higher precision in predicting the path loss compared to the existing standard models. After that, the dissertation presents investigations on high-ordering the dependency of the standard CI path loss model on the distance between the transmitting and the receiving antennas at the logarithmic scale. Two improved models are provided and discussed: second-order CI and third-order CI models. The main results reveal that the proposed two models outperform the standard CI model and notable reductions in the shadow fading’s standard deviation values as the model’s order increases, which means that more precision is provided. This part of the dissertation also provides a trade-off study between the model’s accuracy and simplicity

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Representative-based Big Data Processing in Communications and Machine Learning

    Get PDF
    The present doctoral dissertation focuses on representative-based processing proper for a big set of high-dimensional data. Compression and subset selection are considered as two main effective methods for representing a big set of data by a much smaller set of variables. Compressive sensing, matrix singular value decomposition, and tensor decomposition are employed as powerful mathematical tools to analyze the original data in terms of their representatives. Spectrum sensing is an important application of the developed theoretical analysis. In a cognitive radio network (CRN), primary users (PUs) coexist with secondary users (SUs). However, the secondary network aims to characterize PUs in order to establish a communication link without any interference with the primary network. A dynamic and efficient spectrum sensing framework is studied based on advanced algebraic tools. In a CRN, collecting information from all SUs is energy inefficient and computationally complex. A novel sensor selection algorithm based on the compressed sensing theory is devised which is compatible with the algebraic nature of the spectrum sensing problem. Moreover, some state-of-the-art applications in machine learning are investigated. One of the main contributions of the present dissertation is the introduction a versatile data selection algorithm which is referred as spectrum pursuit (SP). The goal of SP is to reduce a big set of data to a small-size subset such that the linear span of the selected data is as close as possible to all data. SP enjoys a low-complexity procedure which enables SP to be extended to more complex selection models. The kernel spectrum pursuit (KSP) facilitates selection from a union of non-linear manifolds. This dissertation investigates a number of important applications in machine learning including fast training of generative adversarial networks (GANs), graph-based label propagation, few shot classification, and fast subspace clustering
    corecore