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Abstract

Path loss is the primary factor that determines the overall coverage of networks. Therefore, designing 

reliable wireless communication systems requires accurate path loss prediction models. Future wireless 

mobile systems will rely mainly on the super-high frequency (SHF) and the millimeter-wave (mmWave) 

frequency bands due to the massively available bandwidths that will meet projected users’ demands, such 

as the needs of the fifth-generation (5G) wireless systems and other high-speed multimedia services. 

However, these bands are more sensitive and exhibit a different propagation behavior compared to the 

frequency bands below 6 GHz. Hence, improving the existing models and developing new models are vital 

for characterizing the wireless communication channel in both indoor and outdoor environments for future 

SHF and mmWave services. 

     This dissertation proposes new path loss and LOS probability models and efficiently improves the well-

known close-in (CI) free space reference distance model and the floating-intercept (FI) model. Real 

measured data was taken for both line-of-sight (LOS) and non-line-of-sight (NLOS) communication 

scenarios in a typical indoor corridor environment at three selected frequencies within the SHF band, 

namely 14 GHz, 18 GHz, and 22 GHz. The research finding of this work reveals that the proposed models 

have better performance in terms of their accuracy in fitting real measured data collected from measurement 

campaigns. In addition, this research studies the impact of the angle of arrival and the antenna heights on 

the current and improved CI and FI models. The results show that the proposed improved models provide 

better stability and sensitivity to the change of these parameters. Furthermore, the mean square error 

between the models and their improved versions was presented as another proof of the superiority of the 

proposed improvement. Moreover, this research shows that shadow fading’s standard deviation can have a 

notable reduction in both the LOS and NLOS scenarios (especially in the NLOS), which means higher 

precision in predicting the path loss compared to the existing standard models. 

     After that, the dissertation presents investigations on high-ordering the dependency of the standard CI 

path loss model on the distance between the transmitting and the receiving antennas at the logarithmic scale. 

Two improved models are provided and discussed: second-order CI and third-order CI models. The main 

results reveal that the proposed two models outperform the standard CI model and notable reductions in the 

shadow fading’s standard deviation values as the model’s order increases, which means that more precision 

is provided. This part of the dissertation also provides a trade-off study between the model’s accuracy and 

simplicity. 



 

IX 
 

     Seeking higher prediction accuracy, the following part of this research work presents and evaluates the 

performance of several well-known machine learning methods, including multiple linear regression (MLR), 

polynomial regression (PR), support vector regression (SVR), as well as the methods using decision trees 

(DT), random forests (RF), K-nearest neighbors (KNN), artificial neural networks (ANN), and artificial 

recurrent neural networks (RNN). RNNs are mainly based on long short-term memory (LSTM). The models 

are compared based on measurement data to provide the best fitting machine-learning-based path loss 

prediction models. The main results obtained from this study show that the best root-mean-square error 

(RMSE) performance is given by the ANN and RNN-LSTM methods, while the worst is for the MLR 

method. All the RMSE values for the given learning techniques are in the range of 0.0216 to 2.9008 dB. 

Furthermore, this research shows that the models (except for the MLR model) perform excellently in fitting 

actual measurement data for wireless communications in enclosed indoor environments since they provide 

R-squared and correlation values higher than 0.91 and 0.96, respectively. The results show that these 

learning methods could be used as accurate and stable models for predicting path loss in the mmWave 

frequency regime since their precisions are much better than the standard and improved empirical models. 

     Motivated by the achieved high prediction accuracy of the neural networks, an ensemble-method-based 

neural network path loss model is proposed in the final part of this dissertation. The model is based on the 

ANN, RNN-LSTM, and the convolutional neural network (CNN) models. Extensive performance analysis 

is provided regarding prediction accuracy, stability, the contribution of input features, and the time needed 

to run the model. The main research finding of this work reveals that the ensemble-method-based model 

outperforms all the other models (ANN, RNN-LSTM, and CNN) in terms of efficiency and high prediction 

accuracy and could be trusted as a promising model for path loss in complex environments at high-

frequency bands. The research findings of this work are vital for planning, evaluating, and optimizing future 

wireless communication networks. 
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Chapter 1: General Introduction 

 

1.1 Introduction 

Era after era, the demand for higher mobile data traffic is exponentially increasing due to the tremendous 

revolution in technologies relying totally on mobile networks and their services. In 2019, Cisco reported 

that by the end of 2022, the number of networked connections and devices would grow up to 28.5 billion, 

and mobile-ready applications would reach up to 12.3 billion of them [1], [2]. Also, it was expected that by 

2023 the overall mobile data traffic would be increased to approximately 77 exabytes per month, which is 

a seven-fold increase over the year of 2017 [2]. Another vital issue that has led to more data needs is the 

circumstances that the world faces nowadays, such as the Coronavirus pandemic that made most of studying 

and working online, which has led to enormous use of the internet connection. Of course, this requires 

massive amounts of bandwidth [3]-[6].  

     Previously, the congestion of the spectrum below 6 GHz was enough to meet the existing systems’ 

requirements. On the contrary, these bands will not meet the necessities of the fifth-generation (5G) cellular 

networks and many other applications due to their relative shortage in the bandwidth required [7]-[10]. 

Because of that, research has been done to adopt the frequency regime above 6 GHz as a promising solution 

to accomplish high peak data transmission rates up to multi gigabits per second with the contribution of 

complex modulation schemes and massive multiple-input multiple-output (Massive-MIMO) systems and 

other advanced techniques such as beamforming [12]-[16]. All these solutions together will satisfy the 

requirements of the 5G system. To the best of our knowledge, the research beyond 5G systems towards the 

sixth-generation (6G) cellular networks has already been started by escaping the current solutions of the 

5G systems aiming for better performance [1], [17]. In June 2018, the first commercial 5G mobile 

communication standard (3GPP Release 15) was completed after many years of research and development. 

In the middle of 2019, some countries had already deployed 5G cellular networks. Meanwhile, the first 5G-

enabled smart devices are now available on the market [1].  

     It is widely known that when a wireless communication system sends signals from the transmitting 

antenna(s), the wireless signals will have a reduction of their power as they travel through the wireless 

communication channel to the receiving antenna(s). This signal loss is well-known as path loss, which is 

the dominant component of the large-scale fading effects. Large-scale fading models play a vital role in 

optimizing base station deployments, estimating radio coverage, and characterizing the radio environment 

to quantify the performance of wireless communication systems [18]. Furthermore, efficient and reliable 
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determination of crucial factors, such as the signal field strength, carrier-to-interference (C/I) ratio, and 

signal-to-noise ratio (SNR), can be achieved if in-depth knowledge of propagation loss is provided [19]. As 

a result, for network planning and implementation of wireless communication systems, radio propagation 

channel characteristics in various environments are required [20]. 

     The performance of wireless communication systems is influenced by radio propagation in physical 

environments since the radio waves often experience fading. The wirelessly propagated signals from any 

communication system’s transmitting antenna(s) suffer from attenuations over distances and frequencies, 

which are well-known as large-scale fading and small-scale fading. In addition, the signals also experience 

losses because of atmospheric conditions and surrounding physical objects, leading to multipath 

propagation since the receiving antenna(s) receives the signals mainly from reflections, diffractions, and 

scattering mechanisms [21]. These multipath effects result in signal power fluctuation and increase the 

uncertainty of received signal power [22]. This work mainly focuses on developing large-scale path loss 

models that are crucial for estimating radio coverage, allocating frequencies properly, optimizing base 

stations, and identifying the most suitable antennas [18], [23]. 

     Path loss is a vital component that must be modeled accurately to have reliable system design and link 

budget analysis. Moreover, the knowledge of the path loss provides statistically averaged (space and time) 

radio channel conditions. Consequently, researchers need to present more accurate path loss prediction 

models that can precisely describe the reduction of the wireless signal levels and accurately fit the real 

measured data collected in different indoor and outdoor environments over a wide range of frequency 

regimes. The reason behind the inability of the traditional models to be reliable models for the super-high 

frequency (SHF) and the millimeter-wave (mmWave) frequency bands and beyond is the significant 

sensitivity of the signals at these frequency bands to the propagation mechanisms in the communication 

channel. As an example, the mmWave signals provide substantial path loss values in the first meter away 

from the transmitting antenna and have a significant penetration loss through solid materials such as 

concrete walls [5], [24]-[27]. 

     In general, the path loss can be modeled deterministically (theoretically), empirically (statistically), or 

stochastically [24]. The best understanding of the wireless channels’ propagation characteristics can be 

done based on measurement campaigns in propagation’s real environments [28]. In this dissertation, we 

adopted measurement-based (semi deterministic) models to predict the path loss taking into account the 

propagation mechanisms such as reflections and diffractions and the waveguiding effect that occurs mainly 

in enclosed indoor environments such as corridors. 
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1.2 Problem Formulation, Motivation, and Contributions of the Dissertation 

It is worth mentioning that the mmWave and higher frequency regime have different propagation behavior 

from the sub-6 GHz frequencies [29]. As such, the problem of the dynamic blockage by humans was not a 

significant factor to be considered in communications using the sub-6 GHz. However, due to the short-

wavelength, mmWave and higher frequency bands are sensitive to this blockage since it has a significant 

signal loss. Another issue for the mmWave bands is the poor diffraction as a propagation mechanism [30], 

[31]. Hence, based on these factors, and many others, accurate channel modeling over the SHF, mmWave, 

and sub-THz frequency bands is highly needed to design and evaluate future wireless communications 

networks [32]-[35]. 

     Extensive measurement campaigns have been carried out worldwide in different outdoor and indoor 

environments with various communication techniques, including line-of-sight (LOS), non-line-of-sight 

(NLOS), and other scenarios, to provide propagation models for each specific frequency band and 

communication environment. Recently, most research aimed to characterize and model the wireless channel 

has focused on specific path loss models because of their suitability, such as the close-in (CI) free space 

reference distance, floating-intercept (FI), and/or alpha-beta-gamma (ABG) model [36]-[56]. The 

improvement of these models in the literature was based on a consideration of some factors like cross-

polarization discrimination (XPD), taking into account the mismatching of the antennas’ polarization as in 

the models named CIX and ABGX models, which are an improvement of the CI and ABG models, 

respectively [27], [28]. Another improvement of the CI model is by presenting the path loss exponent (PLE) 

term as a frequency-dependent factor, as in the CIF model [27], [50], [57]-[59]. The last two factors 

(frequency-dependent PLE and XPD) were considered in one model called the CIFX model [27]. A dual-

slope CI path loss model was presented in [60] and [61]. This model provides higher precision in predicting 

the path loss than the standard CI model. Note that all these improvements can be implemented easily on 

the FI and ABG models. Other improved models based on other different concepts can be found in [24], 

[38], [58], [62]-[64]. However, the question that has motivated a part of this research is, how can we improve 

the accuracy and reduce the standard deviation of the shadow fading of these standard path loss models 

without adding parameters that depend on something else like antennas’ height or the XPD?. A basic rule 

states that any linear equation is a polynomial equation with zero coefficients in higher orders, which 

provides the solution to this question. The linear relationship between the path loss and the logarithmic 

scale of the separation distance between the transmitting and receiving antennas characterizes the common 

path loss models (such as the CI and FI models), as is widely known. We provide an extra parameter to 

make these models a function of the squared logarithm of the transmitter-receiver (Tx-Rx) separation 
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distance. This adopted improvement provides more precision in predicting the path loss, as will be proved 

in this dissertation. 

     Many comparative studies between the existing path loss prediction models show the CI and FI models’ 

preference over other models like the ABG model [27], [50], [65], [66]. The CI and FI models offer a 

precise estimation of the large-scale path loss as a function of the 3D Tx-Rx separation distance over the 

SHF and mmWave frequency regimes [28], [52], [66]. Hence, we hereby propose to further improve these 

two models while avoiding a significant increase in the models’ complexity to be used by engineers in the 

wireless system design and calculations of the link-budget since the total number of the improved models’ 

parameters is within a suitable range as other well-known models such as the ABG model have. 

Furthermore, motivated by the need for more accurate path loss prediction models, this study presents 

investigations on the impact of high ordering the log-distance dependency of the path loss on the models’ 

performance. 

     In addition, to the best of our knowledge, there is a research gap in understanding and modeling the LOS 

probability models for indoor corridor environments in the SHF band. Hence, this work tries to fill the gap 

by providing LOS probability models based on real measured data collected in a typical indoor corridor 

environment at 14, 18, and 22 GHz. Also, this research proposes a new LOS probability model that performs 

better than the standard ITU and WINNER II models. Furthermore, this LOS probability model will be 

used for proposing a probabilistic path loss prediction model to tackle the classification problem between 

LOS and NLOS communication scenarios. The difficulties in evaluating mobile networks at mmWave and 

higher frequencies due to the significant distinction between LOS and NLOS communications served as 

the impetus for the development of this model. Since it is generally known that the mmWave frequency 

bands suffer from propagation mechanisms and have higher penetration and reflection losses than the 

frequency regime, the difference in these frequency bands is clear. The key benefit of this proposed model, 

in addition to its precision and efficacy, is that it does not need knowledge of the LOS and NLOS 

communication conditions for the mobile equipment because the probability of having a clear LOS 

connection is already taken into account in the proposed LOS probability model. 

     To the best of our knowledge, there is a severe gap in organizing and concluding the previously 

conducted efforts for path loss prediction based on machine learning (ML) methods. As it is well-known, 

all ML-based models mainly depend on the datasets for the models’ training. These datasets are brought 

from different environments and communication scenarios at various frequency bands for several 

applications. Almost all of the existing related works have proposed specific ML-based (or deep-learning-

based) models and compared their performance with the traditional empirical and/or a few other ML-based 

path loss models to show better prediction accuracy. However, until now, there is no way to guess which 
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ML method is the best for a specific radio propagation environment since the real measurement data will 

be similar in such environments. This goal can be achieved by comparing several ML-based path loss 

prediction models with the same datasets and input features and running away from the thinking of 

comparing with the traditional linear models since ML-based models already perform better according to 

literature due to the ability to create a complex non-linear relationship between their inputs and outputs. 

Motivated by that, this work attempts to fill this gap for a typical enclosed indoor corridor environment by 

providing a comparative analysis of several relevant techniques used for path loss prediction. This study 

will give other researchers an insight into the best ML-based model for enclosed indoor small-cell 

communications in the SHF and mmWave frequency regimes. 

      The final part of this dissertation's primary goal is to offer the most reliable and accurate path loss 

prediction model possible. In order to do this, we propose and examine the performance of an ensemble-

method-based model for path loss prediction. To the best of our knowledge, based on a literature review, 

this is the first effort that uses ensemble-method-based neural networks for predicting path loss. All the 

existing studies exploit only separate algorithms for this objective. The proposed model is built based on 

three neural network models: artificial neural networks (ANN), artificial recurrent neural networks (RNN) 

based on long short-term memory (LSTM), shortly known as RNN-LSTM, and convolutional neural 

networks (CNN). These research findings will contribute to the body of knowledge by providing accurate 

and stable path loss prediction models for future wireless communications. 

1.3 Scope of the Work 

The ultimate goal of this research is to provide the most accurate path loss prediction modeling mainly in 

two ways: 1) improving the existing standard semi-deterministic models and providing new models that 

perform better for future wireless communications in enclosed indoor channels. 2) Compare the 

performance of several ML-based path loss models to propose the best-fit ML-based model using the 

ensemble method. Several evaluations and performance analyses will be presented in this work. These 

studies are mainly based on real measurement data collected in an indoor corridor environment that exists 

on the fifth floor of the Discipline of Electrical, Electronic, and Computer Engineering, Howard College 

Campus, University of KwaZulu-Natal, Durban 4001, South Africa. 

1.4 Objectives 

The main aim of this dissertation is to propose novel methods for improving the performance of well-known 

standard path loss models and propose new measurement-based and machine-learning-based models for 

future wireless communications in enclosed indoor environments. The specific objectives of this research 

are as follows: 
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 To present, analyze, and prepare measurement data for learning and non-learning path loss modeling. 

The data was collected from measurement campaigns conducted at three crucial frequency bands, 

namely 14 GHz, 18 GHz, and 22 GHz. In addition, the LOS and NLOS communication scenarios were 

considered in the measurement campaigns. 

 To propose a novel approach for improving the prediction accuracy of the well-known close-in (CI) 

free space reference distance and floating-intercept (FI) path loss prediction models. 

 To provide performance evaluation of the standard and proposed models in terms of their stability and 

behavior with the change of vital factors such as the operating frequency, the angle of arrival (AoA), 

and the antenna height. 

 To propose a new LOS probability model for enclosed indoor corridor channels. This model will be 

compared to standard LOS probability models such as ITU and WINNER II. 

 To propose a probabilistic path loss prediction model has the advantage that it does not require 

knowledge of the LOS and NLOS communication conditions since it considers the probability of 

having a clear LOS path between the transmitting and receiving antennas. 

 To provide an extensive comparative analysis of several machine-learning-based methods for path loss 

modeling. The evaluation will include the prediction accuracy, stability, complexity, run time, and the 

input features’ contribution to the models’ overall performance. 

 To present a novel path loss prediction model based on the ensemble method. Three neural networks 

will be considered in proposing this model. Finally, an extensive performance evaluation will be 

performed to prove the superiority of the proposed model.   

1.5 Dissertation Structure 

After the introduction chapter, the remainder of this dissertation is structured as follows: 

Chapter 2 

     In this chapter, a brief review of the propagation mechanisms in wireless channels, large- and small-

scale fadings, and the wireless channel models is presented. Moreover, the chapter discusses in detail the 

related works that focused on path loss and LOS probability modeling based on measurements and machine 

learning. The related works are thoroughly discussed to open up the vision of the research gaps in this field 

of study. 

Chapter 3 

     This chapter contains a complete description of propagation measurements carried out in an enclosed 

indoor corridor environment at the adopted frequency bands and communication scenarios. Moreover, a 
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detailed derivation of a proposed path loss prediction, LOS probability, and probabilistic models are 

presented. Finally, this chapter discusses the main results of these proposed models. 

Chapter 4 

     In this chapter, a novel approach for improving the well-known CI and FI path loss prediction models is 

provided in detail. Both the LOS and NLOS communication scenarios are considered in this research. 

Furthermore, the chapter presents a comprehensive comparative analysis of the standard models and the 

proposed improved models, taking into account vital factors such as LOS and NLOS communications, the 

impact of the AoA, and investigation of the antenna height on the models’ parameters. 

Chapter 5 

     This chapter mainly focuses on investigating the impact of high-ordering the log distance dependency 

of the standard CI path loss model. Two models are proposed and compared with the CI model for both the 

LOS and NLOS conditions at all the adopted frequency bands. Also, the chapter provides a performance 

analysis of these models using several error metrics such as the prediction error, mean prediction error 

(MPE), and standard deviation error (SDE). Finally, the chapter discusses the tradeoff between the models' 

accuracy and complexity. 

Chapter 6 

     In this chapter, a comprehensive comparative study of several well-known machine-learning-based path 

loss prediction models is provided. More specifically, the chapter presents and evaluates the performance 

of path loss models using multiple linear regression (MLR), polynomial regression (PR), support vector 

regression (SVR), as well as the methods using decision trees (DT), random forests (RF), K-nearest 

neighbors (KNN), artificial neural networks (ANN), and artificial recurrent neural networks (RNN). RNNs 

are mainly based on long short-term memory (LSTM). The models are compared based on measurement 

data to provide the best fitting machine-learning-based path loss prediction models. Moreover, the run time 

analysis is performed on all these models as another aspect in comparing them. Finally, the chapter 

discusses the input features' contribution to the model's overall performance. 

Chapter 7 

     This chapter proposes a novel neural-networks-based path loss prediction model using the ensemble 

method for future indoor wireless communications. The model is evaluated and compared to the ANN, 

RNN-LSTM, and the convolutional neural network (CNN), which are the most accurate ML-based models, 

as found in chapter 6. The comparative analysis has several aspects, including the model's prediction 
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accuracy and stability, the impact of the input features on the overall performance, and the required run 

time of the model. The performance metrics adopted for evaluating the machine learning models are the R-

squared, root mean squared error (RMSE), mean absolute percentage error (MAPE), mean square error 

(MSE), and the correlation (Corr) coefficient. 

Chapter 8 

     In this chapter, the main findings of this research work and recommendations for related future works 

are presented.  

1.6 Contributions to Publications 

The following Peer-Reviewed journal and conference papers are the main contributions of this dissertation: 

 Journal articles directly related to this dissertation: 

 

1) M. K. Elmezughi and T. J. Afullo, “An Efficient Approach of Improving Path Loss Models for Future 

Mobile Networks in Enclosed Indoor Environments,” IEEE Access, vol. 9, pp. 110332–110345, Aug. 

2021. 

2) M. K. Elmezughi, O. Salih, T. J. Afullo, and K. J. Duffy, “Comparative Analysis of Major Machine-

Learning-Based Path Loss Models for Enclosed Indoor Channels,” Sensors, vol. 22, no. 13, pp. 4967, 

Jun. 2022. 

3) M. K. Elmezughi and T. J. Afullo, “Investigations into the Effect of High-Ordering the Log-Distance 

Dependency of Path Loss Models for Indoor Wireless Channels,” International Journal on 

Communications Antenna and Propagation (IRECAP), vol. 12, no. 1, Feb. 2022. 

4) M. K. Elmezughi, O. Salih, T. J. Afullo, and K. J. Duffy, “Path Loss Modeling Based on Neural 

Networks and Ensemble Method for Future Wireless Networks,” Heliyon, Elsevier, submitted for 

publication. 

 

 Refereed conference papers directly related to this dissertation: 

 

5) M. K. Elmezughi and T. J. Afullo, “Proposal of a Measurement-Based Propagation Channel Model 

for Future Indoor Wireless Networks,” Southern Africa 2022 Telecommunication Networks and 

Applications Conference (SATNAC 2022), Aug. 2022, pp. 1-5. 
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6) M. K. Elmezughi and T. J. Afullo, “Proposal of a Probabilistic Path Loss Model for Wireless 

Communications in Indoor Corridors,” 2021 International Conference on Electrical, Computer and 

Energy Technologies (ICECET), IEEE, Dec. 2021, pp. 1–5. 

7) M. K. Elmezughi and T. J. Afullo,“Evaluation of Line-of-Sight Probability Models for Enclosed 

Indoor Environments at 14 to 22 GHz,” 2021 International Conference on Artificial Intelligence, Big 

Data, Computing and Data Communication Systems (icABCD), IEEE, Sep. 2021, pp. 1–6.  
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Chapter 2: Literature Review 

 

2.1 Introduction 

Mobile communication has proliferated since its debut due to its flexibility and convenience. Due to the 

continuous evolution of communication technologies and the exponentially increasing demand for higher 

mobile data traffic, research has been focused on the frequency regime above 6 GHz to overcome the 

congestion of the previous bands (below 6 GHz) and to cope with the requirements of the 5G wireless 

system and other high-speed multimedia services [67], [68]. 

     Radio propagation models representing path loss are essential to ensure high-quality services and 

accurate signal coverage predictions in mobile communication networks. Accordingly, researchers have 

accelerated their efforts to provide reliable models for various environments and scenarios over a wide 

range of frequency regimes to assist network engineers in designing reliable future wireless networks and 

accurate link budget calculations. Moreover, accurate predictions could be beneficial in radio resource 

management schemes that aim to meet specific Quality-of-Service (QoS) criteria [69]-[76]. 

     Fundamentally, traditional approaches to path loss prediction modeling are deterministic, empirical, and 

stochastic. Deterministic path loss prediction models are site-specific and require sufficient information 

about the propagation’s environments. These models are often related to 3-D map propagations, such as the 

ray-tracing models. Moreover, these deterministic models repeat their calculations when the environment 

changes; therefore, they have high computational complexity. The empirical path loss models are based on 

measurements and observations, such as the Hata and COST 231 models. These models are easier to apply; 

however, they are time-consuming since they require massive measurement campaigns in specific 

environments and communication scenarios. Further, in terms of prediction accuracy, these models provide 

less accuracy than deterministic models [18], [23], [77]. Many other well-known empirical path loss 

prediction models are derived based on the criteria of the minimum mean square error (MMSE) between 

the models and the measurement data to provide the best fit of these models as a function of the separation 

distance between the transmitting and receiving antennas in the logarithmic scale. They include the single-

frequency close-in (CI) free space reference distance model and the single-frequency floating-intercept (FI) 

model [78]-[82]. Stochastic path loss models have probability distributions and assumptions to be 

considered in the models’ equations. These models suffer from limited precision because of some 

mathematical expressions since the communications environments are considered random variables [18].  
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     In this chapter, the focus will be on presenting a brief review of the wireless propagation mechanisms, 

large-scale and small-scale fading effects, and channel modeling. Moreover, the last part of this chapter 

provides a comprehensive literature survey about the related works in this field of research. 

2.2 Propagation Mechanisms 

Many propagation phenomena affect the electromagnetic waves that travel through the wireless channel 

between the transmitters and receivers. These effects change the amplitude, phase, and direction of 

propagating signals. To understand and evaluate the performance of wireless communication systems, all 

of these consequences should be taken into account in detail. Also, the boundaries between the wireless 

media (between the ground and air, between the air and buildings, between space and earth, etc.) must be 

considered. The mobile channels are modeled as time-varying communication paths between the Tx and 

Rx antennas. A brief description of some of the propagation mechanisms is provided in the context of this 

chapter. 

2.2.1 Free Space Propagation  

Free space is an ideal propagation medium. Consider an isotropic point source fed by a transmitter of 

𝑃𝑡  watts. At an arbitrary, large distance 𝑑 from the source, the radiated power is uniformly distributed over 

the surface area of a sphere. Thus, the received signal power 𝑃𝑟  at distance d is given by [83]-[85]: 

𝑃𝑟 =
𝐴𝑒𝐺𝑡𝑃𝑡

4𝜋𝑑2
;                                                                 (2.1) 

where 𝐴𝑒 is the effective area covered by the transmitter and 𝐺𝑡  is the transmitting antenna gain. The 

relationship between an effective aperture and the receiving antenna gain 𝐺𝑡, derived in (2.1), can be given 

by: 

𝐺𝑟 =
4𝜋𝐴𝑒

𝜆2
;                                                                   (2.2) 

where 𝜆 is the wavelength of the electromagnetic wave. By substituting 𝐴𝑒 of Eq. (2.2) into Eq. (2.1), we 

obtain: 

𝑃𝑟 =
𝐺𝑡𝐺𝑟𝑃𝑡

(
4𝜋𝑑

𝜆
)
2.                                                                 (2.3) 

     Free space path loss (FSL) is defined as: 

𝐹𝑆𝐿 =
𝑃𝑡

𝑃𝑟
=

1

𝐺𝑡𝐺𝑟
(
4𝜋𝑑

𝜆
)
2
.                                             (2.4) 
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     Basically, FSL indicates the amount of power lost in the space. A larger loss implies the use of a higher 

transmitting power level, as the received signal strength must be at some minimal power level for correct 

reception at the receiving end. When 𝐺𝑡 = 𝐺𝑟 = 1, the free space loss is given by: 

𝐹𝑆𝐿 = (
4𝜋𝑑

𝜆
)
2
.                                                            (2.5) 

2.2.2 Reflection 

Propagating wave impinges on an object that is larger as compared to its wavelength (for example, the 

surface of the earth, tall buildings, and large walls) [84]-[86]. 

2.2.3 Diffraction 

Radio path between a transmitter and a receiver is obstructed by a surface with sharp irregular edges (for 

example, waves bend around the obstacle, even when line of sight (LOS) does not exist) [84]-[86]. 

2.2.4 Scattering 

When objects are smaller than the wavelength of the propagating wave (for example, foliage, street signs, 

lamp posts), the incoming signal is scattered into several weaker outgoing signals [84]-[86]. 

2.3 Large-Scale Fading 

It is vital to understand the characteristics of mobile radio propagation for accurate systems’ design. As the 

name suggests, the large-scale fading happens over vast distances; this type of fading also called local mean 

attenuation. The large-scale fading is mainly because of the path loss of propagating waves as a function of 

distance, and the shadowing caused by large obstacles in the signal propagation path such as hills and 

buildings. In general, the large-scale fading is independent of frequency. This type of fading is related to 

the design and analysis of the link budget in telecommunication systems [83], [87].   

     The path loss can be defined as a reduction in the power of the propagating signals as the separation 

distance between the transmitting and receiving antennas increases. This significant component must be 

considered in the analysis and design of the link budget in telecommunication systems. The values of path 

loss in typical communication systems can be more than 150 𝑑𝐵, depends on the designed coverage area, 

and other factors will be covered in the next chapter [84], [85]. 

     Path loss prediction models can be classified into two types; the first one depends on a physical anchor 

that catches path loss near the Tx, e.g., the CI model and CI model with frequency-dependent path loss 

exponent (CIF). The second one mainly depends on the mathematical curve or surface that fits the measured 

data, e.g., the FI and Alpha-Beta-Gamma (ABG) models [88]. 
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2.4 Small-Scale Fading 

It refers to the rapid changes in radio signal amplitude in a short period of time or travel distance due to the 

constructive and destructive interference of the multiple signal paths between the transmitter and the 

receiver. Small-scale multipath fading is frequency-dependent, and it is relevant to the design of reliable 

and efficient communication systems [89]. Each path has certain attenuation and delay; hence we can write 

the impulse response of the multipath channel as [83]-[87]: 

ℎ(𝑡) = ∑ 𝑎𝑘𝛿(𝑡 − 𝜏𝑘);
𝐿−1
𝑘=0                                                    (2.6) 

where 𝐿 is the number of the paths, 𝑎𝑘 and 𝜏𝑘 is the attenuation and delay of the 𝑘𝑡ℎ path respectively. 

     The main effects of multipath fading include the following: 

 Rapid changes in signal strength over a small travel distance or time interval. 

 Random frequency modulation due to varying Doppler shifts on different multipath signals. 

 Time dispersion or echoes caused by multipath propagation delays [83]-[87]. 

     There are other physical factors besides the multipath fading that influence small-scale fading in the 

radio propagation channel include: 

 Speed of the mobile: The relative motion between the base station and the mobile results in random 

frequency modulation due to different Doppler shifts on each of the multipath components. 

 Speed of surrounding objects: If objects in the radio channel are in motion, they induce a time 

varying Doppler shift on multipath components. If the surrounding objects move at a greater rate 

than the mobile, then this effect dominates fading. 

 Transmission Bandwidth of the signal: If the transmitted radio signal bandwidth is greater than the 

bandwidth of the multipath channel (quantified by coherence bandwidth), the received signal will 

be distorted [87]-[89]. 

     Multipath delay nature of the channel is quantified by delay spread and coherence bandwidth. The time-

varying nature of the channel caused by movement is quantified by Doppler shift and coherence time. In 

order to compare different multipath channels and develop the design of the wireless systems, The mean 

excess delay, delay spread, and excess delay spread (𝑋 𝑑𝐵) are multipath channel parameters determined 

from a power delay profile and used to quantify the multipath [86]. The mean excess delay is the first 

moment of the power delay profile and it is defined by the following equation to be [86]: 

𝜏̅ =
∑ 𝑎𝑘

2𝜏𝑘𝑘

∑ 𝑎𝑘
2

𝑘
.                                                                 (2.7) 
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     The maximum excess delay (𝑋 𝑑𝐵) of the power delay profile is defined to be the time delay during 

which multipath energy falls to 𝑋 𝑑𝐵 below the maximum. 

     Delay spread is a major parameter used to quantify the multipath. There are two metrics of delay spread, 

maximum delay spread (𝜎𝑚𝑎𝑥
𝜏 ), and the root mean square (RMS) delay spread (𝜎𝑟𝑚𝑠

𝜏 ). The maximum delay 

spread is defined as the difference in propagation time between the longest and shortest paths. Since there 

is a very large number of paths and not all of these affects the system because the amplitude of these 

components is very low which we can neglect. RMS delay spread usually used instead of the maximum 

delay spread. The RMS delay spread is the square root of the second central moment of the power delay 

profile and is defined to be [84], [86]: 

𝜎𝑟𝑚𝑠
𝜏 = √𝜏̅2 − (𝜏̅)2.                                                                  (2.8) 

     These delays are measured relative to the first detectable signal arriving at the receiver at (𝜏0 = 0).  

Typical values of the delay spread are on the order of microseconds in outdoor and on the order of 

nanoseconds in indoor radio channels [90]-[92].  

     It is possible to obtain an equivalent description of the channel in the frequency domain using its 

frequency response characteristics similar to the delay spread parameters in the time domain, coherence 

bandwidth is used to characterize the channel in the frequency domain. The RMS delay spread and 

coherence bandwidth are inversely proportional to one another, although their exact relationship is a 

function of the exact multipath structure [84]-[86]. 

     Coherence bandwidth is a statistical measure of the range of frequencies over which the channel can be 

considered "flat" (i.e., a channel which passes all spectral components with approximately equal gain and 

linear phase). Coherence bandwidth also defined as the range of frequencies over which any two frequency 

components have a strong potential for amplitude correlation [83], [92]. 

     If the Tx and Rx are not fixed with respect to each other (i.e. there is a difference in their relative 

velocity), the received signal at the receiver will not have the same frequency as the transmitted one due to 

Doppler phenomenon. This can be seen clearly in mobile systems whereas the base station is fixed and the 

mobile stations are mobile. Therefore the frequency of the received signal will not be the same as the source, 

it will be different [91], [92]. 

     When they are moving toward each other, the frequency of the received signal is higher than that of the 

source. When they are moving away from each other, the received frequency will decrease. Thus, the 

frequency of the received signal 𝑓𝑟 is [86]: 

𝑓𝑟 = 𝑓𝑐 − 𝑓𝑑;                                                             (2.9) 
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where 𝑓𝑐  is the frequency of source carrier and 𝑓𝑑 is the Doppler shift. Doppler frequency shift is calculated 

using the following formula [86]: 

𝑓𝑑  =
𝑣 

𝜆
cos(𝜃);                                                           (2.10) 

where 𝑣 is the moving speed, λ is the wavelength of the carrier, and 𝜃 is the angle between the directions 

of the transmitter and the receiver. The following figure illustrates the Doppler spread due to the motion of 

the mobile station (MS) with respect to the base station (BS). 

 

Figure 2.1: Motion of the mobile station with respect to the base station. 

     Doppler spread is a measure of the spectral broadening caused by the time rate of change of the mobile 

radio channel and is defined as the range of frequencies over which the received Doppler spectrum is 

essentially non-zero. When a pure sinusoidal tone of frequency is transmitted, the received signal spectrum, 

called the Doppler spectrum, will have components in the range  𝑓𝑐 − 𝑓𝑑  to 𝑓𝑐 + 𝑓𝑑. The amount of spectral 

broadening depends on the relative velocity of the mobile, and the angle 𝜃 between the direction of motion 

of the mobile and direction of arrival of the scattered waves [84], [86]. 

     Coherence time is the time domain dual of Doppler spread and is used to characterize the time varying 

nature of the channel in the time domain. The Doppler spread and coherence time are inversely proportional 

to one another. Coherence time is the duration over which the impulse response of the channel is invariant 

and it is a statistical quantity that quantifies the similarity of the channel response at different times [93]. 
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2.5 Channel Modeling 

It is known that the characteristics of the wireless signal changes as it travels from the transmitter antenna 

to the receiver antenna. The profile of received signal can be obtained from that of the transmitted signal if 

we have a model of the medium between the two. This model of the medium is called channel model. 

Ideally, modeling a channel is calculating all the physical processes effecting a signal from the transmitter 

to the receiver. 

     Due to reflection, refraction and scattering mechanisms of the EM waves, radio propagation can be 

roughly described by three nearly independent phenomena as following:  

 Path loss. 

 Shadow fading. 

 Multipath fading. 

     In this research work, improvements on well-known path loss prediction models (the CI and FI models) 

and proposals for new path loss and LOS probability models are described and derived in the following 

chapters.   

2.6 Related Works 

With the continued usage of video and the growth of the Internet-of-Things (IoT), wireless data traffic has 

been increasingly growing at a rate of over 50% per year per subscriber, and this increase is projected to 

intensify over the next decade [94]-[96]. The SHF and mmWave frequency bands are promising solutions 

to cope with the increasing demand for higher data rates. These bands have a massive amount of bandwidth 

and comparable performance. However, their behavior is far from the frequency bands below 6 GHz that are 

used for the fourth-generation (4G) cellular system.  

     The SHF and mmWave bands suffer from higher path loss values, and they are affected by the propagation 

mechanisms more than the previous bands. In addition, the propagation at these bands has a significant 

penetration loss through solid materials such as concrete walls [97]-[99]. Hence, indoor limited-range 

communications have a lot of interest in academia and industry as vital communication environments for 

future mobile networks [100].  

     Technically speaking, from the wireless channel’s perspective, indoor hotspot (IH), urban micro (UMi), 

urban macro (UMa), and rural macro (RMa) are the main deployment scenarios of the fifth-generation (5G) 

system [101]. Channel modeling is the most crucial part that is highly considered during the evolution and 

simulation of wireless networks. It gives a unified channel condition for each proposed scheme [101]. In 
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recent years, deriving large-scale networks’ performance has been widely used by stochastic geometry 

instead of various deterministic cells [102], [103]. In order to meet several needs of modern society, academia 

and industry have accelerated the research to provide more advanced wireless technologies that allow users 

to have higher capacity and data rates of multi gigabits per second [104]. 

     In [104], height-dependent LOS probability models for unmanned aerial vehicle (UAV) networks were 

studied. Their findings indicate that in UAV networks, the LOS probability function’s long tail has a 

significant output effect on sparse networks with low base station density. A statistical LOS probability 

model based on the 3rd generation partnership project (3GPP) and the international telecommunication union 

radio communication sector (ITU-R) models is presented in [105]. The study improved the LOS probability 

by splitting the region into LOS and NLOS zones based on the building density. Moreover, the model was 

checked against visibility predictions extracted from digital building data to see how reliable it was. 

     Frequency-dependent LOS probability models have been investigated for built-up outdoor environments 

[106]. The models were derived for arbitrary sizes, heights, and orientations of buildings based on the 

geometry-based stochastic method. The main contribution was the simplicity of the proposed model with 

careful consideration of the effect of signals’ wavelength and the height of the antennas. This work’s main 

results reveal that there are higher values of the LOS probability when the frequency increases. In fact, due 

to the randomness of the signals’ attenuation with the frequency, measurement-based investigations should 

be conducted to understand the LOS probability models’ behavior with the frequency since this work was 

based on simulations using the Ray-Tracing method. 

     LOS Probability models for indoor office and shopping mall environments are presented in [107]. The 

paper discussed the ITU, WINNER II (A1), and WINNER II (B3) models. Also, they proposed a model 

based on improving the ITU model. The work’s main research finding shows a slight preference for their 

proposed model over the standard models. However, this improvement is not significant compared to the 

increase of the model’s complexity to be used by design engineers since the maximum reduction of the mean 

square error (MSE) was only 5.1%. In [108], LOS probability models were presented using point cloud data 

obtained with laser scanning. The models were derived for shopping malls, offices, and urban open square 

scenarios, mainly at the 63 GHz frequency band. Also, the paper considered the impact of the frequency on 

the LOS probability. More studies about the LOS probability modeling in indoor environments can be found 

in [101], [109]-[111]. 

     The log-distance model has been widely used in the open literature for path loss prediction [112]-[119]. 

This empirical model assumes a linear relationship between the predicted path loss value and the Tx-Rx 

separation distance in the logarithmic scale. Therefore, providing the proportional parameter(s) value is 

based on a satisfactory linear regression analysis of the measurement dataset collected from measurement 
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campaigns or simulation tools. However, although the linear log-distance model is straightforward and 

tractable, it does not accurately predict path loss in all radio propagation situations. Therefore, more 

advanced modeling approaches are necessary to more precisely and flexibly depict path loss in complex and 

diverse surroundings. Some researchers considered improvements on the log-distance model to include the 

impact of shadowing and many other factors such as antennas height, operating frequency, clutter, terrain, 

communication scenario’s category (i.e., LOS or NLOS, etc.), and the percentage of the area covered by 

buildings in built-up areas [113]. 

     The mmWave spectrum has been demonstrated to deliver high throughput in the gigabit per second 

(Gbps) range that is required for 5G systems. The environment in which the signal propagates, however, has 

a significant impact on mmWave propagation. Furthermore, the wireless signals at the mmWave frequency 

spectrum are strongly affected by penetration loss through solid materials [120]-[121]. All these effects made 

the networks that used the mmWave regime require a precise LOS and NLOS classification because of the 

significant difference. To deal with this issue, this work proposes a probabilistic path loss prediction model 

for wireless communications in enclosed indoor corridor scenarios, as presented in chapter 3. 

     Multi-frequency path loss prediction models are receiving more attention from some researchers in recent 

times to develop accurate and stable path loss models for future wireless systems over a wide range of 

frequency regimes [18], [82]. However, these models face the same problems mentioned above as the single-

frequency models. There are two main problems in using the previous empirical models: the first problem is 

that these models are accomplished by a large amount of measurement in a certain environment to obtain a 

specific model that works for a particular environment at a specific frequency band, which is obviously time-

consuming. The second problem is the limited prediction accuracy (the models do not fit the measurement 

data with a deficient prediction error) provided by these log-distance path loss models in some specific 

regions. Moreover, the use of the traditional linear models for predicting path loss is not sufficient to capture 

the path loss behavior accurately in higher frequency bands that are adopted to cope with the emerging 

demands of new wireless technologies. Accordingly, innovative methods that provide reliable modeling and 

prediction of the wireless propagation channels are highly needed, especially for complex environments of 

radio wave propagation that have a severe influence on the quality of wireless communication systems. 

     Machine learning (ML) is a set of approaches for making predictions based on datasets and modeling 

algorithms. ML-based methods are now used in various disciplines, including speech recognition, image 

identification, natural language processing, and computer vision. In many telecommunication fields, the 

research based on ML of various topics such as propagation loss prediction, channel decoding, signal 

detection, and channel estimation has already made significant progress [82], [120]-[122]. All ML methods 

rely on the type of information (input features) that is used for the training. ML methods can be classified as 
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supervised learning and unsupervised learning. For classification or regression issues, supervised learning is 

used to learn a function or relationship between inputs and outputs. Unsupervised learning, on the other hand, 

is the process of extracting hidden rules or connections from unlabeled data. Path loss prediction can be 

viewed as a supervised regression problem that ML methods can handle [22], [123]-[126]. Path loss 

prediction models based on machine learning algorithms are promising to overcome the time consumption 

in traditional linear path loss models that depend mainly on measurement campaigns at new frequency bands 

in specific outdoor and indoor environments and communication scenarios and/or simulation-based methods, 

such as ray-tracing techniques [18]. ML-based algorithms have been successfully used to assist to predict 

path loss in several operating environments [18], [19], [22], [69], [77], [124]-[144]. Furthermore, unlike 

traditional models, ML-based path loss prediction models can provide reliable generalizations on the 

propagation environment [130], [144]. 

     Many recent research studies have adopted the methodology of using neural networks for the prediction 

of path loss based on measurement data in a specific frequency band for a specific environment and 

communication scenario; they then compare their prediction models with the traditional models in terms of 

accuracy and prediction error analysis. Various supervised learning approaches, such as the ANN [136], 

[137], [145], [146], support vector machine (SVM) [125], [147], KNN [126], and RF [126], have been 

successfully used to construct path loss models. Recently, it was reported that deep learning methods such 

as the deep neural network (DNN) and ANN provide better prediction results compared to the traditional 

path loss models [20], [23]. Moreover, in [124], ANN-based path loss prediction models provided better 

performance than ML-based models, including the RF and SVR models. Further, the ANN-based model was 

proven to be superior to the log-distance model in the same study. In addition, the authors of [136], [137],  

[146] offered prediction models using ANN and showed more accuracy than other empirical models in terms 

of path loss prediction. A vision for developing real-time prediction models for path loss can be found in 

[146]. In [18], a DNN multi-frequency path loss model was analyzed and compared with the alpha-beta-

gamma (ABG) path loss model. The results show that the DNN-based model is far better than the ABG 

model based on the results of prediction error analysis metrics. 

     Generally, any neural network is made up of nodes, which are processing components that are tightly 

linked and organized in layers. They have the capacity to describe any function that is given to them from 

the raw datasets. Consequently, setting up closed-form equations to map the input features into output 

target(s) is unnecessary for neural networks, unlike traditional methods. It is essential to use appropriate 

features as inputs to train and test ML-based models since they make the model more efficient and adaptable 

while reducing the solution complexity [22]. The input features of the ANN-based path loss model for 

unmanned aerial vehicles (UAVs) at 1800 and 2100 MHz were distance, clutter height, altitude, longitude, 
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latitude, and elevation, as reported in [25]. In another work, the features adopted for ML-based path loss 

prediction in an urban environment included the Tx–Rx separation distance, as well as building information 

such as height, thickness, and distance away from the antenna [48]. In [148], the input for a successful deep 

convolutional neural network was 2D satellite images to provide reliable LTE signal quality metrics 

calculations. In [149], an ANN model with 48 neurons in a single hidden layer and a hyperbolic tangent 

activation function (also called Tanh activation function) has provided the best performance over several 

empirical path loss models such as COST-231, HATA, ECC-33, and EIGI. The input features adopted for 

this single-layered feed-forward neural network were distance, clutter height, altitude, elevation, latitude, 

and longitude, while the network had one output layer, which represents the path loss. Another work adopted 

an ANN model with two hidden layers to predict the path loss at the 1800 MHz frequency band for smart 

campus environments [133]. The main result obtained from that work is that the ANN model outperforms 

the RF-based model for such environments. Similar results provided the ANN model’s quality over the RF 

model since it can extract relevant input features of communication environments [142]. 

     The author of [128] proposed a multilayer perceptron (MLP) feed-forward neural network model for 

predicting path loss. The model was based on 11 input features and 2 hidden layers with the use of the Tan-

sigmoidal as an activation function. The 11 features selected were the Tx–Rx separation distance, operating 

frequency, transmitter terrain height, receiver terrain height, transmitting antenna height, average clutter 

height, %water, %building, %plain, %road, and %trees. At the same time, the path loss was the only output 

of this ANN model. The results obtained from this research reveal high prediction accuracy in predicting 

path loss since the degree of correlation values were higher than 0.94 for the model designed. However, the 

model’s complexity is high since it needs comprehensive knowledge to train from many features, limiting 

the adoption of such models. A comparative analysis of conventional, ML, and DNN-based methods for path 

loss prediction proved that the latter has the best performance since higher prediction accuracy was achieved 

than the other methods [136]. Using many layers in deep learning provides extraction of the features from 

high-dimensional datasets via training; this benefit is often not possible in using traditional models [150]. 

Moreover, DNN-based models do not rely on a predefined mathematical formula to represent the model as 

the conventional models do [151]. These DNN-based methods have been applied to many communication 

environments, such as rural, urban, and suburban areas [18]. In [152], DNN-based models were developed 

for five environments under the category of urban, dense urban, suburban, dense suburban, and rural for a 

specific frequency regime and proved its prediction accuracy. 

     In contrast, in [153], DNN-based models were proposed over a wide range of frequencies from the ultra-

high frequency (UHF) band to the SHF band. The previous efforts’ datasets for the LOS and NLOS 

communication scenarios were based on measurement campaigns. Other studies considered the data from 
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the satellite images, such as in [20], [23], [123]. The Tx–Rx separation distance and the operating frequency 

have been selected as the only two features for ANN-based path loss prediction models for an urban area at 

3.4, 5.3, and 6.4 GHz and for a suburban environment at 450, 1450, and 2300 MHz [77]. The proposed ANN 

models achieved higher prediction accuracy than the other well-known models, such as the CI model, the 

Gaussian process model, and the two rays model. Aside from the frequency and distance parameters, wall 

and floor attenuation are also utilized as input features for the ANN model to predict path loss in a multi-

wall environment [78]. However, considering multi-dimensional regression to predict the path loss based on 

several highly correlated input features such as distance, frequency, antenna height, and other factors is still 

lacking in the literature. Because the associated inputs are uncertain, several candidate functions are used in 

the regression. Many of these characteristics, on the other hand, would be superfluous or unnecessary. 

Furthermore, most input features lack the capacity to discriminate for prediction. Using dimensionality 

reduction techniques, such as principal component analysis (PCA) or singular value decomposition (SVD), 

the input data could be transformed into a smaller representation set of features in order to create a decent 

estimate [77]. Dimensionality reduction is used to minimize the number of features in an input dataset while 

preserving as much helpful information as feasible. 

     For the ANN, some studies suggest that a neural network is a deep network with only one hidden layer. 

This theory supports the path loss prediction problems proposed by these studies [23], [132], [151]. Other 

efforts stated that having two or three hidden layers for the ANN model is enough to provide an accurate 

approximation of the non-linear relationship between the input features and the output target of the model 

[77]. Note that the complexity of the models can be reduced by adopting a small number of hidden layers 

taking into account the tradeoff between the models’ accuracy and complexity. The diversity of these studies 

in the open literature justifies no specific rule to provide the optimum size (for example, the number of hidden 

layers and the number of neurons per hidden layer) of the ML-based models. Of course, all of that depends 

on the training dataset given from measurement campaigns and/or simulation tools, and this dataset depends 

on the specific environments and scenarios of communication. As a result, the model’s hyperparameters, 

such as learning rate, activation function, and optimizers, are experimentally selected to provide the best 

model’s performance. Some studies introduced hyperparameter-tuning techniques, such as grid search and 

random search to overcome the time consumption of manually selecting the optimum models’ parameters 

[124], [154]. 

     A path loss prediction model for vehicular-to-vehicular communications using a random forest has been 

evaluated in terms of accuracy and generalization capability. The random forest method has been 

successfully used in various aspects due to its simplicity and relatively high prediction accuracy. Path loss 

prediction using artificial neural networks for cellular networks with wireless channels between base stations 
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and users is discussed in [155] and [156]. In addition, the authors in [157] propose a multi-kernel-based 

online path loss prediction model incorporating trajectory information and user location for the downlink. 

Air-to-Ground path loss modeling in urban environments has been presented in [158] for unmanned aerial 

vehicles (UAVs) applications. The UAVs recently are of vital interest in different domains due to their ease 

of feasibility and mobility. The ML models proposed in [158] are based on artificial neural networks (ANN), 

regression trees (RT), and K-nearest-neighbors (KNN). A similar performance was observed by the three 

models in three selected frequency bands of 433, 900, and 5800 MHz, with a slight outperformance of the 

KNN model since lower values of both the root-mean-square error (RMSE) and mean absolute error (MAE) 

were achieved compared to the other two models. 

     The authors in [22] developed an RF-based path loss model benefiting from the fact that this method is 

based on a massive number of regression trees and that the path loss is also a regression problem, as 

mentioned earlier. The data used to train the model comes from four typical mobile communication terrains. 

The outcome of this study proved that the proposed RF model performed better than traditional wireless 

propagation models as well as a DNN model after constructing relevant features. The average root-mean-

square error (RMSE) for the RF-based model was 6.106 dB for all types of terrains selected. A combined 

model for path loss and shadowing based on the ANN multilayer perceptron (ANN-MLP) was developed in 

[25]. The shadowing impact was analyzed based on the Gaussian process to provide the variance (or standard 

deviation) from the training dataset. This technique will help calculate the shadowing attributed to the 

shielding effect of buildings, mountains, and other objects that exist in the communication channel between 

the Tx and Rx. The results provided show the usefulness of the model in predicting the propagation loss. 

     A path loss prediction model was proposed for urban environments using the SVM method [135]. The 

input features selected were the Tx–Rx separation distance, vertical and horizontal antenna attenuations as 

system-specific parameters, as well as latitude, longitude, and terrain elevation as environment-specific 

parameters made up of six features. A similar work documented in [159] used the same environment-specific 

parameters in a deep-learning-based model. Both [135], [159] show that the proposed ML-based models 

provide higher efficiency than other analytical models. 

     Two forms of probabilistic path loss predictors for a specific communication environment are reported 

and investigated in [129]. The first approach utilizes Bayesian learning to get the posterior distribution of an 

analytical model’s parameters and produces a path loss value prediction. A probabilistic neural network is 

used in the second technique to obtain the parameters of analytical distributions. The authors also studied 

the effect of changing the amount of data available for training on the ML proposed models’ performance. 

The prediction capacity for the models was measured in terms of the total variation distance (TVD) and 

Kullback–Leibler (KL). It is to be noted from their results that the mixture density neural network (MDN) 
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model has more accuracy in describing the path loss than the Bayesian learning model. However, the latter 

provided better data efficiency than the MDN model. These probabilistic path loss models are beneficial 

since they overcome the problem of classifying the propagation path between the transmitting and receiving 

antennas as LOS or NLOS, given the probability of having a clear LOS connection between the Tx and Rx 

is already considered in the model. Hence, the knowledge of the LOS and NLOS communication scenarios 

is not required for such models. It is worth noting that the MDN model is basically a combination of a 

conventional Neural Network (NN) and a mixture model. This model has the ability to provide a distribution 

of the path loss values instead of point estimates. The neural network adopted for this work has only one 

input feature; that is, the separation distance between the Tx and Rx, one hidden layer of 64 neurons with 

the use of the rectified linear unit (ReLU) as an activation function, and an output layer that represents the 

path loss. It is clear from the previously documented works that there is an excellent opportunity to predict 

the path loss with the best accuracy and less time consumed by adopting ML and deep learning algorithms. 

     There is a severe lack of literature on predicting path loss using more advanced ML algorithms. This is 

because the existing research relied mainly on well-known ML methods and adjusted the models to fit 

measurement data with minimum errors. In comparing these ML-based and empirical models, ML methods 

have proved their superiority in terms of accuracy since they can provide complex equations to describe the 

path loss compared to the empirical models that mainly utilize a few parameters. This dissertation tries to 

fill the gap mentioned earlier in the literature by proposing new path loss prediction and LOS probability 

models and improving the performance of the existing standard models. Furthermore, an extensive 

comparative analysis of major ML-based path loss models will be considered. Finally, the last part of this 

research proposes a novel ensemble-method-based neural network path loss model for future wireless 

communications, as detailed in the following chapters. 

2.7 Chapter Summary 

This chapter presented in brief the main wireless propagation mechanisms, large-scale and small-scale 

fading effects, and wireless channel modeling. Finally, this chapter discussed in detail related works aimed 

at modeling the wireless communication channel based on measurement campaigns and machine learning 

algorithms to identify the main research gaps in this research field. 
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Chapter 3: Proposals of Measurement-Based Propagation 

Channel Models for Wireless Communications in Enclosed 

Environments 

 

3.1 Introduction 

In the last few years, the demand for significantly higher data traffic has rapidly increased due to several 

evolutions of communication technologies such as indoor wireless applications. These applications, 

exemplified by 8K ultra-high definition streaming, centimeter-level position location, and wireless 

cognition, are still in continuous development. Therefore, more and more data speeds will be required in 

the next few years, especially for meeting the requirements of the upcoming sixth-generation (6G) wireless 

communication system. 

     Because of their vast amounts of available bandwidth, the super-high frequency (SHF), millimeter-wave 

(mmWave), and sub-Terahertz (THz) spectra are expected to play a vital role in next-generation wireless 

communication systems and beyond due to the massively available bandwidth of many tens of GHz [160]. 

However, despite their theoretical potential for high data throughput to meet future needs, these frequency 

bands confront several difficulties, including significant path loss and substantial penetration loss [161]. 

For example, propagation of the mmWave bands for outdoor to indoor communications causes significant 

penetration loss values (up to 60 dB) [162]. As a result, it is preferable to segregate indoor mmWave 

communication networks from co-channel outdoor cellular communications [163]. 

     Modeling the path loss is vital in designing any wireless communication network. Path loss prediction 

models can be achieved deterministically, stochastically, or empirically via measurement campaigns to 

collect actual path loss data [164]. It is notable from the literature that the most used path loss modeling is 

measurement-based due to its high prediction accuracy and reliability [165]-[167]. 

     In this chapter, details about measurement campaigns that were conducted to collect the real 

measurement path loss data are presented. Then, new measurement-based path loss prediction and LOS 

probability models for wireless communications in enclosed indoor environments are presented, evaluated, 

and compared to well-known standard models. 
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3.2 Measurement Setup and Data Collection Method 

A detailed description of radio frequency (RF) propagation measurement campaigns conducted in a typical 

enclosed corridor environment is provided in this section. The corridor exists on the 5th floor of the 

Discipline of Electrical, Electronic, and Computer Engineering, University of KwaZulu-Natal, Howard 

College Campus, Durban 4001, South Africa. 

     Before beginning the measurement campaigns, we ensured no other transmissions on the same 

experimental radio frequency bands existed. Also, the measurement system was carefully calibrated, and 

the measurements were repeated and averaged to ensure high-quality data collection. 

     The wireless propagation channel is a corridor environment with dimensions of 30, 1.4, 2.63 meters as 

length, width, and height. Both sides of the corridor are made of bricks and dry concrete with wooden doors 

to offices on one side and an elevator and a staircase on the other side. It is worth noting that these indoor 

corridors can be approximated as rectangular air-filled waveguides with dimensions immense compared to 

signals’ wavelength. These environments are crucial and commonly used for many indoor applications. 

Figure 3.1 shows the adopted indoor corridor environment. 

 

Figure 3.1: The adopted indoor corridor environment. 
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     Directional path loss modeling is becoming extremely important for the 5G and beyond wireless 

communication system design. Hence, in order to analyze double-directional channels, two identical 

vertically polarized antennas with directional radiation patterns have been adopted for the measurements. 

The Tx antenna’s height was 160 and 230 centimeters above the floor level, while the Rx height was 160 

centimeters, which are the average antenna heights for these indoor environments that are adopted by many 

researchers [40], [168]-[172]. Also, these antenna heights have been chosen since they are close to the 

typical user height (approximately 1.6 meters) and the height of access points in indoor environments 

(around 2.3 meters). When the Tx antenna height was 230 centimeters above the floor level, we down-tilted 

the Tx antenna to ensure that both antennas were aligned on boresight for all the Tx-Rx measurement places 

in the LOS communication scenario. Three frequencies in the SHF band were considered in this work: 14, 

18, and 22 GHz. Both antennas were pyramidal horn antennas with half-power beamwidth values between 

13 and 19.2 degrees and a directional gain ranging between 19.5 and 22.1 dBi at the operating frequencies. 

Throughout the campaigns, the intent was to place the Tx at one end of the corridor and move the Rx away 

from the Tx, having a Tx-Rx separation distance of 2-24 meters with an incremental step of 2 meters a time. 

The reference Tx-Rx distance was 1 meter, as recommended by most research experts in this field [173]-

[177]. Note that to satisfy the far-field requirements, the distance from the Tx should be much greater than 

the wavelength of the lowest operational frequency, which already exists since the wavelength of the SHF 

signals is in the range of millimeters. 

     The measurements were performed under the conditions of LOS and NLOS communication scenarios. 

In the LOS scenario, both antennas were aligned on boresight, and there were no obstacles in the direct 

propagation path between them. In contrast, the Rx in the NLOS depends mainly on diffractions, reflections, 

and waveguiding mechanisms in the corridor environment since both antennas had no alignment on 

boresight. Throughout the measurements, the transmit power was fixed at 10 dBm. However, the received 

power level range was between -41.33 and -19.05 dBm. The angle of departure (AoD) was set at 0 degree, 

while the angle of arrival (AoA) was in the range of 0-360 degrees with an incremental step of 10 degrees 

at a time. 

     A Rohde and Schwarz SMF 100A signal generator working in continuous-wave (CW) mode was applied 

to feed the transmitting antenna. The signal generator can transmit signals in the frequency range between 

100 KHz and 22 GHz at the Tx side. The measured results are collected by means of a Rohde and Schwarz 

FSIQ 40 Signal Analyzer. This receiving equipment records 500 data sets of received signal strength (RSS) 

per each AoA and Tx-Rx separation distance. At the Rx side, the signal analyzer can analyze the received 

signal in a wide frequency range between 20 Hz and 40 GHz. The maximum analysis bandwidth that can 

be achieved from this Rx equipment is 120 MHz. The RSS data were averaged to ensure accurate detection 
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of the CW signals. Both signal generator and signal analyzer were directly connected to the antennas 

through coaxial cables. Figure 3.2 depicts the channel sounder architecture. Since the path loss is the 

difference value between the Tx and Rx power, taking into account the antennas’ gain and the coaxial 

cables’ loss, the measured path loss in dB (𝑃𝐿𝑚[𝑑𝐵]) is calculated by: 

𝑃𝐿𝑚[𝑑𝐵] = 𝑃𝑡 − 𝑃𝑟 + 𝐺𝑡 + 𝐺𝑟 − 𝐿𝑐𝑎𝑏𝑙𝑒,                                              (3.1) 

where 𝑃𝑡 is the strength of the transmitted signal in dBm, 𝑃𝑟 is the received signal power at the Rx side in 

dBm, 𝐺𝑡 and 𝐺𝑟 are the gain of the transmitting and the receiving antennas in dBi, and 𝐿𝑐𝑎𝑏𝑙𝑒 is the total 

coaxial cable loss of the measurement system in dB. Figure. 3.3 represents the 3D floor plan of the indoor 

corridor environment. The parameters of the measurement setup used in this work are summarized in Table 

3.1. 

 

 

Figure 3.2: The channel sounder architecture. 
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Figure 3.3: 3D floor plan of the indoor corridor environment. 

 

Table 3.1: Channel sounder specifications and parameters configuration. 

Parameter Configuration Units 

Center Frequencies 14, 18, and 22 𝐺𝐻𝑧 

Bandwidth 100 𝑀𝐻𝑧 

Transmition Signal Continuous Wave - 

Tx and Rx Antennas Directional Horn Antennas - 

Transmitted Power 10 𝑑𝐵𝑚 

Tx Antenna Height 1.6 and 2.3 𝑚 

Rx Antenna Height 1.6 𝑚 

Antennas Polarization Vertical - 

Antennas Gain at 14 GHz 19.5 𝑑𝐵𝑖 

Antennas HPBW at 14 GHz Azim. 18.4°, Elev. 19.2° Degrees 

Antennas Gain at 18 GHz 20.95 dBi 

Antennas HPBW at 18 GHz Azim. 15.4°, Elev. 15.6° Degrees 

Antennas Gain at 22 GHz 22.1 𝑑𝐵𝑖 

Antennas HPBW at 22 GHz Azim. 15°, Elev. 13° Degrees 
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3.3 Proposal of a Measurement-Based Path Loss Model for Enclosed Indoor 

Channels 

Path loss mainly governs the coverage of any wireless network. Hence, the design of trustworthy wireless 

systems relies on accurate path loss prediction models. Moreover, it became known that moving up the 

frequency to the mmWave and the sub-THz increased the data rates to meet near future demands. However, 

these bands are much more sensitive to the wireless channel and exhibit high path loss values due to their 

small wavelengths. Consequently, accurate understanding and modeling of the wireless channel are highly 

needed for systems planning and link-budget calculations. 

     This section proposes a new path loss prediction model for enclosed indoor channels. The model has a 

different nature from the standard CI and FI models since it assumes that the path loss (in dB) changes with 

the square root of the separation distance between the transmitter (Tx) and receiver (Rx) measured in 

meters. The motivation for proposing this model is the heightened possibility of improving the proposed 

equation to achieve much higher prediction accuracy and sensitivity to the wireless channel effects since, 

as mentioned above, moving to higher frequency bands leads to more sensitive propagation signals. The 

proposed model is derived and compared to the free space path loss model, CI model, and FI model at three 

selected frequency bands, namely 14 GHz, 18 GHz, and 22 GHz. 

     The proposed path loss model is measurement-based since its parameters are based on fitting the actual 

measurement data collected from the measurement campaigns in the selected wireless channel and 

frequency bands. The proposed path loss prediction model is given by: 

𝑃𝐿(𝑑)[𝑑𝐵] = 𝐴 + 𝐵√𝑑 + 𝑋𝜎,                                                      (3.2) 

where 𝑃𝐿(𝑑)[𝑑𝐵] is the predicted path loss value measured in dB as a function of the separation distance 

between the transmitting and receiving antennas. 𝐴 and 𝐵 are the main parameters of the proposed model, 

where 𝐴 represents the path loss value just near the Tx antenna, and 𝐵 controls the dependency of the path 

loss on √𝑑.The parameters 𝐴 and 𝐵 depend on several factors such as the operating frequency of the 

propagating signal, the nature of the wireless channel in terms of its dimensions, and propagation 

mechanisms such as reflections, diffractions, and waveguiding effects. 𝑋𝜎 is a Gaussian random variable 

with zero mean and a standard deviation 𝜎 to represent the shadow fading (SF) effects. 

     The minimum mean square error (MMSE) method is adopted to provide the best-fit values of the 

parameters 𝐴, 𝐵, and 𝜎. The idea is to make the proposed model match the actual measured path loss 

achieving the minimum prediction error. Hence, the standard deviation σ can be written as: 
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𝜎 = √
∑𝑋𝜎

2

𝑁
= √

∑(𝑃𝐿(𝑑)[𝑑𝐵]−𝐴−𝐵√𝑑)
2

𝑁
,                                                   (3.3) 

where 𝑁 is the number of the Tx-Rx separation distances (i.e., the total number of the average path loss 

samples recorded). Based on the content of Eq. (3.3), the parameters of the proposed model must satisfy 

the following: 

𝜕

𝜕𝐴
(𝑃𝐿(𝑑)[𝑑𝐵] − 𝐴 − 𝐵√𝑑)

2
= 0,                                                            (3.4) 

𝜕

𝜕𝐵
(𝑃𝐿(𝑑)[𝑑𝐵] − 𝐴 − 𝐵√𝑑)

2
= 0.                                                            (3.5) 

     Simplifying the previous two equations leads to: 

𝑁𝐴 + ∑√𝑑  𝐵 = ∑𝑃𝐿(𝑑)[𝑑𝐵],                                                               (3.6) 

∑√𝑑  𝐴 + ∑𝑑  𝐵 = ∑(𝑃𝐿(𝑑)[𝑑𝐵] × √𝑑).                                                    (3.7) 

     The parameters 𝐴 and 𝐵 can be expressed in their closed-form after providing the matrix forms of Eq. 

(3.6) and Eq. (3.7) as follows: 

[
𝑁 ∑√𝑑

∑√𝑑 ∑𝑑
] [
𝐴
𝐵
] = [

∑𝑃𝐿(𝑑)[𝑑𝐵]

∑(𝑃𝐿(𝑑)[𝑑𝐵] × √𝑑)
],                                                 (3.8) 

𝐴 =
(∑𝑑)×(∑𝑃𝐿(𝑑)[𝑑𝐵])−(∑√𝑑)×(∑(𝑃𝐿(𝑑)[𝑑𝐵]×√𝑑))

𝑁∑𝑑−(∑√𝑑)
2 ,                                               (3.9) 

𝐵 =
−(∑√𝑑)×(∑𝑃𝐿(𝑑)[𝑑𝐵])+𝑁(∑(𝑃𝐿(𝑑)[𝑑𝐵]×√𝑑))

𝑁∑𝑑−(∑√𝑑)
2 .                                               (3.10) 

     Finally, the value of the shadow fading’s standard deviation (𝜎) can be found from Eq. (3.3) after 

substituting the parameters’ values. 

     Figure 3.4 represents the averaged actual measured path loss values, the free-space path loss model, our 

proposed model, and the standard CI and FI models at the 14 GHz frequency band. It is to be noted from 

the figure that all the models are below the curve of the FSPL model. This is because the abundance of 

propagation mechanisms in these enclosed indoor environments leads to constructive interference and 

lower path loss values than the propagation at the same frequency in open environments. Moreover, Figure 

3.4 reveals the proposed model’s high prediction accuracy and the precision of the standard CI and FI 

models since all the models’ curves are close to the measurement data points. 
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     The proposed model’s parameters that provide the best-fit prediction 14 GHz are 𝐴 = 54.0353, 𝐵 =

4.3928, and 𝜎 = 2.7472. The relatively small value of sigma proves the accuracy and sensitivity of our 

proposed model to the propagation mechanism inside these enclosed corridor environments. Moreover, we 

analyzed the prediction error of the proposed model based on the real measurement data. The mean 

prediction error (MPE) value found is only 2.5034 dB. The standard deviation error (SDE) value is 1.1289 

dB. All these values are at 14 GHz. 

 

Figure 3.4: The proposed and standard path loss prediction models at 14 GHz frequency band. 

      

     The measurement data and models at 18 GHz are depicted in Figure 3.5. Again, high prediction accuracy 

is clear from the figure since the models follow the measurement data. Also, it is worth mentioning that the 

data and models’ curves are closer to the FSPL curve than the case of 14 GHz since 18 GHz frequency 

band has higher PLE values. For our proposed model, the model’s parameter at 18 GHz frequency band 

that provide the highest possible accuracy are 𝐴 = 55.9049, 𝐵 = 5.0977, and 𝜎 = 2.5287. Is is clear that 

the model’s stability is high since the parameters’ values has slight changes when we higher the frequency 

from 14 GHz to 18 GHz. Numerically, the change of 𝐴, 𝐵, and 𝜎 is 3.46%, 16%, and 7.95%. The value of 

the shadow fading’s standard deviation at 18 GHz is lower than the value at 14 GHz. This means that more 

precision can be achieved when we jump for higher frequency bands, which is the trend of using the 
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mmWave and further high frequency regime to meet the speed requirenments of future communication 

systems. 

 

Figure 3.5: The proposed and standard path loss prediction models at 18 GHz frequency band. 

The MPE and SDE of the proposed model at 18 GHz are 2.0470 and 1.4911, respectively. The average 

MPE here is lower than the value at 14 GHz. However, the SDE is higher; which means that the signal 

fluctuations are more at 18 GHz. Nevertheless, the prediction error values are still lower than 14 GHz.  

Figure 3.6 shows the measurement data and the models at 22 GHz. More accuracy is achieved since 

lower values of σ, MPE, and SDE are found. Table 3.2 represents the numerical values of the proposed 

model’s parameters and the evaluation metrics’ values (MPE and SDE). It is to be summarized from the 

results that the proposed model provides the best performance at 22 GHz frequency band compared to the 

results found at 14 GHz and 18 GHz. Figure 3.7 depicts the proposed model and measurement data at the 

three frequency bands adopted for this study. In addition, we plotted the prediction error of the proposed 

model as a function of the separation distance between the transmitting and receiving antennas at 14, 18, 

and 22 GHz frequency bands. Figure 3.8 justifies the results discussed in this section since error values are 

around 0.5 to 3 dB. The performance can be significantly improved by applying an efficient approach, as 

presented in chapter 4. However, probabilistic path loss modeling will be discussed in the following 

sections. 
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Figure 3.6: The proposed and standard path loss prediction models at 22 GHz frequency band. 

 

 

Figure 3.7: The proposed path loss model with the measurement data at 14, 18, and 22 GHz. 
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Figure 3.8: Proposed model's prediction error vs. Tx-Rx separation distance. 

 

 

Table 3.2: Numerical values of the proposed mode’s parameters and the evaluation metrics’ values. 

Parameter 

Value 

𝟏𝟒 𝑮𝑯𝒛 𝟏𝟖 𝑮𝑯𝒛 𝟐𝟐 𝑮𝑯𝒛 

A [dB] 54.0353 55.9049 59.1848 

𝑩 4.3927 5.0977 4.9282 

𝝈 [dB] 2.7472 2.5286 1.8070 

𝑴𝑷𝑬 [𝒅𝑩] 2.5034 2.0470 1.4517 

𝑺𝑫𝑬 [𝒅𝑩] 1.1289 1.4911 1.1050 
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3.4 Evaluation of Standard Line-of-Sight Probability Models 

Simulating the propagation of the wireless signals cost-effectively and reliably requires accurate channel 

models to design and compare radio air interfaces and to deploy the wireless systems precisely, taking into 

account all the possible effects and parameters such as the 3D separation distance between the Tx and Rx, 

bandwidth, carrier frequency, and environmental impacts [94]. 

     Many efforts aimed to understand the channel behavior and the wave propagation’s mechanisms at 

frequencies above 6 GHz in the SHF and mmWave frequency regimes have recently been published [170]-

[177]. The mobile industry has discovered that defining the wireless signals’ path loss separately for the 

line-of-sight (LOS) and non-line-of-sight (NLOS) situations is beneficial. As a result, mathematical models 

for predicting the LOS probability (the probability of having the Rx within clear LOS paths of the Tx) are 

highly needed. Given the higher diffraction loss at higher frequencies relative to sub-6 GHz bands where 

diffraction is a prevalent propagation mechanism, LOS transmission would provide more stable results for 

outdoor and indoor wireless communications in the SHF and mmWave frequency bands. 

     To the best of our knowledge, there is a research gap in understanding and modeling the LOS probability 

models for indoor corridor environments in the SHF band. Hence, this section tries to fill the gap by 

providing LOS probability models based on real measured data collected in the typical indoor corridor 

environment dicussed above. Also, we propose a new LOS probability model that performs better than the 

standard ITU and WINNER II models. 

     It is known that LOS transmissions are more likely to occur when the Tx-Rx separation distance is small. 

As a result, the LOS probability is considered a monotonically decreasing transmission range function [94]. 

The LOS probability has a dependency on the geometry and layout of the environments and 

communications scenarios. Some studies have adopted a map-based approach in determining the LOS 

probability based on the Tx and Rx positions. [108]. From the literature, some researchers considered the 

LOS probability as a frequency-independent function [94], [106], [108]; on the contrary, others proved that 

it is frequency-dependent [106], [107]. This work focuses on ITU-R and WINNER II (A1) models and 

proposes a new model that accurately fits measurement data for indoor corridor environments. Table 3.3 

presents the ITU-R, WINNER II (A1), and our proposed model. 
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Table 3.3: ITU-R, WINNER II (A1), and the proposed LOS probability models. 

Model Definition 

ITU-R [94] 𝑷𝑳𝑶𝑺 =

{
 

 
𝟏,                                                  𝒅 ≤ 𝒅𝑨

𝐞𝐱𝐩(
−𝒅(𝒅 − 𝒅𝑨)

𝒂
) , 𝒅𝑨 < 𝒅 < 𝒅𝑩

𝒃,                                                 𝒅 ≥ 𝒅𝑩 }
 

 

 

WINNER II (A1) 

[94] 
𝑷𝑳𝑶𝑺 = {

𝟏,                                                                    𝒅 ≤ 𝒅𝑪

𝟏 − 𝒌(𝟏 − (𝒅 − 𝒛𝒍𝒐𝒈𝟏𝟎(𝒅))
𝟑
)

𝟏
𝟑
, 𝒅 > 𝒅𝑪

} 

Proposed 𝑷𝑳𝑶𝑺 =

{
 
 

 
 
𝟏,                                                                             𝒅 ≤ 𝒅𝑫

𝟏 − 𝜶(𝟏 − (𝒅 − 𝜷𝒍𝒐𝒈𝟏𝟎(𝒅))
𝟑
)

𝟏
𝟑
, 𝒅𝑫 < 𝒅 < 𝒅𝑬

𝛄. 𝐞𝐱𝐩 (
−𝒅(𝒅 − 𝒅𝑬)

𝜹
) ,                                       𝒅 ≥ 𝒅𝑬

}
 
 

 
 

 

 

     For the three models, the distance dA, dC, dD are the distances up to which the LOS condition is 

guaranteed (the LOS probability is 100%). ITU-R model has a constant LOS probability when the Tx-Rx 

distance exceeds a specific value, namely dB. The decay of the ITU-R probability model is described as an 

exponential function with a decay parameter a as shown in Table 3.3. WINNER II (A1) model takes a 

different shape, and its decay is controlled by two factors (k and z) as depicted. This model starts its 

unstopped decay after a certain distance dC. For our model, there are two critical distances that the model 

changes its behavior after them, which are the reference distance (1 m away from the Tx), and the breakpoint 

of the environment (about 12 m for the indoor corridor studied). This model has a similar behavior as the 

WINNER II (A1) model before the breakpoint; however, the decay parameters are not exactly the same. 

After the breakpoint, the proposed model behaves as a scaled ITU-R model. Our proposed model has two 

decay factors (𝛼 and 𝛽) before the breakpoint and two other parameters (γ and 𝛿) after it, as presented in 

Table 3.4. 

     Figure 3.9 depicts a comparison between the concrete indoor data, ITU-R model, WINNER II (A1) 

model, and the proposed LOS probability model at the 14 GHz frequency band. It is to be noted from the 

figure that all models accurately fit the real data with higher precision provided by our proposed model. 

Moreover, it is observed that the LOS probability is within a reasonable range for the environment studied 

(i.e., the indoor corridor) since the minimum probability is around 72% at the maximum Tx-Rx separation 

distance because of the richness of reflections and diffractions in this environment. Note that the LOS 

probability decay is high in the first 3 meters away from the Tx. However, it decreases slowly with the 

distance up to the breakpoint and more slowly after the breakpoint to the end of the corridor. The RMSE 
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values between the models and the actual measured data are 0.0178 for the ITU-R model, 0.0155 for the 

WINNER II (A1) model, and 0.0145 for our proposed model. Here, our models’ parameters have lower 

RMSE compared with the existing models for such environments. The proposed model has also reduced 

the RMSE by 18.5% and 6.5% compared to the ITU-R and WINNER II (A1) models, respectively. Table 

3.4 shows the three models at 14 GHz. 

 

Figure 3.9: LOS probability models at 14 GHz. 

Table 3.4: The LOS probability models with their RMSE values at 14 GHz. 

Model Results RMSE 

ITU-R 𝑃𝐿𝑂𝑆 =

{
 

 
1,                                                  𝑑 ≤ 1

𝑒𝑥𝑝 (
−𝑑(𝑑 − 𝑑𝐴)

8.5
) , 1 < 𝑑 < 3

0.736,                                            𝑑 ≥ 3}
 

 

 0.0178 

WINNER II 

(A1) 
𝑃𝐿𝑂𝑆 = {

1,                                                                                      𝑑 ≤ 1

1 − 1.45 (1 − (𝑑 − 0.0018𝑙𝑜𝑔10(𝑑))
3
)

1
3
, 𝑑 > 1

} 0.0155 

Proposed 𝑃𝐿𝑂𝑆 =

{
 
 

 
 
1,                                                                                     𝑑 ≤ 1

1 − 1.47 (1 − (𝑑 − 0.0018𝑙𝑜𝑔10(𝑑))
3
)

1
3
, 1 < 𝑑 < 12

0.72 ×  𝑒𝑥𝑝 (
−𝑑(𝑑 − 𝑑𝐸)

2 × 104
) ,                                 𝑑 ≥ 12

}
 
 

 
 

 0.0145 
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Figure 3.10 represents the three models together with the measurement data at the 18 GHz frequency band. 

Again, It can be revealed that all figures fit precisely the real measured data. Note that from the figure, the 

LOS probability is guaranteed only when the Rx is 2 meters away from the Tx as a maximum distance for 

100% LOS probability. The RMSE values at this band are smaller than the values at the 14 GHz frequency 

band, which means the models perform better at 18 GHz. For our proposed model, the RMSE value is 

0.0063, which leads to better precision than the same model at 14 GHz by 56.6%. As a comparison between 

our model and the other models studied, the reduction of the RMSE is 62.5% and 38.8% from the ITU-R 

and WINNER II (A1) models, respectively. As a result, our model has an attractive accuracy at 18 GHz 

since it provides the best performance compared to the other standard models. The RMSE values and the 

three models’ parameters at the 18 GHz frequency band can be seen in Table 3.5. 

 

Figure 3.10: LOS probability models at 18 GHz. 

     The three models’ LOS probability curves and the measurement data at the 22 GHz band are given in 

Figure 3.11. It can be seen that the ITU-R model has the best performance here as the RMSE value equals 

0.0131, while it is 0.0197 for the WINNER II (A1) and 0.0169 for our model. However, all these values 

are within an acceptable range of accuracy. It is observed that the LOS probability models’ accuracy 

depends on the operating frequency, and this dependency should be investigated to have frequency-

dependent LOS probability models. Table 3.6 depicts the three models at the 22 GHz frequency band. As 

a summary of our results and discussions, our proposed model has the best performance in terms of its 
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accuracy in fitting the real measured data and its parameters’ stability with the frequency. This model can 

be used for 4G and 5G systems in enclosed indoor environments with reliable performance. Figure 3.12 

provides a graphical representation of the RMSE between the models and the measurement data at 14, 18, 

and 22 GHz frequency bands. 

Table 3.5: The LOS probability models with their RMSE values at 18 GHz. 

Model Results RMSE 

ITU-R 𝑃𝐿𝑂𝑆 =

{
 

 
1,                                                  𝑑 ≤ 1

𝑒𝑥𝑝 (
−𝑑(𝑑 − 𝑑𝐴)

9.55
) , 1 < 𝑑 < 3

0.72,                                            𝑑 ≥ 3 }
 

 

 0.0168 

WINNER II 

(A1) 
𝑃𝐿𝑂𝑆 = {

1,                                                                                      𝑑 ≤ 1

1 − 1.525 (1 − (𝑑 − 0.0018𝑙𝑜𝑔10(𝑑))
3
)

1
3
, 𝑑 > 1

} 0.0103 

Proposed 𝑃𝐿𝑂𝑆 =

{
 
 

 
 
1,                                                                                     𝑑 ≤ 1

1 − 1.57 (1 − (𝑑 − 0.0018𝑙𝑜𝑔10(𝑑))
3
)

1
3
, 1 < 𝑑 < 12

0.72 ×  𝑒𝑥𝑝 (
−𝑑(𝑑 − 𝑑𝐸)

105
) ,                                 𝑑 ≥ 12

}
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Figure 3.11: LOS probability models at 22 GHz. 
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Table 3.6: The LOS probability models with their RMSE values at 22 GHz. 

Model Results RMSE 

ITU-R 𝑃𝐿𝑂𝑆 =

{
 

 
1,                                                  𝑑 ≤ 1

𝑒𝑥𝑝 (
−𝑑(𝑑 − 𝑑𝐴)

8.2
) , 1 < 𝑑 < 3

0.736,                                            𝑑 ≥ 3}
 

 

 0.0131 

WINNER II 

(A1) 
𝑃𝐿𝑂𝑆 = {

1,                                                                                      𝑑 ≤ 1

1 − 1.532 (1 − (𝑑 − 0.0018𝑙𝑜𝑔10(𝑑))
3
)

1
3
, 𝑑 > 1

} 0.0197 

Proposed 𝑃𝐿𝑂𝑆 =

{
 
 

 
 
1,                                                                                     𝑑 ≤ 1

1 − 1.47 (1 − (𝑑 − 0.0018𝑙𝑜𝑔10(𝑑))
3
)

1
3
, 1 < 𝑑 < 12

0.736 ×  𝑒𝑥𝑝 (
−𝑑(𝑑 − 𝑑𝐸)

105
) ,                                 𝑑 ≥ 12

}
 
 

 
 

 0.0169 

 

 

Figure 3.12: The RMSE values of the LOS probability models. 

     Motivated by the performance of the proposed LOS probability model, the following section provides a 

probabilistic path loss prediction model based on a path loss detailed in chapter 4 and the proposed LOS 

probability model. 

3.5 Proposal of a Probabilistic Path Loss Model 

This section proposes a probabilistic path loss prediction model for wireless communications in indoor 

corridor environments. The model is developed based on two evaluation studies. The first study was about 
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the best-fit line-of-sight (LOS) probability model. At the same time, the second one was based on the best 

order of log-distance dependency for the close-in (CI) free space reference distance path loss model. The 

evaluation of the proposed model’s performance was done using the prediction error (PE), mean prediction 

error (MPE), and standard deviation error (SDE) between the predicted model and the measurement data. 

In addition, the distributions of the PE with the separation distance between the transmitting and receiving 

antennas are also presented. 

     The main benefit of using this model is the freedom from the classification problem mentioned above 

since only one equation can accurately predict the path loss for both the LOS and NLOS communication 

conditions. The path loss prediction model adopted in our proposed probabilistic model is an improved 

version of the standard CI model. The proposed probabilistic path loss model employs a weighting function 

to consider the proposed LOS probability given in previous section. Thus, the model can be written as: 

𝑃𝐿𝑃𝑟𝑜𝑏 . (𝑑)[𝑑𝐵] = 𝑃𝐿𝑂𝑆(𝑑) × 𝑃𝐿𝐿𝑂𝑆(𝑑) + 𝑃𝑁𝐿𝑂𝑆(𝑑) × 𝑃𝐿𝑁𝐿𝑂𝑆(𝑑),                        (3.11) 

where 𝑃𝐿𝑂𝑆(𝑑) is the LOS probability model proposed above. 𝑃𝑁𝐿𝑂𝑆(𝑑) is the NLOS probability, which is 

1 − 𝑃𝐿𝑂𝑆(𝑑). 𝑃𝐿𝐿𝑂𝑆(𝑑) and 𝑃𝐿𝑁𝐿𝑂𝑆(𝑑) are given from our improved model based on substituting the 

parameters’ values for the LOS and NLOS, respectively. 

     Figure 3.13 depicts the average measurement path loss data, free-space path loss model, and the 

proposed probabilistic path loss model as a function of the Tx-Rx distance in the log scale at 14, 18, and 22 

GHz. It is clear from the figure that the measurement data and the probabilistic model curves match for all 

the frequency bands, which means this model achieves high prediction accuracy. Moreover, for each 

frequency band, the model curve is lower than the free-space path loss curve due to the fact that these 

corridor environments contain an abundance of propagation mechanisms such as reflections, diffractions, 

and waveguiding effects with low delay spread which result in constructive interference that lead to lower 

path loss values (the free-space path loss exponent is significantly less than 2 in our selected environment). 

It is also to be noted from the figure that the probabilistic CI path loss curves are not straight lines as the 

free-space path loss curves. The reason behind that is the consideration of the LOS probability in the model 

as a function of the Tx-Rx separation distance. 

     The PE of our proposed model as a function of the Tx-Rx separation distance is shown in Figure 3.14 

for the three frequency bands. It is evident that the PE follows a random distribution with the distance 

between the Tx and Rx, and the values are within the range of 0.1 and 5 dB. This means that the maximum 

possible PE that can happen is only 5 dB at relatively far distances. This value can easily be overcome by 

considering this value as a margin in the design of wireless systems and link budget calculations for LOS 

communication scenarios. Table 3.7 provides the values of the MPE and SDE of the model at 14, 18, and 
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22 GHz. These values were taken based on comparing the model with the LOS path loss data. The values 

are within an excellent range since the maximum MPE and SDE are 2.3671 and 1.5985 dB, respectively. 

As a comparison between the three frequency bands, the best model performance is achieved at 18 GHz. 

 

Figure 3.13: Path loss data and models at 14, 18, and 22 GHz. 

 

Figure 3.14: PE of the probabilistic CI path loss model. 
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Table 3.7: The probabilistic model's MPE and SDE for the LOS Communication Scenario 

Parameter 

MPE [dB] SDE [dB] 

𝟏𝟒 𝑮𝑯𝒛 𝟏𝟖 𝑮𝑯𝒛 𝟐𝟐 𝑮𝑯𝒛 𝟏𝟒 𝑮𝑯𝒛 𝟏𝟖 𝑮𝑯𝒛 𝟐𝟐 𝑮𝑯𝒛 

Probabilistic CI model 1.6776 1.1510 2.3671 1.3319 0.7075 1.5985 

 

     To evaluate the effectiveness of the model’s performance with the AoA in the NLOS communication 

scenario, we calculated the MDE and SDE of the model along with the 360 degrees azimuth plan with 

incremental steps of 30 degrees. Tables 3.8, 3.9, and 3.10 present the MDE and SDE with the AoA at 14, 

18, and 22 GHz frequency bands, respectively. It is clear from the tables that the MDE values are generally 

increasing with the frequency, and the lowest relative values are when the AoA is equaled to 30 and 330 

degrees, which are the closest values to the LOS value of 0 degree. Also, it is clear from the tables that the 

highest MPE and SDE values are when the AoA is in the range of 120 to 240 degrees since the receiving 

antenna relies mainly on the back lobes and reflections of the back and sidewalls of the corridor. However, 

the change from the minimum to the maximum MDE and SDE values was not significant, as can be seen 

from Figure 3.15 that provides the MDE and SDE values with the AoA. The MPE and SDE values are 

much higher for the NLOS condition than the LOS. This is due to the high probability of having a clear 

LOS path between the Tx and Rx in such indoor channels. For example, as discussed above, we found that 

the minimum LOS probability in the corridor understudy is around 70% for all the frequency bands.  

Table 3.8: The NLOS results of the probabilistic model at 14 GHz frequency band. 

 𝟑𝟎° 𝟔𝟎° 𝟗𝟎° 𝟏𝟐𝟎° 𝟏𝟓𝟎° 𝟏𝟖𝟎° 𝟐𝟏𝟎° 𝟐𝟒𝟎° 𝟐𝟕𝟎° 𝟑𝟎𝟎° 𝟑𝟑𝟎° 

MPE [dB] 6.8071 8.1311 8.1723 8.1414 8.2531 7.8546 8.3426 8.2019 8.1621 7.9255 6.5116 

SDE [dB] 2.8798 4.0837 4.1332 4.1054 4.2955 4.3650 4.5215 4.2431 4.1777 3.7362 2.8732 

 

Table 3.9: The NLOS results of the probabilistic model at 18 GHz frequency band. 

 𝟑𝟎° 𝟔𝟎° 𝟗𝟎° 𝟏𝟐𝟎° 𝟏𝟓𝟎° 𝟏𝟖𝟎° 𝟐𝟏𝟎° 𝟐𝟒𝟎° 𝟐𝟕𝟎° 𝟑𝟎𝟎° 𝟑𝟑𝟎° 

MPE [dB] 6.1461 8.2669 9.1996 9.3129 9.2481 8.6972 9.4272 9.2994 9.2246 9.3876 8.5901 

SDE [dB] 2.7961 4.1169 4.8005 5.0806 5.0437 5.1698 5.3666 5.0707 4.8355 5.4676 4.3985 
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Table 3.10: The NLOS results of the probabilistic model at 22 GHz frequency band. 

 𝟑𝟎° 𝟔𝟎° 𝟗𝟎° 𝟏𝟐𝟎° 𝟏𝟓𝟎° 𝟏𝟖𝟎° 𝟐𝟏𝟎° 𝟐𝟒𝟎° 𝟐𝟕𝟎° 𝟑𝟎𝟎° 𝟑𝟑𝟎° 

MPE [dB] 9.1977 9.8642 10.1606 10.1892 10.2004 10.0112 10.1853 10.2359 10.2155 9.8580 9.3322 

SDE [dB] 3.5349 4.0208 4.4670 4.5241 4.6031 4.6475 4.5709 4.6127 4.5725 4.1700 3.5899 

 

Figure 3.15: The MPE and SDE of the probabilistic model with AoA. 

3.6 Chapter Summary 

     Motivated by the high demand for accurate wireless channel models, this chapter proposed new path 

loss prediction and LOS probability models for wireless communications in enclosed indoor environments 

such as corridors. The models were derived to get their parameters based on actual measurement data 

collected using the MMSE approach. Three frequency bands were considered for this research, namely 14 

GHz, 18 GHz, and 22 GHz. The models have proved their prediction accuracy since they follow the real 

data for all the frequency bands selected with low SF's standard deviation values. Moreover, the proposed 

probabilistic path loss model was also evaluated by the concept of prediction error. It was noted that the 

model's MPE and SDE values are within a reasonable range, proving the proposed model's precision. 

Finally, these proposed models can be improved to be more sensitive to the propagation characteristics of 

the wireless channel, which will be the scope of the following chapter.
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Chapter 4: An Efficient Approach of Improving Path Loss 

Models for Future Mobile Networks 

 

4.1 Introduction 

It is the norm to characterize and model the wireless communication channel in the frequency bands used 

(or expected to be used) to understand better and accurately deploy the upcoming systems. Therefore, many 

researchers focused on this area by modeling the wireless channel's behavior using different ways: models 

based on theories, techniques such as ray-tracing, and measurement campaigns. The latter looks promising 

because of its accuracy and reliability since the measurements are in real environments and communication 

scenarios. 

     After proposing our models in the previous chapter and considering the literature, a vital question has 

motivated the research in this chapter: how can we improve the accuracy and reduce the standard deviation 

of the shadow fading of the well-known standard path loss models without adding parameters that depend 

on something else like antennas' height or the XPD?. 

     This question is answered through a fundamental principle: any linear equation is a polynomial equation 

with zero coefficients in higher orders. It is well-known that the standard path loss models (such as the CI 

and FI models) are a linear equation of the path loss as a function of the logarithmic scale of the separation 

distance between the transmitting and the receiving antennas. We incorporate an additional parameter to 

make these models a function of the transmitter-receiver (Tx-Rx) separation distance's squared logarithm. 

This adopted improvement is simple (in the improved models’ equations, the proposed additional parameter 

that improves the standard models does not depend on anything like frequency and antenna height, etc.) 

and provides more precision in predicting the path loss, as will be proved in the following sections. 

4.2 The Standard Path Loss Prediction Modeling   

Generally, all standard path loss prediction models can be derived from Friis’s equation [65], [66]: 

𝐹𝑆𝑃𝐿(𝑓, 𝑑) = (
4𝜋𝑑𝑓

𝑐
)
2
,                                                              (4.1) 

where 𝑑 is the Tx-Rx separation distance (in meters), 𝑓 is the frequency of the propagated signal (in Hz), 

and 𝑐 is the speed of light in the free space, which approximately equals to 3 × 108 𝑚/𝑠. This simple 

equation in the linear scale (absolute numbers) shows that the path loss between two isotropic antennas 
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aligned on boresight toward each other is mainly a function of the operating frequency and the Tx-Rx 

separation distance. As presented in Eq. (4.1), the path loss is distance- and frequency-dependent; the 

increase in the frequency or the distance will produce higher path loss values. However, this is true when 

the wireless channel is in free space. In reality, the wireless channel’s problems such as attenuation, 

interference, distortion, and noise in the communication schemes have random behavior. For example, 

Figure 4.1 represents the attenuation in the air at different frequency bands in GHz. It is clear from the 

figure that the attenuation of the air does not follow a specific behavior. Because of air attenuation and 

atmospheric absorption, some low frequencies have large path loss values in outdoor environments. This 

issue and many other problems have accelerated the research to cover all frequency bands by conducting 

measurement campaigns in typical indoor and outdoor environments to have reliable channel models. 

 

Figure 4.1: The air’s attenuation at different frequency bands [46]. The white circle shows a minor attenuation 

of the low 5G frequency bands. Attenuation levels that are similar to the 4G cmWave bands are displayed in the 

green circles. The blue circles show high attenuation peaks; such bands are thus ideal for indoor 

communications with a minimal range. 

     It is more convenient to present the path loss equations in the logarithmic scale. Hence, Eq. (4.1) can be 

written as follows: 

𝐹𝑆𝑃𝐿(𝑓, 𝑑)[𝑑𝐵] = 32.4 + 20 log10(𝑓) + 20 log10(𝑑).                                  (4.2) 

     The value 32.4 comes from 10 log10 (
4𝜋×109

𝑐
)
2

, and the value 109 is to have values of frequencies 

directly in GHz (i.e., 𝑓 in Eq. (4.2) is the operating frequency in GHz). The variable 𝑑 in the previous 

equation represents the Tx-Rx separation distance in meters.  

     The existing path loss models can be categorized as single-frequency (like the CI and FI models) or 

multi-frequency (like the ABG model). For single-frequency models, the term 20 log10(𝑓 ) is constant and 
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can be added to the first term of Eq. (4.2). The result is a constant term that depends on the value of the 

frequency (single-frequency path loss models have a pure dependence on the frequency presented as a 

parameter). The representation of this parameter differs from one model to another. Let us name this 

parameter 𝑘1. The term 20 log10(𝑑) is basically 2 times the distance in the logarithmic scale, where the 

value 2 is the free space path loss exponent (FSPLE), which indicates that the path loss changes with the 

square of the Tx-Rx distance in the free space. However, this value will change significantly, depending 

mainly on the medium’s nature between the Tx and Rx. In general, it will be easier to denote it as 𝑘2. Hence, 

Eq. (4.2) can be simplified as follows: 

𝑃𝐿(𝑑)[𝑑𝐵] = 𝑘1 + 𝑘2 × 10 log10(𝑑),                                                (4.3) 

where the coefficient 𝑘1 is measured in dB, and 𝑘2 is unitless. It is clear from the previous equation that the 

power of the propagated signal decreases by 
1

𝑑𝑘2  
. This means that higher values of 𝑘2 will lead to a stronger 

dependency of the path loss on the separation distance between the Tx and Rx. Different path loss models 

exist depending on the techniques used to evaluate the values of these coefficients. This research adopted 

from those several models in the literature two well-known path loss models, the CI and FI models, and our 

improvement on these models. The parameters of these semi-deterministic models are based on the real 

measured values of the received signal levels collected from measurement campaigns. 

4.3 The Standard CI Model and Our Improved CI Path Loss Prediction Model 

The CI model can be written from Eq. (4.3) by replacing 𝑘1 by the value of the free space path loss at the 

operating frequency (𝑓) and the reference distance (𝑑0), and replacing 𝑘2 by the PLE (𝑛) as described in 

the following equation: 

𝑃𝐿𝐶𝐼(𝑑)[𝑑𝐵] = 𝐹𝑆𝑃𝐿(𝑓, 𝑑0) + 10𝑛𝑙𝑜𝑔10(𝑑) + 𝑋𝜎
𝐶𝐼,                                    (4.4) 

where 𝑋𝜎
𝐶𝐼 is a Gaussian random variable with zero mean and a standard deviation 𝜎 in dB [6]. This term 

represents the shadow fading (SF), representing the large-scale fluctuations of the path loss values because 

of obstructions and other random propagation effects [177]. Having fewer values of the SF standard 

deviation means that the path loss models are more accurate. The SF’s importance for researchers and 

engineers lies in the fact that it can establish standards that include large-scale fading statistical models 

without detailed knowledge of the characteristics of a site-specific environment [6]. 

     In this work, we adopted the physically-based reference distance to be 1 𝑚 for the reason that the 

wireless signals at the frequency bands above 6 GHz exhibit significant path loss values in the first meter 

of the propagation away from the transmitting antenna [40]. Also, it will be easier to compare our work 
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with other works as most of the researches in the literature use 1 𝑚 reference distance. The free space path 

loss expressed in the dB scale at a reference distance 𝑑0 = 1 𝑚 is given by: 

𝐹𝑆𝑃𝐿(𝑓, 1𝑚) = 10 log (
4𝜋𝑓

𝑐
)
2
.                                                      (4.5) 

     Note that the CI model depends on one main parameter to be optimized, which is the PLE (𝑛). The 

dependency of the path loss model on the 3D Tx-Rx separation distance is characterized by this unitless 

parameter (PLE). This model depends on a physical anchor that catches path loss near the transmitting 

antenna. It is clear that the CI model has an intrinsic dependency on the frequency of propagation that exists 

in the FSPL term. This term’s values vary from 48 to 82 dB when the frequency range is between 6 and 

300 GHz, respectively. The CI model is suitable for single- and multi-frequency situations and can estimate 

the path loss from both co- and cross-polarization cases [177]. 

     The minimum mean square error (MMSE) technique is used to optimize the CI model's parameter (i.e., 

the PLE). Using this approach, we can achieve the least error in fitting the real measured data by minimizing 

the SF standard deviation. 

     To predict the path loss with more accuracy and sensitivity to the small changes of the propagation 

environments, we add an independent parameter to the CI model’s equation. The improved model has two 

terms that depend on the 3D Tx-Rx separation distance. This means that the path loss exponent principle 

exists in two parameters (𝑛1 and 𝑛2), as presented in the following equation: 

𝑃𝐿𝐼𝑚𝑝.  𝐶𝐼(𝑑)[𝑑𝐵] = 𝐹𝑆𝑃𝐿(𝑓, 𝑑0) + 10𝑛1𝑙𝑜𝑔10(𝑑) + 10𝑛2(𝑙𝑜𝑔10(𝑑))
2
+ 𝑋𝜎

𝐼𝑚𝑝.  𝐶𝐼
, 𝑑 > 1𝑚,    (4.6) 

where 𝑛1 and 𝑛2 are the first order and second order of the PLE, respectively. This improvement of the CI 

will increase the opportunity to fit the real measured data collected from measurement campaigns and 

present more details in characterizing the wireless channel. Changing the environment where the signal can 

propagate, or the propagation’s communication scenario (LOS or NLOS, etc.) will lead to a notable change 

in the values of 𝑛1 and 𝑛2.  

     To have the closed-form of these parameters, let us assume that 𝐴 = 𝐹𝑆𝑃𝐿(𝑓, 𝑑0), 𝐵 = 𝑃𝐿
𝐼𝑚𝑝.  𝐶𝐼(𝑑), 

𝐷 = 10𝑙𝑜𝑔10(𝑑), and 𝐸 = 10(𝑙𝑜𝑔10(𝑑))
2
, then, the SF of Eq. (4.6) can be expressed as: 

𝑋𝜎
𝐼𝑚𝑝.  𝐶𝐼

= 𝐵 − 𝐴 − 𝑛1𝐷 − 𝑛2𝐸.                                                (4.7) 

     The SF standard deviation (𝜎𝐼𝑚𝑝.  𝐶𝐼) can be determined from the experimental data using: 
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𝜎𝐼𝑚𝑝.  𝐶𝐼 =
√∑(𝑋𝜎

𝐼𝑚𝑝.  𝐶𝐼
)
2
 

𝑁
,                                                           (4.8) 

where 𝑁 is the number of the Tx-Rx separation distances (i.e., the total number of the average path loss 

samples recorded). Now, we have to differentiate the numerator of Eq. (4.8) with respect to both 𝑛1 and 𝑛2 

and equate the result to zero to have the optimum value of these parameters that will lead to the minimum 

value of the standard deviation as follows: 

𝜕

𝜕𝑛1
(∑(𝐵 − 𝐴 − 𝑛1𝐷 − 𝑛2𝐸)

2
) = 0,                                                      (4.9) 

𝜕

𝜕𝑛2
(∑(𝐵 − 𝐴 − 𝑛1𝐷 − 𝑛2𝐸)

2
) = 0,                                                    (4.10) 

     After the differentiation and simplification of the previous two equations, we have two linear equations 

which can be expressed as: 

∑𝐷2 𝑛1 + ∑(𝐷𝐸)𝑛2 =∑(𝐵𝐷) − 𝐴∑𝐷,                                           (4.11) 

∑(𝐷𝐸)𝑛1 + ∑𝐸
2 𝑛2 =∑(𝐵𝐸) − 𝐴∑𝐸.                                           (4.12) 

     The matrix form of the equations (4.11) and (4.12) can be written easily as: 

[
∑𝐷2 ∑(𝐷𝐸)

∑(𝐷𝐸) ∑𝐸2
] [
𝑛1
𝑛2
] = [

∑(𝐵𝐷) − 𝐴∑𝐷
∑(𝐵𝐸) − 𝐴∑𝐸

].                                     (4.13) 

     Finally, the closed-form of 𝑛1 and 𝑛2 can be found from the previous matrix. 

     Figures 4.2-4.4 depict the real measured path loss, the CI model, and the Improved-CI model together 

for the LOS communication scenario at the three frequencies. It is clear from the figures that both models 

fit the measured path loss adequately and both have a comparable performance with a slight preference of 

the improved model. This also can be noted from Table 4.1 that presents the values of the models’ 

parameters. Our proposed model minimizes the shadow fading’s standard deviation at the three frequencies 

by 2.3%, 5.2%, and 10.7% at 14, 18, and 22 GHz, respectively. We note that the reduction of the standard 

deviation becomes higher as we go for high-frequency bands. This is because the higher frequency bands 

suffer from many propagation effects and have higher path loss values than lower bands. From Table 4.1, 

for the CI model, the path loss exponent is directly proportional to the operating frequency. This leads to 

the general fact that higher frequency bands have higher path loss values. All the PLE’s values are under 

the value of the FSPLE. The reason behind that is the constructive interference between the multipath 

signals, which makes the PLE lower than 2. For the improved-CI model, as discussed previously, the 

concept of the PLE has split into two parameters (i.e., 𝑛1 and 𝑛2), as shown in Table 4.1. This technique 
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gives the model more relaxation to accurately fit the measured data. It is clear that the values of 𝑛1 are 

higher than the values of the CI model’s PLE. However, all the values of 𝑛2 are negative, which will 

compensate the increase of 𝑛1 values and make the model following the measured path loss and counts all 

the possible signal effect. Figure 4.5 offers a graphical view of both models (CI and improved-CI) together 

at 14, 18, and 22 GHz for the LOS communication scenario. We plotted the MSE curves between the CI 

and improved CI models with respect to the separation distance between the Tx and Rx for the LOS 

scenario, as depicted in Figure 4.6. It is worth noting that all the MSE values are in the range of 10−4 to 

10−2 with lower values around 14 to 16 meters (near the breakpoint of the corridor) of the Tx-Rx separation 

distance. 

 

 

Figure 4.2: Comparison of measured path loss, the fitted CI model, and the improved CI model for the LOS 

results at 14 GHz frequency band. 
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Figure 4.3: Comparison of measured path loss, the fitted CI model, and the improved CI model for the LOS 

results at 18 GHz frequency band. 

 

 

Figure 4.4: Comparison of measured path loss, the fitted CI model, and the improved CI model for the LOS 

results at 22 GHz frequency band. 
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Figure 4.5: Directional large-scale path loss prediction models for the LOS communication scenario. 

 

 

Figure 4.6: MSE between the CI and improved CI models in the LOS communication scenario. 
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Table 4.1: A comparison between the CI and Improved-CI models' parameters in the LOS scenario. 

Parameter 𝟏𝟒 𝑮𝑯𝒛 𝟏𝟖 𝑮𝑯𝒛 𝟐𝟐 𝑮𝑯𝒛 

𝑷𝑳𝑬 (𝒏) 1.37 1.58 1.66 

𝝈𝒎𝒊𝒏
𝑪𝑰  [𝒅𝑩] 2.19 1.53 1.31 

𝒏𝟏 1.61 1.87 1.99 

𝒏𝟐 −0.20 −0.24 −0.28 

𝝈𝒎𝒊𝒏
𝑰𝒎𝒑.  𝑪𝑰

 [𝒅𝑩] 2.14 1.45 1.17 

 

     In the NLOS communication scenario, as it is known, the receiving antenna relies mainly on reflection, 

diffraction, and the effect of waveguiding in this enclosed environment for capturing the signals from the 

Tx. The CI model’s PLE values here are 2.07, 2.38, and 2.26 at 14, 18, and 22 GHz, respectively. Note that 

because there is no direct dominant path from the transmitting to the receiving antennas, the values became 

notably high compared to the LOS results. However, they are still low compared to the communications in 

outdoor environments where the fluctuations of the propagated signals is much stronger. We find that in 

enclosed indoor environments such as corridors, the PLE values will not go much higher than the values of 

the FSPLE since the maximum percentage jump is in the 18 GHz band by 16%. This frequency band (i.e., 

18 GHz) has a higher sensitivity to the wireless channel effects than the others for the frequencies studied. 

The SF standard deviation of the CI model is seen to rise to more than the double in the NLOS scenario, as 

shown in Table 4.2. This means that there is less precision in predicting the path loss in NLOS scenarios 

than in the LOS ones. 

     Nevertheless, the proposed model provides an attractive reduction of the standard deviation since it 

produces a minimum reduction of 3.24 dB (54.2% less), as can be seen in Table 4.2. This improvement is 

simple and highly efficient since almost all the communication methods for indoor environments are NLOS. 

The reason behind this improvement is the fact that the current statistical NLOS models cannot properly 

model the propagation mechanisms such as reflections and diffractions effects, which are captured better 

by the new parameter in our improved model. Again, all the values of the parameter 𝑛2 are negative, and 

𝑛1 values are larger than the PLE value for the NLOS scenario as the LOS one. Figure 4.7 displays both 

models at the three selected frequency bands. From this figure, it is clear that the path loss curves of the 

improved CI model are away from the CI model’s curves. The MSE between the CI and improved CI 
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models is outlined in Figure 4.8 for the NLOS scenario. The figure shows the increase in the MSE values 

compared to the LOS scenario since, for the NLOS, the MSE values are in the range of 10−2 to 100. 

 

Figure 4.7: Directional large-scale path loss prediction models for the NLOS communication scenario. 

 

 

Figure 4.8: MSE between the CI and improved CI models in the NLOS communication scenario. 
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Table 4.2: A comparison between the CI and Improved-CI models’ parameters in the NLOS scenario. 

Parameter 𝟏𝟒 𝑮𝑯𝒛 𝟏𝟖 𝑮𝑯𝒛 𝟐𝟐 𝑮𝑯𝒛 

𝑷𝑳𝑬 (𝒏) 2.07 2.38 2.26 

𝝈𝒎𝒊𝒏
𝑪𝑰  [𝒅𝑩] 5.98 6.87 6.86 

𝒏𝟏 5.09 5.86 5.69 

𝒏𝟐 −2.57 −2.97 −2.92 

𝝈𝒎𝒊𝒏
𝑰𝒎𝒑.  𝑪𝑰

 [𝒅𝑩] 2.74 3.08 3.23 

 

     The behavior of the CI and Improved-CI models’ parameters with the AoA at 14, 18, and 22 GHz is 

presented in detail in Table 4.3, Table 4.4, and Table 4.5, respectively. From the Tables, it is clear that the 

PLE’s minimum values occur when the AoA equals 30 and 330 degrees. The reason behind that is that at 

these AoA values, the Rx antenna is still aligned near the LOS path, and with the help of the propagation 

mechanisms discussed above, the PLE’s value is minimized. The maximum PLE values occur at 150 and 

210 degrees of the AoA. This shows that around these angles, when the Rx is in the opposite direction of 

the Tx, the propagated signal will suffer from maximum path loss values before reaching the Rx antenna. 

Note that when the AoA is exactly 180 degrees, the PLE values are within a good range compared to other 

AoA because of the back loops of the Rx antenna’s radiation pattern, as can be seen from Figures 4.9-4.11. 

These findings give an insight into what will happen in reality when the Tx or Rx orientations might not be 

known and how the wireless signals will be affected according to this issue in such enclosed indoor corridor 

environments. When we compare the three frequencies together, we observe that the fluctuations of the 

PLE values are 6.8%, 10.4%, and 3.1% at 14, 18, and 22 GHz, respectively. This means that the 22 GHz 

frequency band has an attractive behavior in terms of its stability to the AoA, which leads to accurate 

modeling of the wireless propagation channel in the NLOS communication scenario. For the SF’s standard 

deviation values, the difference between the maximum and minimum values are 2.04, 3.1, and 1.3 dB. It is 

clear that the worst performance between the three frequencies is at 18 GHz. For our proposed model, since 

the concept of the PLE is divided into two parameters, it is clear from the Tables that it outperforms the CI 

regarding the sensitivity and stability of the model’s parameters with the AoA. 
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Table 4.3: The behavior of the CI and Improved-CI models’ parameters with the AoA at 14 GHz frequency band. 

 𝟑𝟎° 𝟔𝟎° 𝟗𝟎° 𝟏𝟐𝟎° 𝟏𝟓𝟎° 𝟏𝟖𝟎° 𝟐𝟏𝟎° 𝟐𝟒𝟎° 𝟐𝟕𝟎° 𝟑𝟎𝟎° 𝟑𝟑𝟎° 

𝑷𝑳𝑬 (𝒏) 2.0026 2.0950 2.0965 2.0954 2.1006 2.0604 2.1049 2.0968 2.0952 2.0832 1.9707 

𝝈𝒎𝒊𝒏
𝑪𝑰  [𝒅𝑩] 4.73 6.18 6.25 6.20 6.40 6.37 6.63 6.37 6.30 5.80 4.59 

𝒏𝟏 4.4763 5.1908 5.2955 5.2026 5.3150 5.1780 5.3981 5.3147 5.2882 5.0508 4.3108 

𝒏𝟐 −2.105 −2.635 −2.722 −2.644 −2.736 −2.653 −2.803 −2.738 −2.717 −2.525 −1.991 

𝝈𝒎𝒊𝒏
𝑰𝒎𝒑.  𝑪𝑰

[𝒅𝑩] 1.86 2.93 2.72 2.92 2.99 3.23 3.21 2.92 2.86 2.53 2.02 

 

Table 4.4: The behavior of the CI and Improved-CI models’ parameters with the AoA at 18 GHz frequency band. 

 𝟑𝟎° 𝟔𝟎° 𝟗𝟎° 𝟏𝟐𝟎° 𝟏𝟓𝟎° 𝟏𝟖𝟎° 𝟐𝟏𝟎° 𝟐𝟒𝟎° 𝟐𝟕𝟎° 𝟑𝟎𝟎° 𝟑𝟑𝟎° 

𝑷𝑳𝑬 (𝒏) 2.1836 2.3478 2.4074 2.4114 2.4166 2.3503 2.4205 2.4110 2.4048 2.4198 2.3712 

𝝈𝒎𝒊𝒏
𝑪𝑰  [𝒅𝑩] 4.42 6.20 7.10 7.31 7.36 7.24 7.52 7.18 6.99 7.65 6.56 

𝒏𝟏 4.5208 5.5663 6.0441 6.1024 6.1328 5.9643 6.1947 6.0495 5.9568 6.2216 5.7193 

𝒏𝟐 −1.989 −2.739 −3.095 −3.141 −3.163 −3.076 −3.212 −3.096 −3.023 −3.235 −2.849 

𝝈𝒎𝒊𝒏
𝑰𝒎𝒑.  𝑪𝑰

[𝒅𝑩] 1.61 2.52 3.08 3.35 3.38 3.47 3.53 3.25 3.13 3.72 2.89 

 

Table 4.5: The behavior of the CI and Improved-CI models’ parameters with the AoA at 22 GHz frequency band. 

 𝟑𝟎° 𝟔𝟎° 𝟗𝟎° 𝟏𝟐𝟎° 𝟏𝟓𝟎° 𝟏𝟖𝟎° 𝟐𝟏𝟎° 𝟐𝟒𝟎° 𝟐𝟕𝟎° 𝟑𝟎𝟎° 𝟑𝟑𝟎° 

𝑷𝑳𝑬 (𝒏) 2.2099 2.2585 2.2752 2.2747 2.2751 2.2523 2.2738 2.2775 2.2754 2.2542 2.2192 

𝝈𝒎𝒊𝒏
𝑪𝑰  [𝒅𝑩] 5.93 6.58 7.03 7.13 7.22 7.23 7.18 7.21 7.20 6.70 6.03 

𝒏𝟏 5.2224 5.5827 5.7903 5.8321 5.8638 5.8427 5.8460 5.8715 5.8624 5.6136 5.3165 

𝒏𝟐 −2.564 −2.829 −2.991 −3.027 −3.054 −3.056 −3.040 −3.059 −3.053 −2.859 −2.636 

𝝈𝒎𝒊𝒏
𝑰𝒎𝒑.  𝑪𝑰

[𝒅𝑩] 2.66 3.01 3.35 3.42 3.50 3.52 3.47 3.46 3.47 3.15 2.58 
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Figure 4.9: The behavior of the CI model’s parameter (i.e., PLE) with the AoA. 

 

 

Figure 4.10: The behavior of the improved CI model’s parameter (𝒏𝟏) with the AoA. 
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Figure 4.11: The behavior of the improved CI model’s parameter (𝒏𝟐) with the AoA. 

 

     Figure 4.12 depicts the CI and improved-CI models’ parameters at two different practical antenna 

heights (i.e., 1.6 and 2.3m) for both the LOS and NLOS communication scenarios. Generally, the figure 

shows the increase of the parameters’ values when the Tx antenna height is 2.3 m compared to 1.6 Tx 

antenna height because of the mismatching of the antennas’ heights. Moreover, it can be seen from the 

figure that our proposed model provides more sensitivity to the antenna height and capture more accurately 

the wireless propagation characteristics caused by the mismatching of the Tx and Rx antenna heights. 

Furthermore, it reveals that the antenna height’s impact is minimum at 22 GHz and maximum at 14 GHz 

for both the CI model and our proposed model. However, when we look at the SF’s standard deviation 

values, we observe that the proposed model outperforms the standard CI model depending on the antennas’ 

heights. It is worth noting that the antenna height might not be an essential factor in the specific 

investigations presented in this work. However, the antenna locations, patterns, and relative orientation are 

significant factors, especially at high frequencies, mmWave and above. These performance studies will 

help engineers in designing reliable communication systems in such scenarios and have an accurate 

understanding and modeling of the wireless channel’s behavior. 
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(a) 14 GHz and LOS. 

 

(b) 18 GHz and LOS. 

 

(c) 22 GHz and LOS. 

 

(d) 14 GHz and NLOS. 

 

(e) 18 GHz and NLOS. 

 

(f) 22 GHz and NLOS. 

 

Figure 4.12: The parameters of the CI and improved-CI models at two different Tx antenna heights. 

 

Figure 16: The parameters of the CI and improved-CI models at two different Tx antenna heights. 
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4.4 The Standard FI Model and Our Improved FI Path Loss Prediction Model 

The FI model has been widely used in 3GPP and WINNER II standards [5], [27], [P4/24], [28], [177]. It 

does not depend on the physical anchor point constraint that catches the path loss near the transmitting 

antenna. However, it depends on the mathematical curve that fits the measured path loss values. As a linear 

equation, the FI model has two parameters, which are the intercept (denoted by 𝛼) and slope (indicated by 

𝛽) of the path loss line as presented in the following equation: 

𝑃𝐿𝐹𝐼(𝑑)[𝑑𝐵] = 𝛼 + 10𝛽 log10(𝑑) + 𝑋𝜎
𝐹𝐼,                                           (4.14) 

where 𝑃𝐿𝐹𝐼(𝑑) is the path loss in dB, and 𝑋𝜎
𝐹𝐼 is a Gaussian random variable with zero mean and a standard 

deviation 𝜎𝐹𝐼. In the previous expression, both 𝑋𝜎
𝐹𝐼 and 𝜎𝐹𝐼 are in dB. It is worth noting that the FI model’s 

parameters are unlike the CI model (𝛼 is unlike FSPL, and 𝛽 is unlike the PLE). However, the models have 

comparable overall performance in predicting the path loss with a preference of one over the other 

depending on the operating frequency as well as the environment and communication scenario of the 

wireless communication system [169]. 

     For the Improved FI model, we follow the same principle as we used for the improved CI model, which 

is adding an independent parameter that will be the coefficient of the square of the logarithm of the 3D Tx-

Rx separation distance as presented in the following equation: 

𝑃𝐿𝐼𝑚𝑝.  𝐹𝐼(𝑑)[𝑑𝐵] = 𝛼 + 10𝛽1 log10(𝑑) + 10𝛽2(log10(𝑑))
2 + 𝑋𝜎

𝐼𝑚𝑝.  𝐹𝐼
.                    (4.15) 

     As seen from Eq. (4.15), this model has three parameters to be known (𝛼, 𝛽1, and 𝛽2). Using the MMSE 

approach and following the same derivation we used for the improved CI model, the solution matrix of 

these parameters can be expressed as: 

[

𝑁 ∑𝐷 ∑𝐸

∑𝐷 ∑𝐷2 ∑(𝐷𝐸)

∑𝐸 ∑(𝐷𝐸) ∑𝐸2
] [

𝛼
𝛽1
𝛽2

] = [

∑𝐵
∑(𝐵𝐷)
∑(𝐵𝐸)

],                                            (4.16) 

where 𝐵 = 𝑃𝐿𝐼𝑚𝑝.  𝐹𝐼(𝑑), 𝐷 = 10 log10(𝑑), and 𝐸 = 10(log10(𝑑))
2. The closed-forms of the parameters 

are found from the previous matrix.  

     Figures 4.13-4.15 show the curves of the real measured data, the FI model, and the improved-FI model 

for the LOS communication scenario at the three frequency bands adopted for this work. The figures show 

that both models accurately fit the real measured data with the minimum possible MSE between the models 

and the data. As a comparison between the three frequencies, the best fit occurs at the 22 GHz frequency 

band. It must be emphasized that any path loss model will always depend on the operating frequency, no 
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matter how they are derived. Maybe simplifications could come from the fact that the exact carrier 

frequency is not needed, and only the knowledge of the band (e.g., 14 GHz, 18 GHz, and 22 GHz) is enough. 

The models’ parameters are represented in Table 4.6. It is observed that our proposed model slightly betters 

the standard FI model in terms of the performance since it reduces the standard deviation values by 3.2%, 

13.7%, and 1.8% at 14, 18, and 22 GHz. Note that the best improvement applies at 18 GHz, contrary to 

what happened between the CI and improved-CI models. Also, note that the values of the parameter 𝛼 are 

not far between both models. A notable improvement can be observed from Table 4.7 since the percentage 

reduction goes up to 44% in the NLOS communication scenario. Upon comparing the four models, it is 

noted that the best model that fits the real measured data is the improved-FI model. Figure 4.16 presents 

both FI and improved-FI models together at the three frequencies selected. The curves of the two models 

in the figure are almost the same, as also confirmed from the values in Table 4.6. We have plotted the MSE 

between both models to show how these models behave when the Tx-Rx separation distance increases. It 

is noted that from Figure 4.17, the correlation between the models is high since the values of the MSE are 

in the range of 10−6 and 10−2 with minimum values around the breakpoint. Nevertheless, Figure 4.18 and 

Figure 4.19 show a highly notable difference between both models in terms of their performance in the 

NLOS scenario since the models’ curves are far away from each other in Figure 4.18, and have MSE values 

higher than the ones we got from Figure 4.19. 

 

Table 4.6: A comparison between the FI and Improved-FI models’ parameters in the LOS scenario. 

Parameter 𝟏𝟒 𝑮𝑯𝒛 𝟏𝟖 𝑮𝑯𝒛 𝟐𝟐 𝑮𝑯𝒛 

𝜶𝑭𝑰 [𝒅𝑩] 55.443 57.478 61.036 

𝜷𝑭𝑰 1.365 1.590 1.503 

𝝈𝒎𝒊𝒏
𝑭𝑰  [𝒅𝑩] 2.19 1.53 1.12 

𝜶𝑰𝒎𝒑.  𝑭𝑰 [𝒅𝑩] 54.410 56.136 60.652 

𝜷𝟏
𝑰𝒎𝒑.  𝑭𝑰

 1.827 2.191 1.675 

𝜷𝟐
𝑰𝒎𝒑.  𝑭𝑰

 −0.315 −0.409 −0.117 

𝝈𝒎𝒊𝒏
𝑰𝒎𝒑.  𝑭𝑰

 [𝒅𝑩] 2.12 1.38 1.10 
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Figure 4.13: Comparison of measured path loss, the fitted FI model, and the improved FI model for the LOS 

results at 14 GHz frequency band. 

 

 

Figure 4.14: Comparison of measured path loss, the fitted FI model, and the improved FI model for the LOS 

results at 18 GHz frequency band. 



An Efficient Approach of Improving Path Loss Models …  CHAPTER 4 

 

 66 

 

 

Figure 4.15: Comparison of measured path loss, the fitted FI model, and the improved FI model for the LOS 

results at 22 GHz frequency band. 

 

 

Figure 4.16: Directional large-scale path loss prediction models for the LOS communication scenario. 
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Figure 4.17: MSE between the FI and improved FI models in the LOS communication scenario. 

 

 

Table 4.7: A comparison between the FI and Improved-FI models’ parameters in the NLOS scenario. 

Parameter 𝟏𝟒 𝑮𝑯𝒛 𝟏𝟖 𝑮𝑯𝒛 𝟐𝟐 𝑮𝑯𝒛 

𝜶𝑭𝑰 [𝒅𝑩] 67.272 71.021 73.242 

𝜷𝑭𝑰 1.010 1.172 1.014 

𝝈𝒎𝒊𝒏
𝑭𝑰  [𝒅𝑩] 3.69 4.32 4.07 

𝜶𝑰𝒎𝒑.  𝑭𝑰 [𝒅𝑩] 61.097 63.767 66.476 

𝜷𝟏
𝑰𝒎𝒑.  𝑭𝑰

 3.772 4.430 4.039 

𝜷𝟐
𝑰𝒎𝒑.  𝑭𝑰

 −1.881 −2.218 −2.061 

𝝈𝒎𝒊𝒏
𝑰𝒎𝒑.  𝑭𝑰

 [𝒅𝑩] 2.10 2.42 2.36 

 



An Efficient Approach of Improving Path Loss Models …  CHAPTER 4 

 

 68 

 

 

Figure 4.18: Directional large-scale path loss prediction models for the NLOS communication scenario. 

 

 

Figure 4.19: MSE between the FI and improved FI models in the NLOS communication scenario. 
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     Figures 4.20-4.24 represent the FI and improved-FI models’ parameters versus the AoA of the receiving 

antenna at 14, 18, and 22 GHz for the NLOS communication scenario. These figures show that while both 

models provide valuable stability to the change of the AoA, our proposed model shows a slight advantage. 

This advantage is seen clearly from Tables 4.8, 4.9, and 4.10, where the models’ parameters are presented. 

The impact of the antenna heights on the models’ parameters is presented in Figure 4.25. As for the behavior 

of the CI model and the proposed improved version, when there is a change in the antenna’s height, there 

will be a corresponding change in the models’ parameters, and the worst behavior is seen to occur when 

there is a mismatch in the antenna’s heights. However, the performance of our proposed model is better 

than the performance of the standard FI model. 

 

Figure 4.20: The behavior of the FI model’s parameter (𝜶) with the AoA. 
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Figure 4.21: The behavior of the FI model’s parameter (𝜷) with the AoA. 

 

 

Figure 4.22: The behavior of the improved FI model’s parameter (𝜶) with the AoA. 
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Figure 4.23: The behavior of the improved FI model’s parameter (𝜷𝟏) with the AoA. 

 

 

Figure 4.24: The behavior of the improved FI model’s parameter (𝜷𝟐) with the AoA.  
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(a) 14 GHz and LOS. 

 

 

(b) 18 GHz and LOS. 

 

 

(c) 22 GHz and LOS. 

 

 

(d) 14 GHz and NLOS. 

 

 

(e) 18 GHz and NLOS. 

 

 

(f) 22 GHz and NLOS. 

Figure 4.25: The parameters of the FI and improved-FI models at two different Tx antenna heights.  

 

Figure 17: The parameters of the FI and improved-FI models at two different Tx antenna heights. 
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Table 4.8: The behavior of the FI and Improved-FI models’ parameters with the AoA at 14 GHz frequency band. 

 𝟑𝟎° 𝟔𝟎° 𝟗𝟎° 𝟏𝟐𝟎° 𝟏𝟓𝟎° 𝟏𝟖𝟎° 𝟐𝟏𝟎° 𝟐𝟒𝟎° 𝟐𝟕𝟎° 𝟑𝟎𝟎° 𝟑𝟑𝟎° 

𝜶𝑭𝑰 [𝒅𝑩] 64.907 67.663 67.766 67.683 68.051 67.981 68.470 68.003 67.879 66.954 64.638 

𝜷𝑭𝑰 1.151 0.998 0.990 0.996 0.969 0.935 0.936 0.969 0.979 1.049 1.143 

𝝈𝒎𝒊𝒏
𝑭𝑰  [𝒅𝑩] 2.86 3.82 3.88 3.83 3.97 3.96 4.13 3.95 3.91 3.56 2.76 

𝜶𝑰𝒎𝒑.  𝑭𝑰[𝒅𝑩] 59.709 61.391 61.084 61.376 61.484 61.816 61.813 61.390 61.300 60.813 59.882 

𝜷𝟏
𝑰𝒎𝒑.  𝑭𝑰

 3.475 3.802 3.977 3.817 3.905 3.691 3.912 3.926 3.921 3.795 3.269 

𝜷𝟐
𝑰𝒎𝒑.  𝑭𝑰

 −1.58 −1.91 −2.03 −1.92 −2.01 −1.88 −2.03 −2.01 −2.01 −1.87 −1.45 

𝝈𝒎𝒊𝒏
𝑰𝒎𝒑.  𝑭𝑰

[𝒅𝑩] 1.29 2.26 2.07 2.26 2.33 2.55 2.53 2.26 2.20 1.89 1.47 

 

 

 

Table 4.9: The behavior of the FI and Improved-FI models’ parameters with the AoA at 18 GHz frequency band. 

 𝟑𝟎° 𝟔𝟎° 𝟗𝟎° 𝟏𝟐𝟎° 𝟏𝟓𝟎° 𝟏𝟖𝟎° 𝟐𝟏𝟎° 𝟐𝟒𝟎° 𝟐𝟕𝟎° 𝟑𝟎𝟎° 𝟑𝟑𝟎° 

𝜶𝑭𝑰 [𝒅𝑩] 66.368 69.824 71.492 71.878 71.977 71.749 71.974 71.653 71.301 72.513 70.507 

𝜷𝑭𝑰 1.397 1.253 1.163 1.133 1.129 1.083 1.107 1.153 1.178 1.085 1.215 

𝝈𝒎𝒊𝒏
𝑭𝑰  [𝒅𝑩] 2.71 3.86 4.47 4.61 4.65 4.58 4.76 4.52 4.39 4.85 4.11 

𝜶𝑰𝒎𝒑.  𝑭𝑰[𝒅𝑩] 61.330 62.972 63.796 64.183 64.230 64.325 64.449 64.055 63.873 64.721 63.503 

𝜷𝟏
𝑰𝒎𝒑.  𝑭𝑰

 3.649 4.316 4.604 4.573 4.592 4.402 4.604 4.549 4.499 4.568 4.346 

𝜷𝟐
𝑰𝒎𝒑.  𝑭𝑰

 −1.53 −2.09 −2.34 −2.34 −2.36 −2.26 −2.38 −2.31 −2.26 −2.37 −2.13 

𝝈𝒎𝒊𝒏
𝑰𝒎𝒑.  𝑭𝑰

[𝒅𝑩] 1.11 1.89 2.40 2.65 2.68 2.77 2.82 2.57 2.45 2.99 2.24 
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Table 4.10: The behavior of the FI and Improved-FI models’ parameters with the AoA at 22 GHz frequency band. 

 𝟑𝟎° 𝟔𝟎° 𝟗𝟎° 𝟏𝟐𝟎° 𝟏𝟓𝟎° 𝟏𝟖𝟎° 𝟐𝟏𝟎° 𝟐𝟒𝟎° 𝟐𝟕𝟎° 𝟑𝟎𝟎° 𝟑𝟑𝟎° 

𝜶𝑭𝑰 [𝒅𝑩] 71.531 72.732 73.565 73.751 73.910 73.927 73.836 73.883 73.871 72.949 71.703 

𝜷𝑭𝑰 1.118 1.059 1.002 0.985 0.971 0.946 0.976 0.976 0.975 1.036 1.112 

𝝈𝒎𝒊𝒏
𝑭𝑰  [𝒅𝑩] 3.43 3.88 4.19 4.27 4.33 4.33 4.30 4.32 4.31 3.96 3.50 

𝜶𝑰𝒎𝒑.  𝑭𝑰[𝒅𝑩] 65.606 66.151 66.646 66.758 66.876 66.896 66.829 66.806 66.819 66.347 65.498 

𝜷𝟏
𝑰𝒎𝒑.  𝑭𝑰

 3.767 4.001 4.095 4.111 4.115 4.090 4.108 4.139 4.127 3.987 3.886 

𝜷𝟐
𝑰𝒎𝒑.  𝑭𝑰

 −1.80 −2.00 −2.10 −2.13 −2.14 −2.14 −2.13 −2.15 −2.14 −2.01 −1.88 

𝝈𝒎𝒊𝒏
𝑰𝒎𝒑.  𝑭𝑰

[𝒅𝑩] 1.82 2.15 2.47 2.54 2.61 2.63 2.58 2.56 2.57 2.28 1.74 

 

     From the previous analysis, we observed that it is possible to provide valuable improvements to the 

existing wireless channel models without a notable increase in the models’ complexity. In fact, with the 

demand for more and more data traffic, we will always need to go for higher frequency bands to meet future 

requirements. However, these higher frequency bands have smaller wavelengths and suffer more from the 

wireless propagation channel. Hence, improving the existing models and developing new models that 

accurately describe the wireless propagation channel will always be needed. 

4.5 Chapter Summary 

In this chapter, we proposed in detail an efficient approach for improving standard path loss models, namely 

the CI and FI models. The proposed improved models were derived, and extensive performance analyses 

were studied to prove the superiority of our improved models in terms of many factors, such as the 

prediction accuracy, behavior with the change of the AoA and antenna heights, and the sensitivity of the 

models' parameter to the change of these effects. This research has proved the efficiency of this approach 

since our improved models outperformed the existing models in all the studied cases. Hence, these models 

are promising for predicting path loss in enclosed environments for future wireless communications. The 

question that might come to our mind is, is it possible to apply this approach for higher orders seeking 

better prediction accuracy? This question has motivated the research presented in the following chapter.
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Chapter 5: Investigations into the Effect of High-Ordering the 

Log-Distance Dependency of Path Loss Models 

 

5.1 Introduction 

The massively available amounts of bandwidth that exist in the frequency regime beyond 6 GHz, together 

with the inability of the previous frequencies below 6 GHz, have attracted the attention of the research and 

industrial communities to consider new frequency bands such as the SHF, mmWave, and further high-

frequency bands such as the THz bands to be the promising solutions to cope with the explosive demand 

of higher mobile data rate traffic. As a result, many research studies have reported the main wireless 

channel’s characteristics, such as the path loss over wide ranges of the SHF, mmWave, and THz frequency 

bands. However, most path loss modeling research has adopted the well-known CI model to describe 

propagation effects of the wireless channel leaving behind the improvement concept. It is vital to estimate 

the path loss accurately since these high-frequency bands significantly suffer from the wireless propagation 

effects because of their tiny wavelength. This chapter presents investigations on high-ordering the 

dependency of the standard CI path loss model on the distance between the transmitting and the receiving 

antennas in the logarithmic scale. This work discusses two improved models: the second-order CI model 

(our improved CI model in the previous chapter) and the third-order CI model. The models’ accuracy is 

validated based on the measurement data discussed previously. Finally, a trade-off study between the 

model’s accuracy and simplicity is provided in this chapter.  

5.2 The Third-Order CI Path Loss Prediction Model 

As mentioned in the previous chapter, the second-order CI path loss prediction model is a new simple two-

parameter single-frequency model as an extension of the standard CI model. The definition of PLE is 

divided into two parameters. The first one controls the dependency of the model on the Tx-Rx distance in 

the logarithmic scale, while the second one controls the dependency on the square of the Tx-Rx distance in 

the logarithmic scale. These two parameters provide the CI model more sensitivity to the propagation 

effects such as reflections and diffractions and offer more ease in describing the frequency and environment 

dependency of the model. Note that the second-order CI model reverts to the standard CI model when the 

parameter 𝑛2 = 0. However, this condition will not be accrued since both parameters (𝑛1 and 𝑛2) are 

distance-dependent. 
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     In order to provide more precision in predicting all possible propagation effects, a three-parameter 

distance-dependent CI path loss model, namely the third-order CI path loss model, is provided. Here, the 

concept of PLE is provided by three parameters that depend on the Tx-Rx log distance and its squared and 

cubic values. It may come into the reader’s mind that having more parameters than three will provide more 

accuracy. However, the improvement on the model will be less than the improvement on the standard and 

second-order CI models since the third-order CI model already captures more propagation effects. 

Moreover, increasing the number of parameters will make the model’s complexity higher, and 

communication systems’ designers will not consider it since the representation of each frequency band and 

a specific communication environment will be described by more than three parameters. In fact, three-

parameter path loss models already exist, such as the alpha-beta-gamma (ABG) path loss model. The third-

order CI path loss model is expressed as: 

𝑃𝐿log
3 𝐶𝐼(𝑑) = 𝐹𝑆𝑃𝐿(𝑓, 𝑑0) + 10𝑘1𝑙𝑜𝑔10 (

𝑑

𝑑0
) + 10𝑘2 (𝑙𝑜𝑔10 (

𝑑

𝑑0
))

2

+ 10𝑘3 (𝑙𝑜𝑔10 (
𝑑

𝑑0
))

3

+ 𝑋𝜎
log3 𝐶𝐼

.                                                                    

(5.1) 

     In Eq. (5.1), 𝑃𝐿log
3 𝐶𝐼(𝑑) represents the average path loss value in dB predicted by the third-order CI 

model at a certain Tx-Rx separation distance in meters. The parameters 𝑘1, 𝑘2, and 𝑘3 are the controllers 

of the model’s dependency on the log distance powered by one, two, and three, respectively. The values of 

the three parameters are provided from the measurement data via the concept of the MMSE. 

5.3 Results and Discussions on the Impact of High-Ordering the Log-Distance 

Dependency 

This section presents and discusses the main results obtained from this research study. The comparative 

analysis has been performed based on the best fit of the path loss prediction models using the criteria of the 

MMSE. The results of both LOS and NLOS communication scenarios are provided separately in this 

section. Figures 5.1, 5.2, and 5.3 depict the comparison between the real measured data, the standard CI 

model, the second-order CI model, and the third-order CI model at 14, 18, and 22 GHz frequency bands for 

the LOS communication scenario. From the figures, it is clear that the three models fit the data with high 

accuracy. However, the third-order CI model has the best performance since it closely follows the path loss 

data. This can be notable clearly from Table 5.1, which presents the three models’ parameters together at 

14, 18, and 22 GHz frequency bands for the LOS scenario. The Table shows an attractive reduction of the 

shadow fading’s standard deviation as the order of the model has increased. Nevertheless, this reduction is 

not linear, and it changes from one frequency band to another. For example, at 14 GHz, the SF’s standard 
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deviation of the standard CI model is 2.1897, and for the second and third-order models, 2.1504 and 2.0459, 

respectively. 

     For the standard CI model, the PLE values for the LOS connection between the Tx and Rx are 1.3720, 

1.5843, and 1.6584 at 14, 18, and 22 GHz, respectively. Thus, it can be observed from these values that the 

power degradation is more than by 2.1 dB/decade at 18 GHz relative to 14 GHz and less than 1 dB/decade 

at 22 GHz relative to 18 GHz. It should be noted that all the PLE values prove that the measured 

environment is an enclosed area since the richness of the propagation characteristics provides constructive 

interference between the wireless received signals making all PLE’s values less than the free space path 

loss exponent (FSPLE) value (i.e., all PLE values are less than 2). This validates the prediction accuracy 

since the studied environment is an indoor corridor environment with many multipath effects during the 

measurement campaigns. These multipath effects are mainly the reflections and the diffractions from the 

corridor’s walls, with the waveguiding effect that provides high path gain added to the direct LOS signals. 

It should be noted from Table 5.1 that there is no high diversity in values of the second-order and third-

order CI models. Hence, more stability is provided by these two models compared to the standard CI model. 

     The reduction from the first to the second-order models is 1.8%, and from the second to the third-order 

models, 4.9%. Consequently, the optimum model in terms of both accuracy and complexity is the third-

order CI model. This is because this model has the lowest values of the standard deviation and fits with the 

best precision the real measured data, which means that this model can be sensitive to all the possible effects 

that affect the propagation of the electromagnetic wave between the Tx and Rx. In fact, more precision is 

always needed due to the movement to higher frequency bands such as the mmWave, Terahertz bands, and 

beyond due to the small values of wavelength. However, it is hard to go back to the previous microwave 

bands because of bandwidth scarcity. From the models’ complexity point of view, the complexity of the 

third-order CI model is not high when the improvement of the model’s performance is considered as a 

trade-off between complexity and accuracy. It can be noted that this model only has three parameters, which 

is the same number of the parameters of well-known path loss prediction models such as the alpha-beta-

gamma (ABG) model. The sequence of improving the accuracy is the same for both 18 and 22 GHz bands. 

However, as the frequency increases, the reduction of the SF’s standard deviation is increased, and higher 

precision is achieved. 
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Table 5.1: The LOS Comparative Study Results. 

Parameter 𝟏𝟒 𝑮𝑯𝒛 𝟏𝟖 𝑮𝑯𝒛 𝟐𝟐 𝑮𝑯𝒛 

𝑷𝑳𝑬 (𝒏) 1.3720 1.5843 1.6584 

𝝈𝒎𝒊𝒏
𝑪𝑰  [𝒅𝑩] 𝟐. 𝟏𝟖𝟗𝟕 𝟏. 𝟓𝟑𝟑𝟕 𝟏. 𝟑𝟏𝟐𝟎 

𝒏𝟏 1.6070 1.8656 1.9884 

𝒏𝟐 −0.1999 −0.2394 −0.2808 

𝝈𝒎𝒊𝒏
𝒍𝒐𝒈𝟐  𝑪𝑰

  [𝒅𝑩] 𝟐. 𝟏𝟓𝟎𝟒 𝟏. 𝟒𝟓𝟏𝟖 𝟏. 𝟏𝟕𝟕𝟖 

𝒌𝟏 0.5288 0.0426 2.9882 

𝒌𝟐 2.0198 3.5139 −2.3393 

𝒌𝟑 −1.0767 −1.8207 0.9985 

𝝈𝒎𝒊𝒏
𝑰𝒐𝒈𝟑 𝑪𝑰

 [𝒅𝑩] 𝟐. 𝟎𝟒𝟓𝟗 𝟎. 𝟗𝟐𝟒𝟔 𝟏. 𝟎𝟎𝟓𝟐 

 

 

Figure 5.1: LOS Path loss models with measurement data at 14 GHz. 
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Figure 5.2: LOS Path loss models with measurement data at 18 GHz. 

 

 

Figure 5.3: LOS Path loss models with measurement data at 22 GHz. 
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     As a comparison between the three frequency bands together (i.e., 14, 18, and 22 GHz), the extraordinary 

improvement is in 18 GHz since the reduction is 5.3% and 36.3%. It is worth noting that the signals’ 

fluctuations because of the propagation mechanisms such as reflections and diffractions depend on the type 

of the environment, the communication scenario, the materials used in the environment, and many other 

factors. Having more parameters will provide more details in describing the wireless channel and then more 

precision for the models to be used to calculate the coverage for systems’ deployment. For example, the 

values of the models’ parameters at 14, 18, and 22 GHz for the indoor corridor environment are presented. 

The materials in this corridor are dry concrete and bricks and include a staircase, elevator, and wooden doors 

to offices. Since higher frequency bands suffer more from the propagation mechanisms, the models’ 

parameters will not be close to the parameters for another corridor with the same size but different materials. 

In other words, the sensitivity of the models is increased. Figure 5.4 provides a vision of the three models 

together at the three frequency bands selected for the LOS scenario. As it is known generally, higher 

frequency bands suffer from higher path loss values, as is to be noted from the figure. 

 

 

Figure 5.4: LOS Path loss models at 14, 18, and 22 GHz. 
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     Table 5.2 provides the models’ parameters at 14, 18, and 22 GHz for the NLOS scenario. It is clear from 

the Table that the models’ parameters are higher than the values in the LOS communication scenario since 

the Rx relies mainly on the effects of waveguiding, reflections, and diffractions in the corridor environment. 

It can be noted that the values of the standard deviation are much higher than the ones of the LOS scenario. 

The improvement of high-ordering the CI model is more beneficial here in the NLOS scenario since the 

reduction exceeds half of the values. The reduction from the standard CI model to the second-order CI model 

is 3.2346, 3.7779, and 3.619 dB at 14, 18, and 22 GHz, respectively. The model’s performance improvement 

is 1.3245, 1.573, and 1.5325 dB for the second to third-order CI models. All these values show an attractive 

and non-specific improvement of the standard CI model since this improvement does not depend on any 

specific factor. Figures 5.5, 5.6, and 5.7 depict a comparison between the NLOS data and the NLOS models 

at 14, 18, and 22 GHz, respectively. It is clear from these figures that the three models behave differently in 

the NLOS scenario. In addition, for the NLOS scenario, excellent convergence is seen between the measured 

and the presented predicted models as the distance increases. Again, the third-order CI path loss model 

provides the best performance of fitting the real measured data since almost a total matching between the 

model and the measured path loss can be seen in the figures. The three models can be seen together in Figure 

5.8 at the three frequency bands selected. 

 

Table 5.2: The NLOS Comparative Study Results. 

Parameter 𝟏𝟒 𝑮𝑯𝒛 𝟏𝟖 𝑮𝑯𝒛 𝟐𝟐 𝑮𝑯𝒛 

𝑷𝑳𝑬 (𝒏) 2.0728 2.3768 2.2587 

𝝈𝒎𝒊𝒏
𝑪𝑰  [𝒅𝑩] 𝟓. 𝟗𝟖𝟑𝟕 𝟔. 𝟖𝟔𝟔𝟐 𝟔. 𝟖𝟓𝟖𝟐 

𝒏𝟏 5.0928 5.8611 5.6949 

𝒏𝟐 −2.5699 −2.9652 −2.9242 

𝝈𝒎𝒊𝒏
𝒍𝒐𝒈𝟐  𝑪𝑰

  [𝒅𝑩] 𝟐. 𝟕𝟒𝟗𝟏 𝟑. 𝟎𝟖𝟖𝟑 𝟑. 𝟐𝟑𝟗𝟐 

𝒌𝟏 9.4763 10.7479 10.7740 

𝒌𝟐 -11.3065 -12.7696 -13.1519 

𝒌𝟑 4.1563 4.6924 4.8962 

𝝈𝒎𝒊𝒏
𝑰𝒐𝒈𝟑 𝑪𝑰

 [𝒅𝑩] 1.4246 1.5153 1.7067 
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Figure 5.5: NLOS Path loss models with measurement data at 14 GHz. 

 

 

Figure 5.6: NLOS Path loss models with measurement data at 18 GHz. 
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Figure 5.7: NLOS Path loss models with measurement data at 22 GHz. 

 

 

Figure 5.8: NLOS Path loss models at 14, 18, and 22 GHz. 
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5.4 Results and Discussions Related to Error Analysis of the Proposed Models 

The models’ performance can be further examined using valuable metrics such as mean prediction error 

(MPE), mean square error (MSE), standard deviation error (SDE), spread corrected root mean square error 

(SC-RMSE), efficiency (EF), error rate, and Gaussian kernel density estimation (GKDE) [178], [179]. These 

metrics measure the performance of the received signal strength predicted by the models compared to the 

actual received data collected from the measurement campaigns. In addition, the previous metrics can be 

applied directly in order to analyze the correlation between the path loss prediction models and measured 

path loss data. Accordingly, both the MPE and the SDE have been adopted for this research work in order 

to provide adequate performance evaluation of the path loss prediction models. 

     The prediction error (PE) can be defined as the difference between the value of the real Rx power (from 

the measurements) and the Rx power predicted by the path loss model as a function of the Tx-Rx separation 

distance as presented in the following equation: 

𝑃𝐸(𝑑)[𝑑𝐵] = 𝑃𝑟
𝑀(𝑑)[𝑑𝐵𝑚] − 𝑃𝑟

𝑃(𝑑)[𝑑𝐵𝑚],                                           (5.2) 

where 𝑃𝐸(𝑑) is the value of the PE (in dB) at a specific Tx-Rx separation distance in meters. 𝑃𝑟
𝑀(𝑑) and 

𝑃𝑟
𝑃(𝑑) are the measured and predicted Rx power in dBm. The values of 𝑃𝑟

𝑀(𝑑) are taken directly from the 

measurement data, while 𝑃𝑟
𝑃(𝑑) is given by: 

𝑃𝑟
𝑃(𝑑)[𝑑𝐵𝑚] = 𝑃𝑡 − 𝑃𝐿

𝑃(𝑑)[𝑑𝐵] + 𝐺𝑡 + 𝐺𝑟.                                          (5.3) 

     In Eq. (5.3), 𝑃𝑡 is the Tx power in dBm, 𝐺𝑡 and 𝐺𝑟 are the transmitting and receiving antenna gains in 

dBi, and 𝑃𝐿𝑃(𝑑) is the predicted path loss (in dB) by the models. For the predicted LOS Rx power at the 

receiving antenna side, the prediction errors (PEs) between the received signal strength from the 

measurement data and the predicted Rx power from the three models are provided in Figures 5.9, 5.10, and 

5.11 at 14, 18, and 22 GHz, respectively. It can be observed from the figures that the third-order CI path 

loss model has a better error performance compared to the other modes since it provides the minimum PE. 

For the 14 GHz frequency band, the three models’ MPE is 1.7138, 1.7364, and 1.5506 dB for the standard 

CI, the second-order CI, and the third-order CI models for the LOS condition. The third-order CI model’s 

reduction in the MPE is 9.52% and 9.13% over the standard and the second-order models, respectively. The 

reduction is more attractive for the 18 GHz frequency band since the values have jumped up to 42.18% and 

38.13%. This reduction reveals that the third-order CI model provides more accuracy in predicting the 

propagation effects that control the travel of the wireless signals between the Tx and Rx antennas. The MPE 

values at 22 GHz for the three models are 1.1119, 0.9743, and 0.8233 dB. Since the MPE is used to measure 

the bias of predictions (or whether the model is more likely to under-predict or over-predict), the three 
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models provide better performance and higher precision at 22 GHz than the other lower frequency bands 

(i.e., 14 and 18 GHz) simply because lower MPE values mean better fitness of the models to the actual 

measurement data. 

 

Figure 5.9: LOS PE of path loss models at 14 GHz. 
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Figure 5.10: LOS PE of path loss models at 18 GHz. 

 

Figure 5.11: LOS PE of path loss models at 22 GHz. 
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     The SDE is a measure of how much the errors deviate from the MPE value, and it is written as: 

𝑆𝐷𝐸[𝑑𝐵] = √
1

𝑁
∑ (𝑃𝐸𝑖 −𝑀𝑃𝐸)

2𝑁
𝑖=1 ,                                                 (5.4) 

where 𝑁 is the number of the Tx-Rx separation distances (i.e., the total number of the average path loss 

samples recorded). The SDE values of the three models are 1.3585, 1.3006, and 1.3395 dB at 14 GHz, 

while at 18 GHz, the values are 1.0684, 1.0620, and 0.6676 dB, and they are 0.6197, 0.7136, and 0.6768 

dB at 22 GHz. It can be observed from the previous values that the SDE values are generally decreasing 

with the frequency of propagation, and again the third-order CI model provides the best performance over 

the other models. It should be emphasized that the MPE is monotonically decreasing with the order of the 

CI path loss model, as can be seen from Table 5.3 that represents the LOS MPE and the SDE of the three 

models at the frequency bands adopted for this study. 

     Figures 5.12, 5.13, and 5.14 depict the PE of the three models for the NLOS communication scenario at 

14, 18, and 22 GHz, respectively. Higher values of the MPE are observed because of the propagation effects 

that control the wireless signals’ behavior in the channel since there is no direct LOS path for the propagated 

signals to reach the Rx antenna. For example, at 14 GHz, the MPE value of the standard CI model is 4.7924 

dB, which is about a 180% increase over the LOS value. In contrast, only a 19.43% increase is observed 

from the second-order CI model. The third-order CI model reduces the MPE values over the other models 

by 80.83% and 54.92% over the NLOS values of the standard CI model and the second-order CI model. 

These achievements of the third-order CI model prove its suitability to predict accurately the path loss for 

future mobile networks. Table 5.4 provides the MPE and SDE values of the three models at the three 

frequency bands selected. It should be noted that generally, the MPE and SDE values for the NLOS scenario 

are very high compared to the LOS values. However, all these values are within an acceptable range in the 

studied enclosed indoor corridor environment. As a summary of discussing the results obtained, the 

optimum model in both the LOS and NLOS communication scenarios is the third-order CI model. Design 

engineers can apply this model to have reliable calculations of the systems’ coverage for all the 

environments and communication scenarios. It is worth noting that the main reason of the higher error 

values in the NLOS communication scenario compared to the LOS results is the high probability of having 

a clear LOS path between the transmitting and receiving antennas. 
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Figure 5.12: NLOS PE of path loss models at 14 GHz. 

 

 

Figure 5.13: NLOS PE of path loss models at 18 GHz. 
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Figure 5.14: NLOS PE of path loss models at 22 GHz. 

 

Table 5.3: The models’ MPE and SDE for the LOS communication scenario at 14, 18, and 22 GHz. 

 MPE (dB) SDE (dB) 

Frequency (GHz) 𝟏𝟒 𝟏𝟖 𝟐𝟐 𝟏𝟒 𝟏𝟖 𝟐𝟐 

Standard CI model 1.7138 1.1347 1.1119 1.3585 1.0684 0.6197 

Second-order CI model 1.7064 1.0604 0.9743 1.3006 1.0620 0.7136 

Third-order CI model 1.5506 0.6561 0.8233 1.3395 0.6676 0.6768 
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Table 5.4: The models’ MPE and SDE for the NLOS communication scenario at 14, 18, and 22 GHz. 

 MPE (dB) SDE (dB) 

Frequency (GHz) 𝟏𝟒 𝟏𝟖 𝟐𝟐 𝟏𝟒 𝟏𝟖 𝟐𝟐 

Standard CI model 4.7924 5.4283 5.3419 3.9831 4.5495 4.5462 

Second-order CI model 2.0380 2.2130 2.3760 1.7680 2.1110 2.3302 

Third-order CI model 0.9187 1.1187 1.2984 0.7067 0.7805 1.0428 

 

5.5 Chapter Summary 

This chapter investigated the impact of high-ordering the CI model’s accuracy dependency on the Tx-Rx 

separation distance in the logarithmic scale. Both the LOS and NLOS communication scenarios were 

considered. The main result of this chapter is that, since there are more parameters that depend on the Tx-

Rx distance in the logarithmic scale, higher accuracy is achieved. The optimum number of parameters is 

three since the third-order CI model fits the data perfectly in both the LOS and NLOS scenarios in all the 

frequency bands selected. In addition, the model’s complexity is not high since other standard models are 

used with the same number of parameters. Finally, this chapter showed that this principle can be applied to 

any other path loss prediction model to achieve more precision in predicting the path loss and provide more 

details in describing the wireless propagation channel. Future research related to this chapter could be 

directed towards implementing measurements in more environments and scenarios and providing other 

improvements to acquire reliable channel models that can accommodate various environments and optimize 

existing models’ parameters.
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Chapter 6: Comparative Analysis of Major Machine-

Learning-Based Path Loss Models 

 

6.1 Introduction 

Unlimited access to information and data sharing wherever and at any time for anyone and anything is a 

fundamental component of the 5G wireless communication and beyond. Therefore, as discussed previously, 

it has become inevitable to exploit the SHF and mmWave frequency bands for future wireless networks 

due to their attractive ability to provide extremely high data rates because of the availability of vast amounts 

of bandwidth. However, due to the characteristics and sensitivity of wireless signals to the propagation 

effects in these frequency bands, more accurate path loss prediction models are vital for planning, 

evaluating, and optimizing future wireless communication networks. This chapter presents and evaluates 

the performance of several well-known machine learning methods, including multiple linear regression 

(MLR), polynomial regression (PR), support vector regression (SVR), as well as the methods using decision 

trees (DT), random forests (RF), K-nearest neighbors (KNN), artificial neural networks (ANN), and 

artificial recurrent neural networks (RNN). RNNs are mainly based on long short-term memory (LSTM). 

The models are compared based on measurement data to provide the best fitting machine-learning-based 

path loss prediction models. Several performance metrics are adopted for this research. This chapter also 

proves that these learning methods could be used as accurate and stable models for predicting path loss in 

the mmWave and higher frequency regime. 

6.2 Data Preparation and Models Setup 

There are many distinct types of machine learning algorithms, each with its own structure. Our objective is 

to see if these models can offer reliable prediction results at mmWave frequencies for a specific 

environment, e.g., a typical indoor corridor that can be viewed as an air-filled rectangular waveguide with 

huge dimensions compared to the wireless signals’ wavelength. To the best of our knowledge, this is the 

first effort in predicting the path loss at frequency bands higher than 6 GHz for typical indoor corridor 

environments based on several ML methods. Path loss prediction models with the highest possible accuracy 

are vital for such environments since the trend is to rely on indoor channels for future wireless networks. 

Therefore, the primary motivation of this work is to evaluate the feasibility and prediction accuracy of 

various machine-learning-based models for predicting path loss in indoor corridor environments. 
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     This section provides information on the preparation of the raw data for ML-based path loss prediction. 

Moreover, the hyperparameters tuning method selected to achieve the best models’ performance is 

presented in this section. Furthermore, the justification of the models’ stability is discussed. Finally, this 

section presents the evaluation metrics adopted to measure and compare the models’ performance. 

6.2.1 Data Preparation 

The adopted real measured data were collected in a typical indoor corridor environment, as detailed in 

chapter 3. The average total number of samples collected from the measurement campaigns is 865 samples, 

considering all the operating frequencies (i.e., 14, 18, and 22 GHz), Tx–Rx separation distances (2–24 m 

with an incremental step of 2 m), antenna height values (i.e., 1.6 and 2.3 m), and AoA values (0–360 degrees 

with an incremental step of 10 degrees). 

     The raw datasets collected from the measurements were analyzed and cleaned to provide one reliable 

path loss value for each Tx–Rx separation distance, frequency, AoA, and Tx antenna height. Accordingly, 

the best features that lead to the optimum performance for the ML-based models adopted in this work are: 

(1) The distance between the transmitting and receiving antennas, which is the most crucial input feature 

that significantly affects the path loss values. (2) The operating frequency to provide multi-frequency path 

loss prediction models for the frequency range between 14 and 22 GHz. (3) The AoA of the Rx antenna to 

has LOS and NLOS characterizations of the communication’s condition. (4) The Tx antenna height allows 

for more generalization of the target models. 

     The datasets were cleaned since this step is a vital part of any aspect of modeling based on ML 

algorithms. Working with impure datasets can lead to several significant challenges. On the other hand, 

cleaned and high-quality datasets can cause reliable models to provide outstanding results. Although there 

are many data cleaning methods, for this research, we adopted the method of removing irrelevant values 

and taking care of some missing values using the interpolation between the nearest two values. Hence, the 

datasets are ready for the next step after cleaning and analyzing. 

     After carefully selecting the input features, normalization of the data was applied for some of the ML 

methods. This was performed by first computing the mean value for each feature, then subtracting this mean 

value over the entire dataset feature to centralize the data, and finally, calculating the standard deviation 

and dividing the subtracted values by the standard deviation. After that, the processed data were applied to 

each model and divided into training and testing datasets based on a reliable hyperparameter tuning 

technique and cross-validating the developed model to provide accurate and stable results. More 

specifically, of the 865 collected samples, 80% of these samples were used for training and cross-validating 

each model by dividing these datasets 7-fold to evaluate the model’s stability, as to be detailed in Section 
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6.2.3. The other 20% of the datasets were used for validating the models’ prediction accuracy. Figure 6.1 

depicts the flow chart of the adopted ML-based path loss prediction strategy. 

 

Figure 6.1: Flow chart of the adopted ML-based path loss prediction modeling technique. 
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6.2.2 Hyperparameters Tuning Setup 

Hyperparameter tuning techniques play an essential role in searching for the best hyperparameter for 

machine learning applications. Machine learning algorithms are based on complex hyperparameters that 

create complicated black boxes and lead to optimization challenges. Moreover, determining the 

hyperparameters’ values can be time-consuming if we try all possible combinations of hyperparameters. 

However, several techniques have been proposed to select the best hyperparameters for a particular model, 

including Bayesian Optimization Automate Hyperparameter Tuning (Hyperpot) [180], Spearmint Bayesian 

optimization [181], Sequential Model-Based Optimization (know as SMAC) [182], Autotune: A derivative-

free optimization [183], Google viezier [184], Genetic Algorithm [185], and Optuna Approach [186]. These 

approaches aim to select the best hyperparameter that minimizes the mean square error and maximizes the 

accuracy, such as R-square. This is performed by training the machine learning techniques in all the 

hyperparameter possibilities, then selecting the ones that lead to the objective (i.e., the best performance). 

The tuning techniques mainly assist in looping through predefined hyperparameters and fitting the estimator 

(model) on the training set. 

     Since machine learning techniques require hyperparameter tuning to achieve both the efficiency of the 

model training process and the resulting model accuracy, the best hyperparameter of machine learning 

algorithms requires determination. This work has applied the Optuna approach to select the best 

hyperparameter that leads to suitable data fitting. The Optuna approach is used in our work for multiple 

reasons. Optuna is a software framework for automating the optimization process of these hyperparameters. 

It automatically finds optimal hyperparameter values using various samplers such as grid search, random 

[187], Bayesian, and evolutionary algorithms [186]. It has eager search spaces that use automated searches 

for the optimal hyperparameter using Python conditionals, loops, and syntax. It is also a state-of-the-art 

algorithm that efficiently searches large spaces and prunes unpromising trials for faster results. In addition, 

the Optuna can parallelize hyperparameter searches over multiple threads or processes without modifying 

code. Finally, the best machine learning techniques depend on identifying the proper hyperparameters, 

avoiding both overfitting and underfitting, which is the trend of this research to achieve objective prediction 

accuracy. 

6.2.3 ML-Based Models’ Stability 

In this work, the k-folds cross-validation technique plays a significant role in assessing the machine learning 

model stability. The technique first divides the measured data into 𝑘 =  𝑘1, 𝑘2, . . . , 𝑘7 subsets, named folds. 

Then it trains the model on the data using 𝑘1 to 𝑘6 of the folds and evaluates the model’s performance on 

the 𝑘7 data. The technique continues repeating the same approach by training the model based on six-folds 

and evaluating the model’s performance according to the seventh (testing) fold. In each cross-validation 
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training, the error estimation is averaged over all 𝑘 trials to get the total effectiveness of the model. As can 

be seen, every data point gets to be in a validation set exactly once and in a training set 𝑘 − 1 times. This 

significantly reduces the bias as the model uses most of the data for fitting and reduces variance as most of 

the measured data are also being used in the validation set. The use of cross-validation adds reliable stability 

to the effectiveness of the machine learning model since the interchange of the measured data is applied 

between the training and testing sets. 

6.2.4 Evaluation Metrics 

This subsection presents the performance metrics used to evaluate and compare the performance of the 

proposed ML-based path loss models. The performance metrics adopted are (1) R-squared (or 𝑅2). (2) Root 

mean squared error (RMSE). (3) Mean absolute percentage error (MAPE). (4) Mean square error (MSE). 

(5) Correlation (Corr) coefficient. The main reason for choosing these five well-known metrics is to 

compare our results with the values obtained by other researchers for similar and different environments 

since most works in the literature adopt these metrics. The performance metrics are expressed as [19]: 

𝑅2 = 1 −
∑ (𝑃𝐿𝑖−𝑃𝐿𝑖̂ )2𝑄
𝑖=1

∑ (𝑃𝐿𝑖−𝑃𝐿̅̅̅̅ )
2𝑄

𝑖=1

,                                            (6.1) 

𝑅𝑀𝑆𝐸 = √
1

𝑄
∑ (𝑃𝐿𝑖 − 𝑃𝐿𝑖̂ )

2𝑄
𝑖=1 ,                                     (6.2) 

𝑀𝐴𝑃𝐸 =
1

𝑄
∑ |

𝑃𝐿𝑖−𝑃𝐿𝑖̂

𝑃𝐿𝑖
|

𝑄
𝑖=1 ,                                                     (6.3) 

𝑀𝑆𝐸 =
1

𝑄
∑ (𝑃𝐿𝑖 − 𝑃𝐿𝑖̂ )

2𝑄
𝑖=1 ,                                       (6.4) 

𝐶𝑜𝑟𝑟 =
∑ (𝑃𝐿𝑖−𝑃𝐿̅̅̅̅ )(𝑃𝐿𝑖̂ −𝑃�̂�̅̅̅̅ )
𝑄
𝑖=1

√∑ (𝑃𝐿𝑖−𝑃𝐿̅̅̅̅ )
2𝑄

𝑖=1  √∑ (𝑃𝐿𝑖̂ −𝑃�̂�̅̅̅̅ )
2𝑄

𝑖=1

,                                         (6.5) 

where 𝑄 is the total number of samples used for the calculation of the performance metrics, 𝑃𝐿 is the 

empirical path loss value, 𝑃�̂� is the predicted path loss value, and 𝑃𝐿̅̅̅̅  and 𝑃�̂�̅̅̅̅  are the mean values of 𝑃𝐿 and 

𝑃�̂�, respectively. 
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6.3 Machine-Learning-Based Models 

This section presents various ML-based models for predicting Path Loss for future indoor wireless 

communications. Eight prediction models are adopted in this work, namely MLR, PR, DT, RF, SVR, KNN, 

ANN, and RNN-LSTM. The following subsection will represent these models in detail. 

6.3.1 Linear Regression Models 

Linear Regression Models are essential techniques for addressing the regression challenges in machine 

learning using data modeling. The linear regression models contain various types of models and depend 

upon several elements [188]-[191]. These elements incorporate the type of target variable, the shape of the 

regression line, and the number of independent variables. This work adopted two types of linear regression 

models to predict the path loss for the selected enclosed indoor environment. These models are MLR and 

PR. The MLR model is a predictive model that considers more than one input to predict the target. This 

model identifies the correlation between the various features (dependent variables) and the target 

(independent variable) to find the best fit for the measured data. The MLR assumes that the inputs are 

𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛, and seeks to predict the target real-value 𝑌. The MLR model has the form: 

𝑌 = 𝑓(𝑋) = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖
𝑛
𝑖=1 + 𝜖,                                                   (6.6) 

where 𝛽𝑖 are unknown coefficients (model coefficients) and 𝜖 defines the errors or noise. The most famous 

estimator that is used to estimate the coefficients model is the Least Squares (LS), in a way that it picks the 

coefficients 𝛽0, 𝛽1, 𝛽2, . . . , 𝛽𝑛 to minimize the mean squares error (MSE) presented in the following 

equations: 

𝑀𝑆𝐸 = ∑ (𝑌𝑗 − 𝛽0 − 𝑓(𝑋𝑗))
2𝑀

𝑗=1 ,                                                  (6.7) 

= ∑ (𝑌𝑗 − 𝛽0 − ∑ 𝑋𝑗𝑖𝛽𝑗
𝑁
𝑖=1 )

2𝑀
𝑗=1 .                                           (6.8) 

     However, if basic expansion is made to Eq. (6.6) by substituting 𝑋2 = 𝑋1
2, 𝑋3 = 𝑋1

3, . .. , this leads to a 

new form of model called polynomial regression representation. A polynomial regression model can be 

defined as a new function that takes the form: 

𝑌 = 𝑓(𝑋) = 𝛾0 + ∑ 𝛾𝑛𝑋
𝑛𝑁

𝑛=1 + 𝜖,                                                 (6.9) 

where 𝑛 is a polynomial degree of the PR model and 𝛾𝑛 represents the model coefficients of PR, where the 

LS method estimation is applied to estimate the PR model coefficient using the measured data. The 

polynomial regression model attempts to generate a polynomial function that estimates the measured data 
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points. It determines the best-fit curve that passes through the entire measured data to minimize the 

predicted error. 

     The PR model is a modified version of the MLR model where the relationship between the independent 

and dependent variables is defined by the n-th degree. The best fit curve in polynomial regression passes 

through all the data points, depending on the power of 𝑋 (or the value of 𝑛). It is recommended to analyze 

the turn towards the end as the higher polynomials can give undesired results. 

     The number of iterations adopted using the Optuna technique was 100 for both the MLR and PR 

methods. Moreover, the number of degrees for the PR model was 6. Finally, it is worth noting that the 

datasets were normalized before training and testing these models to achieve the best performance. 

6.3.2 Support Vector Regression Model 

Vapnike [192] proposed SVM algorithms for the binary classification problem. Later on, they worked on 

both multiclassification and regression problems, known as support vector classification (SVC) and SVR 

algorithms. The SVR applies a similar concept as the SVC algorithm with some changes. A few changes 

include that the target values are real numbers, the infinite possibility of which became challenging to 

predict using the same SVC. However, the SVR selects a boundary distance {−𝜖, 휀} from the original 

hyperplane to predict the real numbers. This boundary distance is the margin of tolerance that takes only 

data points within this boundary. Therefore, the main goal is always similar: minimizing the prediction 

error and individualizing the hyperplane to maximize the margin [193]. 

     As aforementioned, the SVR applies a similar concept to SVC, but a target variable is a real number 

𝑌 ∈  𝑅. As stated by Huang and Tsai [194] and Patel et al. [195], the SVR seeks the linear regression 

function as an alternative to finding the hyperplane in the SVC by Eq. (6.10). This can be achieved by 

selecting a threshold error 𝜖, which is defined to minimize the expression in Eq. (6.11). This expression is 

called the 𝜖-insensitivity loss error function. The SVR regression process, therefore, seeks to minimize 𝜖 in 

Eq. (6.11) and ‖𝑊‖2 in the expression of 𝑅. The target value of the SVR method is given by: 

𝑌 = 𝑊𝑇𝑋 + 𝑏,                                                                 (6.10) 

where 𝑌 is the target, 𝑊 is the coefficient, 𝑋 is the input feature, and 𝑏 is a constant. We define: 

|�̂� − 𝑌|
𝜖
= {

𝑍𝑒𝑟𝑜,                                         |�̂� − 𝑌| ≤ 𝜖

|�̂� − 𝑌| − 𝜖,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                              (6.11) 

𝑅 =
1

𝜖
‖𝑊‖2 + 𝐶(∑ |�̂�𝑖 − 𝑌𝑖|𝜖

𝑁
𝑖=1 ).                                         (6.12) 
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     Tolerance variables are also introduced, defined as the value in excess of 𝜖 and 𝜉 to limit the value to 

the regression target. Thus, the minimization of Eq. (6.12) is updated to Eq. (6.13), under the conditions of 

Equations (6.14) and (6.15) for 𝜉𝑖 and 𝜉𝑖
∗ ≤ 0 and 𝑖 =  1, 2, 3, . . . , 𝑁. That is: 

𝑅 =
1

𝜖
‖𝑊‖2 + 𝐶(∑ |𝜉

𝑖
− 𝜉

𝑖
∗|
𝜖

𝑁
𝑖=1 ),                                         (6.13) 

(𝑊𝑇𝑋𝑖 + 𝑏) − 𝑌𝑖 ≤ 𝜖 − 𝜉𝑖,                                                  (6.14) 

𝑌𝑖 − (𝑊
𝑇𝑋𝑖 + 𝑏) ≤ 𝜖 + 𝜉𝑖

∗.                                                 (6.15) 

     The standard kernel functions are considered in this study, given explicitly by the linear, radial, and 

polynomial functions in Equations (6.16)–(6.18), respectively. 

𝐾(𝑋𝑖 , 𝑋𝑗) = 𝑋𝑖
𝑇𝑋𝑗,                                                           (6.16) 

𝐾(𝑋𝑖 , 𝑋𝑗) = 𝑒
−𝜆‖𝑋𝑖−𝑋𝑗‖, 𝜆 > 0,                                              (6.17) 

𝐾(𝑋𝑖 , 𝑋𝑗) = (𝑋𝑖
𝑇𝑋𝑗 + 1)

𝑑
.                                                      (6.18) 

Note that the shape of the kernel function directly influences the values obtained by the SVR regression. 

Similarly, the constant 𝐶 in Eq. (6.12) and the parameters 𝜆 and 𝑑 in Equations (6.17) and (6.18) should be 

optimized. For this purpose, the Optuna technique is applied to choose the optimal parameters for 𝐶, 𝜆, and 

𝑑, considering the lowest RMSE. According to our developed SVR model, the values of the primary 

hyperparameters obtained from the Optuna hyperparameter tuning technique are: (1) The kernel adopted 

was the radial basis function (RBF). (2) The kernel coefficient for RBF equals 0.001. (3) 𝐶 =  995.2783. 

Figure 6.2 shows the principle of using the SVR in two dimensions. 

 

Figure 6.2: The principle of the SVR in two dimensions. 
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6.3.3 Decision Tree Regression Model 

Decision tree (DT) learning plays a critical role in solving classification and regression problems. The 

classification and regression accuracy for its performance, when compared to existing techniques, is 

sufficient. The classification model learned through these techniques is represented as a tree and is called a 

decision tree. ID3Q [196], C4.5Q [197], and CART [198] are decision tree learning algorithms. More 

details can be found in [199]. 

     The proposed decision tree creates a regression model that uses the tree structure form. It breaks down 

the measured dataset into small subsets while the corresponding decision tree is progressively developed, 

with the final output being a tree with decision nodes and leaf nodes. The decision node (an input) contains 

feature branches (e.g., Tx–Rx distance, AoA, Tx Height, frequency), each representing values for the 

attribute tested. The leaf node (e.g., the path loss value) represents a decision on the numerical target. The 

top-most decision node in a tree that associates with the best predictor is known as the root node. The DT 

regression model identifies ways to split the measured data via an algorithmic approach into smaller subsets. 

This approach is repeated several times until the best results are obtained. The optimum rules that lead to 

the best results are obtained by using variance reduction as a measure of impurity. These results are used 

to calculate the variance reduction for each output. A higher variance leads to a higher impurity, meaning 

that the corresponding conditions should be chosen as the optimum conditions for the model. Based on our 

model, the selected hyperparameters’ values are the MAE as a variance calculation function, and the tree 

has 69 nodes. 

6.3.4 Random Forest Regression Model 

Random forest (RF) is one of the learning algorithms that uses the tree as a base learner. The RF is 

introduced since a single regressor is not enough to predict the correct fit. The reason is that, based on 

sample data, the regressor cannot distinguish between noise and pattern, so it performs sampling with 

changes such that the given 𝑛 trees to be learned are based on the dataset samples after taking the averages. 

The RF model sets up several trees to address the regression challenge, where each tree contains a root 

node, leaf nodes, and internal nodes. The root node has a set of training samples, and leaf nodes correspond 

to the final result. The internal nodes are split by features, and the criterion used to obtain features or split 

nodes is the MSE. Moreover, in the proposed setup, each tree is learned using four features selected 

randomly. After creating 𝑛 trees, when the testing data is used, the decision regarding the majority of trees 

that come up is considered the final output. The number of trees adopted for this work in our RF model was 

1090, with a maximum of 17 tree nodes. 
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6.3.5 K-Nearest Neighbor Regression Model 

The K-nearest neighbors algorithm is a supervised machine learning technique used to solve regression and 

classification problems. It is simple to understand the concept of the KNN algorithm and its application. 

However, it has a significant drawback of becoming significantly slow if the data size in use is increased. 

The KNN algorithm assumes that similar things exist in close proximity. In other words, similar things are 

near to each other. The KNN algorithm works by calculating the distances between a query and all the 

points in the data, choosing a particular number of neighbors (𝐾) closest to the query, and then voting for 

the most frequent label (in the case of classification) or averaging the labels (in the case of regression). 

Selecting the correct number of neighbors (𝐾) can lead to the best fit in the case of regression or 

classification, which can be performed by applying various 𝐾’s and selecting the one that gives the best 

results. For this hyperparameter, the best fit obtained was 𝐾 =  2, and the distance adopted was based on 

Minkowski’s formula. This was achieved by using the Optuna technique using different numbers and 

selecting the one that best fitted the measured data. Figure 6.3 represents how the KNN method predicts a 

query using two neighbors. 

 

Figure 6.3: The KNN regression model with 𝑲 = 𝟐. 

The KNN calculation uses the average of the numerical target of the K nearest neighbors, applying one of 

the following distance functions: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛:   𝐷 = √∑ (𝑋𝑖 − 𝑌𝑖)
2𝐾

𝑖=1 ,                                                   (6.19) 
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𝑀𝑎𝑛ℎ𝑎𝑛𝑡𝑡𝑎𝑛:   𝐷 = ∑ |𝑋𝑖 − 𝑌𝑖|
𝐾
𝑖=1 ,                                                  (6.20) 

𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖:   𝐷 = (√∑ (|𝑋𝑖 − 𝑌𝑖|)
𝑞 𝐾

𝑖=1 )

1

𝑞

, 𝑞 ≥ 1,                                   (6.21) 

where 𝑋 and 𝑌 are the original path loss and the predicted path loss, respectively. 

6.3.6 Artificial Neural Network Model 

Artificial neural networks have been developed based on biological neural network functionality. The 

ANNs are a network that contains a group of neurons, various layers, and activation functions, all of which 

get activated based on inputs. The proposed model is based on ANN architecture that includes four hidden 

layers of feed-forward neural networks. The first two hidden layers contain 96 neurons, and the last two 

hidden layers have 32 neurons, with each hidden layer followed by the well-known ReLU activation 

function. The input for the network accepts four features from the preprocessed data. The output layer is a 

single neuron with a linear activation function as the transfer function that leads to the predicted value. 

Figure 6.4 depicts the architecture of our proposed ANN model. The output result is a real value 

representing the path loss. The hyperparameter values of the proposed ANN (number of layers, number of 

neurons, activation functions, learning rate = 0.001) are obtained using the Optuna technique, which gives 

the best hyperparameters that fit the measured data. 

     The proposed ANN model learns to move up or down depending on the trend feature extraction from 

the data, giving the fit curve. The parameter weight at every epoch is adjusted using the gradient descent 

with momentum to reach the global minimum error. The proposed model uses a comprehensive 

hyperparameter setup to identify the best weights of the parameters for the path loss prediction. 

 

Figure 6.4: The architecture of the proposed ANN model. 
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6.3.7 Recurrent Neural Network Model 

The recurrent neural network based on the long-short-term memory layer is a type of ANN where the links 

between nodes form a directed graph along a temporal sequence. This makes it exhibit temporal dynamic 

behavior. Derived from feed-forward neural networks, RNNs can use their internal state (memory) to 

process variable-length sequences of inputs [200], which makes them applicable to tasks such as 

unsegmented, connected handwriting recognition, or speech recognition. While the ANN output layers 

depend on the previous layer output to train the neural network, the RNN requires both the previous layer 

output and the internal state of the neural network. The internal state is defined as the output of each hidden 

neuron when processing the previous input observations. They are thus well-suited to process time series 

of data and capture their time dependencies. On the other hand, it considers the current input and the output 

that it has learned from the previous input for making a decision. The proposed RNN architecture is 

expected to extract feature representations that encode some aspects of the path loss. This new way of 

learning gives the RNN-LSTM model significant performance on several applications, which motivated us 

to select the RNN-LSTM for our work. The architecture of the proposed model is the same as the original 

version of RNN-LSTM; the only changes are on the hyperparameters setup. 

     The proposed RNN-LSTM model involves the hyperparameters of two hidden layers of internal state 

(LSTM) and one feed-forward neural network layer. The first and last LSTM hidden layers have 128 and 

32 neurons, respectively. The feed-forward neural network layer contains 48 neurons. Each hidden layer is 

followed by the ReLU activation function. The model uses a learning rate of 0.0001 to train the model. The 

input for the network accepts four features from the preprocessed data. The output layer is a single neuron 

with a linear activation function as the transfer function. The output result is a real value representing the 

path loss. The cost function is used to optimize the mean square error. Figure 6.5 shows the architecture of 

the proposed RNN-LSTM model. It should be noted that the RNN-LSTM model is more complex compared 

to the ANN model and has more parameters to train [201], [202]. 

 

Figure 6.5: The architecture of the proposed RNN-LSTM model. 
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6.4 Results and Discussions of the Machine-Learning-Based Models 

Figures 6.6-6.13 depict the measured data and ML-based path loss prediction models for the enclosed 

indoor wireless channel selected in this work. These results are for 20% of the measurement data used for 

testing the performance of the models. As described above, the input features of all the ML-based models 

adopted for this study are the Tx–Rx distance, operating frequency, AoA, and the Tx antenna height. From 

Figures 6.6-6.13, all the models (except the MLR) fit the real measurement data accurately. Furthermore, 

it is clear from the figures that there is a significant match between the measurement data and the predicted 

models, which means a high prediction accuracy was provided by these models. Based on numerical 

analysis, the R-squared values of all the models fall between 0.4704 and 0.9798, while the RMSE values 

are in the range of 0.0216 to 2.9008 dB. 

 

Figure 6.6: Measured and predicted path loss data for the MLR model. 

 

 

Figure 6.7: Measured and predicted path loss data for the PR model. 
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Figure 6.8: Measured and predicted path loss data for the DT model. 

 

 

Figure 6.9: Measured and predicted path loss data for the RF model. 

 

 

Figure 6.10: Measured and predicted path loss data for the SVR model. 
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Figure 6.11: Measured and predicted path loss data for the KNN model. 

 

 

Figure 6.12: Measured and predicted path loss data for the ANN model. 

 

 

Figure 6.13: Measured and predicted path loss data for the RNN-LSTM model. 
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     Moreover, the MAPE values are between 0.37% and 6.94%, and for the correlation factor, the values 

are in the range of 69.45% to 99.07%. Thus, all the previous metrics results show the quality of the model’s 

predictions for such environments. The reasons behind the accuracy of these models are: (1) The availability 

of training data since 80% of the measurement data was used to train the models. (2) Efficient input feature 

selection that considers crucial factors, such as the AoA and the Tx antenna’s height for these indoor 

environments, in addition to essential factors, such as the Tx–Rx separation distance and the multi-

frequency operating range of 14 to 22 GHz. (3) The use of the hyperparameter tuning technique, namely 

Optuna, to choose the best values of the hyperparameters (for example, type of activation function, number 

of layers, number of neurons, learning rate, number of trees) instead of choosing them manually, which 

leads to a minimum prediction error. (4) The preprocessing of the data for some models, such as the ANN 

and RNN-LSTM. 

     As a comparison between the models, the ANN model provides the best average RMSE value, while the 

worst is for the MLR model. However, the RNN-LSTM, KNN, RF, DT, SVR, and PR show their ability to 

predict path loss since their average RMSE values were less than 1.1653 dB. This can be validated from 

the R-squared and the correlation coefficient values that show a minimum of 0.8690 and 0.9342, 

respectively, close to the ideal value of 1. Table 6.1 provides the performance metric values of the selected 

ML-based models. It is worth noting that the table provides three values of each metric, the minimum, 

average, and maximum value. These values came from the cross-validation technique adopted for this study 

that divided the measurement data into seven folds to evaluate the stability of each model. It can be seen 

from the table that the models provide highly stable results since the deviation of each metric from its 

average to maximum or minimum is small. Furthermore, the results displayed in Table 6.1 are based on all 

values of the frequency bands selected for this research (i.e., our ML path loss models are multi-frequency), 

which means that these models have the ability to accurately predict the propagation loss at the adopted 

frequency regime. 

 

Table 6.1: Performance metrics’ values of all the ML-based models selected. 
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     Figure 6.14 represents the test set prediction error of the ML-based models used in this work. In addition, 

the figure provides insights into the range of the difference between the measured and ML-predicted path 

loss models. These curves observe random distributions with average error values around zero with error 

impulses of 6 dB, as shown in the worst case of the MLR model. This means that the predicted ML-based 

path loss value has a maximum of only a 6 dB difference from the real measured path loss value. Moreover, 

the predicted and actual path loss values are given in Figure 6.15. Again, the figure proves what we have 

discussed in this section: all the models have a significant prediction performance with the best accuracy 

provided by all the models since there are clear straight lines, except the MLR model with an inaccurate 

performance. 

 

Figure 6.14: Prediction error of each ML-based model. 
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     The validation and training loss in Figure 6.16 shows the excellent fitting of the ANN and RNN models 

since the validation curve is slightly higher than the testing curve in the case of the ANN model, while the 

validation curve matches the testing curve across all the epoch values in the case of the RNN-LMTS model. 

The results reveal that the structure of these neural networks provides high precision in fitting the 

measurement data without underfitting or overfitting issues. Figure 6.17 depicts the measured and predicted 

path loss and the prediction error of all the ML-based models selected in this work. 

 

Figure 6.15: Measured vs. predicted path loss data for each model. 
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Figure 6.16: Training and validation loss for both ANN and RNN models. 

 

Figure 6.17: Measured and predicted path loss and the prediction error of all the ML-based models. (a) 

Measured and predicted path loss; (b) Prediction error. 

      

     Runtime analyses of ML models are essential for understanding the complexity of machine learning 

algorithms. It is crucial for algorithm selection in specific tasks and vital for successful implementation. 

Therefore, it is always a good practice to do runtime analysis and comprehend the complexity of ML 

algorithms. Runtime analysis can be seen from two directions: time complexity and space complexity. Time 

complexity measures how fast or slow a model performs the task, while space complexity is the amount of 

memory required to execute the task. In this work, time complexity analysis is performed to study the 

comparison between the adopted ML models. Table 6.2 represents the runtime of each model where some 

models take less than a second to complete the task, such as MLR, PL, DT, and KNN, while others take 

more time to finish the task. More specifically, as depicted in Table 6.2, the minimum runtime was achieved 

by the MLR model, 21.3 𝑚𝑠, which means that the MLR model has the least complexity among the other 

models. Nevertheless, the MLR model has the worst performance according to the results presented in 

Table 6.1. The highest runtime was observed from the run of the RNN-LSTM model since it took almost 

125 𝑠 to train the model. In general, the runtime obtained by our ML models is comparatively short, which 

indicates that the adopted models can fit the path loss problems with relatively low complexity. However, 

the runtime varies according to the performance of the computer used. 
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Table 6.2: Runtime comparison of the adopted ML models. 

 

     The experimental platform is on a PC with an Intel Core i7 processor, Gen (10) 1.20 GHz cores, 64-bit 

operating system, and an x64-based processor. It also has 1 TB shared memory and 16.0 GB RAM. The 

software used for the model implementation includes Python Version 3.5.2, Tensor flow backend 1.1.0, 

and TFlearn 0.3. The adopted algorithms have been used from two build-in python libraries called Scikit-

learn (Sklearn) and Tensorflow (TF). These are the most useful and robust libraries for machine learning in 

Python. It provides efficient tools for machine learning modeling, such as classification, regression, and 

clustering. Training and testing times for the results are provided in Table 6.2 for each model. 

     To investigate the impact of choosing the antenna height as an input feature, we removed the Tx antenna 

height column from the datasets’ input features. Table 6.3 provides the performance metrics’ values when 

the adopted ML-based models have three input features: the Tx–Rx separation distance, operating 

frequency, and the AoA. It is clear from the results that the overall performance of the models became 

worse than when the models had all four input features. For example, the average R-squared and the 

correlation coefficient values are reduced by approximately 3% and 4%, respectively, while the average 

RMSE value was increased by 1.6942 dB. For the RNN-LSTM model, the average RMSE was also 

increased by 1.3731 dB. The results presented in Table 6.3 indicate the importance of considering the Tx 

antenna as an input feature. 

     Furthermore, the impact of only having the separation distance and frequency as the two input features 

(removing the Tx height and the AoA) is investigated. Table 6.4 shows the values of the performance 

metrics after removing both the Tx height and the AoA from the input features. Again, the accuracy of the 

models became worse compared to the results provided in Tables 6.1 and 6.3. For instance, the average R-

squared value and the correlation coefficient reductions are approximately 9.3% and 5.2%, respectively. In 

addition, the average RMSE value was increased by 1.9673 dB for the ANN model, while for the RNN-

LSTM model, the matter was increased by 1.9808 dB. Again, the results reveal the effectiveness of having 

the four input features together. 
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Table 6.3: Performance metrics after removing the antenna height from the input features of the models. 

 

Table 6.4: Performance metrics after removing the antenna height and the AoA from the input features. 

 

     Based on the results provided, it is clear that the careful selection of the input features for training the 

models can ensure high prediction accuracy without considering more features, which leads to less 

complexity in using the proposed models for such environments. However, there is a high demand for 

developing precise mechanisms capable of generalizing the results for data far different (representing other 

communication environments) from the data used for training the models to overcome the need to conduct 

extensive measurement campaigns in all the possible communication scenarios. Furthermore, these 

generalizing mechanisms will allow for adaptive data-driven prediction models that accurately represent 

the channel characteristics for future mobile networks relying on fewer training samples, which leads to 

faster and more cost-effective planning of the wireless systems. As a suggestion for expanding the datasets, 

our improved CI and FI models can be used in this manner since they provide higher precision than the 

standard models in terms of fitting the real measurement data for path loss prediction. 

6.5 Chapter Summary 

Due to the characteristics of the wireless signals at the SHF and mmWave frequency bands compared with 

today’s sub-6 GHz frequency regime, providing accurate and stable path loss prediction models is a 

challenging problem. Motivated by that, this chapter considered an extensive comparative analysis to 

evaluate the performance of the most widespread and used machine learning methods, namely the MLR, 

PR, RF, DT, SVR, KNN, ANN, and RNN-LSTM. The input features used to train the models were carefully 

selected: the Tx–Rx separation distance, frequency, Tx height, and the AoA. To ensure reliable and stable 
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results, we used a cross-validation technique to divide the data into seven folds of training and testing 

datasets and provide the minimum, average, and maximum results. Also, we utilized a hyperparameters 

tuning method to select the optimum hyperparameters of the model and avoid the time consumption of the 

manual selection. Furthermore, five performance metrics were applied to evaluate the models: R-squared, 

RMSE, MAPE, MSE, and the correlations coefficient. The main results obtained from this chapter reveal 

that all the adopted models (except the MLR) have accurate and stable performances in predicting the path 

loss for enclosed indoor environments, such as corridors. Moreover, as the comparison between the models, 

the best-fit models according to the minimum RMSE and high R-squared and correlation factor are the 

ANN and RNN-LSTM. This work shows that these ML-based models could be promising solutions with 

higher precision for predicting path loss for future indoor wireless communication networks. 

     The following research will be directed toward developing a ML-based path loss model that provides 

better accuracy and stability than other well-known methods. Moreover, using the results from this study 

that the best performance was achieved by the neural networks (i.e., ANN and RNN-LSTM), prediction 

based on deep neural networks such as using a convolution neural network (CNN) will be investigated. 

Finally, all these research findings will also be considered to provide the most accurate path loss model 

based on the ensemble method of neural networks, as to be discussed in the next chapter. 
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Chapter 7: Proposal of an Ensemble-Method-Based Neural 

Network Path Loss Model 

 

7.1 Introduction 

A jump in the need for higher frequency bands has accelerated lately due to the evolution of technologies 

that require greater data speeds. In recent years, various efforts have developed path loss prediction models 

for 5G-and-beyond communication networks in the regime of millimeter-wave and sub-terahertz 

frequencies. However, more advanced models are needed for enhanced flexibility and precision, especially 

in complex environments. These advanced models will help in deploying wireless networks with the 

guarantee of covering communication environments with optimum quality of service. This chapter presents 

path loss prediction models based on neural networks, namely artificial neural network (ANN), artificial 

recurrent neural network (RNN) based on long short term memory (LSTM), shortly known as RNN-LSTM, 

and convolutional neural network (CNN). Moreover, an ensemble-method-based neural network path loss 

model is proposed in this chapter. Finally, an extensive performance analysis of the four models is provided 

regarding prediction accuracy, stability, the contribution of input features, and the time needed to run the 

model. 

     To the best of our knowledge, based on a literature review, this is the first effort that uses ensemble-

method-based neural networks for predicting path loss. All the existing studies exploit only separate 

algorithms for this objective. Moreover, the model run time is used in evaluating the performance of the 

proposed model and comparing it with other standard ML algorithms. Also, the relative contribution of the 

models’ input features to prediction accuracy can be used to carefully consider when collecting the raw data 

via measurement campaigns, drive tests, or simulation tools, as well as in building any ML-based model 

for similar environments. 

7.2 Ensemble Method for Path Loss Prediction Modeling 

If incorporating machine learning methods in telecommunication or any other operation, the question that 

arises is which machine learning methods should I use? due to the increased number of current machine 

learning architectures and the improvements made therein. Each alternative method has its advantages and 

drawbacks. The motivating idea of this study is to combine the advantages of three models based on the 

ANN, RNN-LSTM, and CNN architectures in one method instead of selecting only one of these. This 

method was hypothesized to achieve a more optimal model with better accuracy than the individual models. 
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The proposed ensemble method considers the advantages of these three ML-based models by training them 

with the same dataset to predict the path loss. In the ensemble step, we used a novel probability aggregation 

method based on applying a coefficient to the output of each model. The probability coefficients of the 

models were determined during the validation phase. Figure 7.1 shows a flowchart of the ensemble method, 

which starts with pre-processing steps to prepare the dataset and select the best features as an input. Training 

the selected neural network models is performed. After that, the probability coefficients of these models 

are determined by searching for the best rate for each model. Finally, the ensemble method combines the 

sum of selected models multiplied by their appropriate probability rate. 

7.2.1 The CNN Model 

Convolution neural networks (CNNs) are well-known methods used to solve supervised and unsupervised 

problems [203], [204]. They have been shown to significantly improve solving challenges in various 

sectors, including medical imaging, telecommunication, etc. The CNN is a class of artificial neural 

networks used to detect, extract, and analyze complex features. It consists of neurons and comprises a set 

of layers that accept and process inputs of high dimensional vectors as input. The CNN has several 

hyperparameters essential in achieving optimum model performance. These hyperparameters can be 

divided into two types: 

a) Hyperparameter that determines the network structure such as: 

 Kernel Size - presents the size of the filter. 

 Kernel Type - shows values of the actual filter (e.g., edge detection, sharpen). 

 Stride - is the rate at which the kernel passes over the input image. 

 Padding add layers of 0’s to make sure the kernel passes over the image’s edge. 

 Hidden layer - is layers between input and output layers. 

 Number of neurons - tells the number of neurons in each hidden layer. 

 Activation functions - allow the model to learn nonlinear prediction boundaries. 

b) Hyperparameter that determines the network trained such as: 

 Learning rate - regulates the weight update at the end of each batch. 

 Momentum - regulates the value to let the previous update influence the current weight update. 

 A number of epochs - is the iterations of the entire training dataset to the network during training. 

 Batch size is the number of patterns shown to the network before the weights are updated. 

     Optimization of CNN hyperparameters is challenging due to the large number of hyperparameters in a 

standard CNN’s architecture [205], and finding the optimized CNN model can improve CNN performance. 

This work adopted an optimized CNN model using the Optuna technique, which is shown to effectively 
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select the optimal hyperparameters to achieve path loss prediction. The hyperparameters of our CNN model 

include two hidden layers. The first layer is a one-dimensional convolution layer with 128 filters and a 

kernel size of 2; the second is a feed-forward neural network layer containing 64 neurons. The ReLU 

activation function follows each hidden layer. The input for the network accepts four features from the 

preprocessed data, which are the distance, frequency, antenna height, and AoA. The output layer is a single 

neuron with a linear activation function as the transfer function that leads to the predicted value. More 

hyperparameter tuning, such as 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001, 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32, and 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ𝑠 =

100, are obtained using the Optuna technique, which gives the optimum values for such hyperparameters 

that accurately fit the measured data. 

7.2.2 The Ensemble-Method-Based Model 

The proposed ensemble method has combined the benefits of the adopted ANN, RNN-LSTM, and CNN 

models into one model to predict the path loss for future wireless communication systems. The processed 

data is divided into training and testing datasets. After that, the Optuna technique selects the best 

hyperparameters for the adopted models [206]. This is done by training all models in several parameters 

and choosing the best hyperparameters that fit the measured data and minimize the prediction error. The 

best hyperparameters are used to train and test the models. The optimum results were obtained using a 

training size of 80%, while the test data size was 20%. 

     In regression applications, combining the predictions of a solution set is named ensemble learning, and 

the aggregation technique used is called the ensemble method. The proposed ensemble method combines 

and analyzes the results of three models: ANN, RNN-LSTM, and CNN. An averaging technique can be the 

most straightforward answer to combining the outputs of various models. The average result is a simple 

and effective method preferred in solution communities with close success scores. However, the proposed 

ensemble method requires that a robust method must have a greater impact on the final prediction when 

combining various models. In this study, this is achieved by giving more weight to the best model. 

     The ensemble method has been designed more efficiently here to predict path loss. Predicting path loss 

is challenging due to the reasons mentioned above. It is possible to solve these complex challenges with the 

weighted sum technique. The proposed ensemble method has achieved the goal by combining the outputs 

of each model with an optimization technique where the optimum weighted parameters can be obtained. 

     The proposed ensemble method multiplies the probability weight of each model with its model accuracy 

to predict path loss. These calculations can show the prediction of the ensemble’s path loss using Eq. (7.1) 

where the 𝑃𝑖 notation is the probability weight of the 𝑖 model. Since the softmax activation function is 

present in the last output layer of the three models, the sum of all probabilities given to each model is equal 
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to one. Path loss predictions made by the three models are multiplied with their corresponding weighted 

value to give the ensemble method output. These multiplication results are then summed to produce the 

final results, as: 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑂𝑢𝑡𝑝𝑢𝑡 = ∑ 𝑃𝑖𝑀𝑖
3
𝑖=1 .                                                       (7.1) 

 

Figure 7.1: Flow chart of the adopted ML-based path loss prediction modeling technique. 
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7.3 Results and Discussions about Ensemble method Path Loss Modeling 

This section presents and discusses the main research finding of the chapter. The results are based on 

plotting the predicted neural network models with the actual datasets individually to observe the behavior 

of each model in terms of fitting the measurement data. Moreover, the prediction models are plotted together 

with real data to provide a comparative analysis between the models. The comparison is also studied using 

the performance metrics mentioned above. Furthermore, the run time and the input features’ contribution 

to the accuracy of the models are numerically provided in this section. 

     Measured data and the predicted path loss model results are given in Figure 7.2 using the ANN, RNN-

LSTM, CNN, and ensemble method with four input features (distance, frequency, antenna height, and 

AoA). Generally, all the models accurately follow the measurement data. No overfitting and underfitting 

issues were found for all the models studied, and the training and testing of the models were performed 

several times to ensure the accuracy and stability of the results. As a justification of the results displayed in 

Figure 7.2, the numerical results of the five performance metrics are presented in Table 7.1 for all the 

models with the four input features. For R-square values, a value of 0.9753 is found when the ensemble 

method model is used, which is the highest value and close to the ideal value of 1. The other models have 

achieved R-square values of 0.9352, 0.9160, and 0.9543 for the ANN, RNNLSTM, and CNN models. This 

means that the R-square has improved by 4.3%, 6.5%, and 2.2% over the three models, respectively. 

     The best performance for the RMSE, MAPE, and MSE was achieved using the proposed ensemble since 

it provides the lowest values of these error metrics. However, all the models provide accurate path loss 

predictions since the maximum error value is less than 0.1 dB. 

     For the correlation coefficient, the best value is found to be 0.9884, achieved by the ensemble method 

model, whereas the worst value is 0.9666 when the RNN-LSTM model is used. Therefore, as a summary 

of the results presented in Figure 7.2 and Table 7.1, the best prediction accuracy is achieved by the proposed 

ensemble method model. As a justification of the results, Figure 7.3 shows the behavior of the prediction 

error of all the four models selected. It is clear from the figure that the models exhibit relatively low values 

of prediction error since the distribution is mainly between -3 and 3 dB, with the proposed ensemble method 

performing best. This is easily observable from Figure 7.4, which depicts the predicted path loss values as 

a function of the real measured path loss values. Generally, all models provide a straight-line shape, 

meaning that the prediction path loss values are extremely close to the actual path loss values. The predicted 

models with the measurement data are represented together in Figure 7.5. These results are much better 

than using standard and improved empirical path loss models summarized in the previous chapters. 
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Figure 7.2: Measured data and predicted path loss for all the neural network models. 

 

 

 

Figure 7.3: Prediction error curves of each model. 
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Figure 7.4: Predicted and measured path loss values for each model. 

 

Table 7.1: Performance metrics’ values of all the ML-based models selected. 

 

 

Table 7.2: Performance metrics after removing the antenna height from the input features of the models. 

 

 

Table 7.3: Performance metrics after removing the antenna height and the AoA from the features of the models. 
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Figure 7.5: Path loss prediction models and prediction error for all the studied models together. 

 

Table 7.4: Runtime comparison of the adopted models. 

 

     To evaluate the contribution of the antenna height as an input feature to the overall prediction accuracy 

of the neural network models, we removed it and kept the other three features (i.e., distance, frequency, and 

antenna height). As was expected, the prediction accuracy of all models is decreased. Specifically, the R-

square value decreased by 4.5% for the ensemble method model, whereas the reduction is 6.7%, 3.2%, and 

2.4% for the ANN, RNN-LSTM, and CNN models. This means that the contribution of the antenna height 

to the overall model accuracy is not significant for enclosed indoor corridor environments where the 

richness of propagation mechanisms exists. Table 7.2 summarizes the performance metrics values after 

removing the antenna height from the input features of the models. From the Table, the metric values do 

not have significant changes, which indicates the superiority of the distance, frequency, and AoA as the 

main contributors to overall model accuracy. 

     We removed the antenna height and AoA from the models’ input features. The performance metrics’ 

results are presented in Table 7.3. Here, a notable change in the values reveals that the AoA contributes 

considerably to the models’ prediction accuracy. Generally, the best performance is still observed when the 

ensemble model is used. However, as it depends on all the other three neural network models, the ensemble 

method model has a longer run time of 276.7636 seconds, almost 4.7 times the time required to run the 

ANN model. This ANN model requires a minimum time of 59.1485 seconds, among the others. Table 7.4 

summarizes the run time required for each model. 
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     The complexity and run time of the model are increased compared to the other models. However, as a 

tradeoff between the model’s complexity and accuracy, the ensemble method model provides the highest 

accuracy and stability among all the other three models and the other well-known ML-based models. The 

proposed ensemble method model can be a trustful model to predict path loss for high-frequency bands in 

complex environments where the propagation signal suffers from several effects in the wireless channel. 

7.4 Chapter Summary 

In this chapter, an ensemble method is proposed based on combining three machine learning techniques. 

The ensemble approach results have shown that the architecture can identify and predict a high number of 

the measured path loss data and minimize the mean square error. This conclusion was based on 20% testing 

performed on the measured dataset. It achieved a high accuracy percentage of the correlation and R-square 

metrics while reducing the mean square error, absolute mean square error, and the root square error to a 

significant error. These results indicate that the proposed ensemble method can provide an accurate path 

loss prediction model, which can play a significant role in modeling wireless communication channels for 

5G systems and beyond. 
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Chapter 8: Conclusions and Recommendations for Related 

Future Works 

 

8.1 Conclusions 

It is well-known that each radio receiver needs a specific minimum received signal power (sensitivity) to 

decode the received information successfully. Accurate determination of the received signal strength 

demands advanced path loss prediction models. Hence, these models are of extreme importance in 

designing and planning any mobile communication network, especially for locating base stations, coverage 

analysis, and link budget calculations. 

     The first part of this dissertation proposed a new measurement-based path loss prediction model for 

wireless communications in enclosed indoor environments. The model was derived, evaluated, and 

compared with two well-known standard models: the close-in (CI) free space reference distance model and 

the floating-intercept (FI) model. In addition, the free space path loss (FSPL) model was also considered in 

this part. The main research findings reveal that the proposed model provides high prediction accuracy in 

all the frequency bands selected since it well-fits the measurement data. Furthermore, the mean prediction 

and standard deviation errors between the proposed model and the actual data were between 1.1 and 2.5 

dB, proving the model’s precision. 

     After that, a new LOS probability model was presented and compared with two standard models, which 

are ITU-R and WINNER II (A1). The models’ parameters are derived based on the MMSE concept between 

the models and measurement data. This study’s main findings reveal that our proposed model has the best 

performance at 14 and 18 GHz, while the ITU-R model has a slight preference at 22 GHz. Besides, the 

impact of the operating frequency is investigated. The results show that the LOS probability models’ 

accuracy depends on the frequency, and this dependency does not follow a specific behavior since the 

WINNER II (A1) and our model have the best accuracy at 18 GHz compared to 14 and 22 GHz bands. 

Moreover, this work shows that the LOS probability in indoor environments can be modeled precisely 

through our proposed model. The reason behind proposing this accurate LOS probability model was to 

propose a probabilistic path loss prediction model to tackle the classification problem between LOS and 

NLOS communication scenarios. The motivation for proposing this model was the challenges in analyzing 

mobile networks at mmWave and higher frequencies because of the big difference between LOS and NLOS 

communications. The difference is evident in these frequency bands since it is well-known that the 

mmWave frequency bands suffer from the propagation mechanisms and have higher penetration and 
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reflection losses than the sub-6 GHz frequency regime. The main advantage of this probabilistic model, in 

addition to its accuracy and effectiveness, is that it does not require the knowledge of the mobile 

equipment’s LOS and NLOS communication conditions since the probability of having a clear LOS 

connection is already considered in the model. Furthermore, the results show that the proposed probabilistic 

path loss model is accurate and stable since it follows the measurement data at the three frequencies adopted 

with acceptable MPE and SDE values compared to both the LOS and NLOS actual data. 

     Motivated by the need for higher accuracy and improving standard models, in chapter 4, an efficient 

improvement of two well-known path loss prediction models, namely the CI and FI models, was presented 

and discussed in detail. The validation of the models’ performance was given by applying the CI and FI 

models and their improvement to fit real measured data. The data was collected in a typical indoor corridor 

environment at three frequencies in the SHF band, which are 14, 18, and 22 GHz. Both the LOS and NLOS 

communication scenarios were considered in this research. The main findings of this work are that our 

proposed models generally outperform the existing standard models in terms of several factors, such as the 

accuracy of predicting the path loss with the lowest possible value of the MSE, minimizing the SF's standard 

deviation for both LOS and NLOS conditions (with better improvements in the NLOS scenario), and 

providing better sensitivity and stability of the models’ parameters with the change of the AoA and antenna 

height. The improvement of the models was effected through a valuable approach. There is no notable 

increase in the models’ complexity to be used by the planning engineers for wireless systems’ deployment 

and link budget calculations. Motivated by the achieved results in chapter 4, the impact of high-ordering 

the log distance dependency of the CI model on the Tx-Rx separation distance in the logarithmic scale was 

investigated in chapter 5. As was expected, higher prediction accuracy is achieved by the third-order CI 

model since it has more parameters depending on the Tx-Rx distance in the logarithmic scale. Therefore, it 

can be concluded that the optimum number of parameters is three since the third-order CI model fits the 

data perfectly in both the LOS and NLOS scenarios in all the frequency bands selected. In addition, the 

model’s complexity is not high since other standard models are used with the same number of parameters. 

It is worth noting that the principle proposed in chapter 5 can be applied to any other path loss prediction 

model to achieve more precision in predicting the path loss and provide more details in describing the 

wireless propagation channel. 

     The final part of this dissertation provided an extensive comparative analysis to evaluate the performance 

of the most widespread and used machine learning methods, namely the MLR, PR, RF, DT, SVR, KNN, 

ANN, and RNN-LSTM. The input features used to train these ML-based models were carefully selected: 

the Tx–Rx separation distance, frequency, Tx height, and the AoA. Moreover, we utilized a 

hyperparameters tuning method to select the optimum hyperparameters of the model and avoid the time 
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consumption of the manual selection. Five performance metrics were applied to evaluate the models: R-

squared, RMSE, MAPE, MSE, and the correlations coefficient. The main results obtained from this research 

reveal that all the adopted models (especially the ANN and RNN-LSTM) have accurate and stable 

performances in predicting the path loss for enclosed indoor environments, such as corridors. Motivated by 

that and seeking higher prediction accuracy, a novel ensemble-method-based neural network path loss 

model was proposed. The ensemble method integrates the advantages of combined models to overcome the 

shortcomings of each technique when used individually. This has been done to resolve issues related to one 

another when used for path loss prediction challenges. It also applies the Optuna technique or 

hyperparameters-tuning, which can look for the best hyperparameters values and the optimum probability 

weight for each model. Also, this architecture focuses on improving the limitation of neural networks in 

path loss prediction. Among all the proposed and studied models, the best performing path loss model is 

the ensemble method since it outperforms all the other methods. The proposed method's best performance 

is primarily because of the combination of the three neural network models (i.e., ANN, RNN-LSTM, and 

CNN). 

     Finally, this dissertation shows that the proposed models can be trusted as accurate and reliable models 

for predicting the path loss at frequency bands above 6 GHz in enclosed indoor environments such as 

corridors since they provide better accuracy, sensitivity, and stability than well-known standard path loss 

prediction models. 

8.2 Recommendations for Related Future Works 

The research findings of this dissertation motivate further investigations and performance studies based on 

measurements. The following points will be considered in future works: 

1) Future research could be directed towards implementing measurements in more cities and scenarios 

and providing other improvements to acquire reliable channel models that can accommodate various 

environments and optimize existing models’ parameters. 

2) The ensemble-method-based neural network path loss model proposed in this work can be evaluated 

using different measurement datasets to verify whether they are limited to data or can be generalized. 

To achieve that, measurement campaigns in higher frequency bands for different indoor and outdoor 

environments will be conducted to collect the required data for training and testing the ML-based 

models. 

3) The proposed ensemble method model can combine several machine learning methods in one model 

integration to detect the path loss with a high accuracy rate. Thus, it is worth investigating the 

integration of deep learning techniques with different models based on ensemble theory. 
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4) The channel sounder used in this research work was limited to the 22 GHz frequency band. Future 

works should cover higher frequency bands in the mmWave regime and sub-terahertz that will be 

utilized for high-speed multimedia services. 

5) This study focused on indoor corridor environments; future studies should consider other essential 

indoor environments that are lacking in literature such as mosques, clinics, shopping malls, gym 

centers, restaurants, and cafes. Moreover, the modeling and characterization of path loss considering 

outdoor environments such as stadiums and over rooftops to streets are limited in the literature; future 

works should cover these crucial scenarios for reliable communications everywhere. 

6) After covering several indoor environments, it becomes necessary to propose a mathematical formula 

of the PLE and our proposed models’ parameters as a function of the structure dimensions and materials 

used. This can make the estimation of the signal behavior at further indoor environments more reliable 

and straightforward with the help of machine learning algorithms. 

7) The penetration loss and characterizations of the reflection and transmission coefficients will be 

considered in future works to make our proposed models more precise and trustworthy for indoor to 

outdoor communications at the 6G and beyond because the signals at the mmWave frequency regime 

are susceptible to the structure and materials of the buildings. These studies are of importance to achieve 

the best path loss models that can be reliable for wireless systems’ planning and link budget 

calculations. 
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Appendices 
Appendix A: Averaged LOS and NLOS real measured data at 𝟏𝟒 𝑮𝑯𝒛 frequency band 

 

Table (A.1): LOS 14 𝐺𝐻𝑧 Averaged Real Measured Data 

Tx-Rx Separation 

Distance (𝒎) 

Received Power (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −19.0455 −31.7818 

4 −24.936 −26.9733 

6 −27.3373 −26.7662 

8 −30.4923 −27.6502 

10 −31.3021 −29.9632 

12 −29.5482 −29.8268 

14 −35.7433 −29.1092 

16 −30.5105 −30.8837 

18 −37.5614 −34.3761 

20 −30.2908 −29.0022 

22 −33.1304 −33.1269 

24 −35.2936 −33.978 
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Table (A.2): NLOS 14 𝐺𝐻𝑧 Averaged Real Measured Data at 30° and 60°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟑𝟎° AoA (dBm) Received Power at 𝟔𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −30.515 −30.515 −36.1756 −36.1756 

4 −34.1816 −34.1816 −35.9726 −35.9726 

6 −34.5907 −34.5907 −37.1009 −37.1009 

8 −35.2939 −35.2939 −37.1307 −37.1307 

10 −37.2066 −37.2066 −37.5506 −37.5506 

12 −36.5375 −36.5375 −37.3632 −37.3632 

14 −37.4586 −37.4586 −37.4265 −37.4265 

16 −35.9147 −35.9147 −37.4195 −37.4195 

18 −37.2895 −37.2895 −37.5741 −37.5741 

20 −36.283 −36.283 −37.6117 −37.6117 

22 −37.1934 −37.1934 −37.502 −37.502 

24 −36.9682 −36.9682 −37.5715 −37.5715 
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Table (A.3): NLOS 14 𝐺𝐻𝑧 Averaged Real Measured Data at 90° and 120°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟗𝟎° AoA (dBm) Received Power at 𝟏𝟐𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −35.2333 −35.2333 −36.2064 −36.2064 

4 −37.5457 −37.5457 −35.8982 −35.8982 

6 −37.2579 −37.2579 −37.1117 −37.1117 

8 −37.2703 −37.2703 −37.3807 −37.3807 

10 −37.4 −37.4 −37.5137 −37.5137 

12 −37.5321 −37.5321 −37.2579 −37.2579 

14 −37.3498 −37.3498 −37.3873 −37.3873 

16 −37.5503 −37.5503 −37.57 −37.57 

18 −37.3502 −37.3502 −37.5747 −37.5747 

20 −37.5277 −37.5277 −37.5984 −37.5984 

22 −37.5875 −37.5875 −37.5836 −37.5836 

24 −37.1856 −37.1856 −37.4058 −37.4058 
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Table (A.4): NLOS 14 𝐺𝐻𝑧 Averaged Real Measured Data at 150° and 180°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟏𝟓𝟎° AoA (dBm) Received Power at 𝟏𝟖𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −36.2369 −36.2369 −36.9212 −36.9212 

4 −37.4688 −37.4688 −36.0121 −36.0121 

6 −37.5272 −37.5272 −37.1118 −37.1118 

8 −36.8349 −36.8349 −36.8384 −36.8384 

10 −37.131 −37.131 −36.6527 −36.6527 

12 −37.5901 −37.5901 −37.1991 −37.1991 

14 −37.5121 −37.5121 −36.3807 −36.3807 

16 −37.5799 −37.5799 −36.3189 −36.3189 

18 −37.3451 −37.3451 −37.2481 −37.2481 

20 −37.4834 −37.4834 −37.0615 −37.0615 

22 −37.5862 −37.5862 −37.5396 −37.5396 

24 −37.5828 −37.5828 −37.5101 −37.5101 
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Table (A.5): NLOS 14 𝐺𝐻𝑧 Averaged Real Measured Data at 210° and 240°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟐𝟏𝟎° AoA (dBm) Received Power at 𝟐𝟒𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −37.3756 −37.3756 −36.2775 −36.2775 

4 −37.3178 −37.3178 −36.8062 −36.8062 

6 −37.3735 −37.3735 −37.2766 −37.2766 

8 −37.2047 −37.2047 −37.4697 −37.4697 

10 −37.5879 −37.5879 −37.5444 −37.5444 

12 −37.5645 −37.5645 −37.4199 −37.4199 

14 −37.4512 −37.4512 −37.4546 −37.4546 

16 −37.4752 −37.4752 −37.5939 −37.5939 

18 −37.1328 −37.1328 −37.412 −37.412 

20 −37.5963 −37.5963 −37.0945 −37.0945 

22 −37.6117 −37.6117 −37.3795 −37.3795 

24 −37.5645 −37.5645 −37.5823 −37.5823 
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Table (A.6): NLOS 14 𝐺𝐻𝑧 Averaged Real Measured Data at 270° and 300°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟐𝟕𝟎° AoA (dBm) Received Power at 𝟑𝟎𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −36.0783 −36.0783 −34.2597 −34.2597 

4 −36.459 −36.459 −36.1293 −36.1293 

6 −37.4478 −37.4478 −36.8925 −36.8925 

8 −37.4003 −37.4003 −36.8149 −36.8149 

10 −37.5201 −37.5201 −37.4536 −37.4536 

12 −37.5377 −37.5377 −37.2316 −37.2316 

14 −37.5842 −37.5842 −37.1453 −37.1453 

16 −37.4671 −37.4671 −37.5256 −37.5256 

18 −37.2049 −37.2049 −37.6351 −37.6351 

20 −37.1702 −37.1702 −37.242 −37.242 

22 −37.428 −37.428 −37.6062 −37.6062 

24 −37.566 −37.566 −37.5762 −37.5762 
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Table (A.7): NLOS 14 𝐺𝐻𝑧 Averaged Real Measured Data at 330°AoA 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟑𝟑𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −30.7288 −30.7288 

4 −32.9187 −32.9187 

6 −34.1064 −34.1064 

8 −35.7479 −35.7479 

10 −36.0053 −36.0053 

12 −34.7062 −34.7062 

14 −37.2426 −37.2426 

16 −37.0074 −37.0074 

18 −37.4113 −37.4113 

20 −35.2386 −35.2386 

22 −36.9572 −36.9572 

24 −36.9005 −36.9005 
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Appendix B: Averaged LOS and NLOS real measured data at 𝟏𝟖 𝑮𝑯𝒛 frequency band 

 

Table (B.1): LOS 18 𝐺𝐻𝑧 Averaged Real Measured Data 

Tx-Rx Separation 

Distance (𝒎) 

Received Power (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −19.3961 −26.9725 

4 −25.5372 −27.8724 

6 −29.6856 −29.0984 

8 −32.2146 −29.8421 

10 −32.3361 −32.3736 

12 −37.6352 −33.4309 

14 −35.1406 −34.1056 

16 −35.3779 −36.7387 

18 −36.7532 −39.8744 

20 −36.7763 −40.981 

22 −35.714 −40.0876 

24 −36.6121 −39.1943 
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Table (B.2): NLOS 18 𝐺𝐻𝑧 Averaged Real Measured Data at 30° and 60°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟑𝟎° AoA (dBm) Received Power at 𝟔𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −29.8907 −29.8907 −35.894 −35.894 

4 −34.3654 −34.3654 −38.4292 −38.4292 

6 −35.8463 −35.8463 −39.5216 −39.5216 

8 −38.4858 −38.4858 −40.216 −40.216 

10 −37.8956 −37.8956 −40.42 −40.42 

12 −39.948 −39.948 −40.803 −40.42 

14 −38.4363 −38.4363 −40.1877 −40.1877 

16 −39.3119 −39.3119 −41.1549 −41.1549 

18 −39.2954 −39.2954 −41.0129 −41.0129 

20 −41.0584 −41.0584 −41.2644 −41.2644 

22 −38.1502 −38.1502 −40.0415 −40.0415 

24 −39.7308 −39.7308 −40.6857 −40.6857 
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Table (B.3): NLOS 18 𝐺𝐻𝑧 Averaged Real Measured Data at 90° and 120°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟗𝟎° AoA (dBm) Received Power at 𝟏𝟐𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −38.6229 −38.6229 −39.6282 −39.6282 

4 −40.7194 −40.7194 −40.9947 −40.9947 

6 −40.8449 −40.8449 −40.7162 −40.7162 

8 −40.9071 −40.9071 −41.1488 −41.1488 

10 −41.2632 −41.2632 −41.0192 −41.0192 

12 −41.1755 −41.1755 −41.2354 −41.2354 

14 −41.1765 −41.1765 −40.8786 −40.8786 

16 −41.2922 −41.2922 −41.2576 −41.2576 

18 −41.1123 −41.1123 −41.1483 −41.1483 

20 −41.1063 −41.1063 −41.2996 −41.2996 

22 −40.9683 −40.9683 −41.0559 −41.0559 

24 −41.1526 −41.1526 −41.2313 −41.2313 
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Table (B.4): NLOS 18 𝐺𝐻𝑧 Averaged Real Measured Data at 150° and 180°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟏𝟓𝟎° AoA (dBm) Received Power at 𝟏𝟖𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −39.8307 −39.8307 −39.699 −39.699 

4 −40.9772 −40.9772 −40.4033 −40.4033 

6 −41.0138 −41.0138 −40.014 −40.014 

8 −41.1019 −41.1019 −39.6162 −39.6162 

10 −41.159 −41.159 −39.7837 −39.7837 

12 −41.1586 −41.1586 −40.9684 −40.9684 

14 −41.0506 −41.0506 −41.0327 −41.0327 

16 −41.2463 −41.2463 −41.2906 −41.2906 

18 −41.2133 −41.2133 −39.9996 −39.9996 

20 −41.3279 −41.3279 −40.0858 −40.0858 

22 −41.147 −41.147 −40.3796 −40.3796 

24 −41.2297 −41.2297 −40.5655 −40.5655 
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Table (B.5): NLOS 18 𝐺𝐻𝑧 Averaged Real Measured Data at 210° and 240°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟐𝟏𝟎° AoA (dBm) Received Power at 𝟐𝟒𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −40.6287 −40.6287 −39.3284 −39.3284 

4 −40.8201 −40.8201 −40.4492 −40.4492 

6 −41.042 −41.042 −40.9888 −40.9888 

8 −41.2369 −41.2369 −40.7909 −40.7909 

10 −41.3826 −41.3826 −41.2029 −41.2029 

12 −41.3826 −41.3826 −41.2029 −41.2029 

14 −41.0698 −41.0698 −41.1843 −41.1843 

16 −41.3008 −41.3008 −41.1357 −41.1357 

18 −41.0495 −41.0495 −41.0801 −41.0801 

20 −41.0194 −41.0194 −41.4114 −41.4114 

22 −41.3366 −41.3366 −41.1636 −41.1636 

24 −41.2606 −41.2606 −41.1775 −41.1775 

 

 

 

 

 

 

 



 APPENDICES 

 

 159 

 

 

 

 

 

Table (B.6): NLOS 18 𝐺𝐻𝑧 Averaged Real Measured Data at 270° and 300°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟐𝟕𝟎° AoA (dBm) Received Power at 𝟑𝟎𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −38.7568 −38.7568 −41.2604 −41.2604 

4 −39.9769 −39.9769 −41.0348 −41.0348 

6 −40.7907 −40.7907 −41.1611 −41.1611 

8 −40.7317 −40.7317 −40.957 −40.957 

10 −41.1396 −41.1396 −41.1884 −41.1884 

12 −41.1973 −41.1973 −41.117 −41.117 

14 −41.052 −41.052 −41.1188 −41.1188 

16 −41.1663 −41.1663 −41.2401 −41.2401 

18 −41.1325 −41.1325 −41.14 −41.14 

20 −41.3751 −41.3751 −41.3028 −41.3028 

22 −40.9978 −40.9978 −41.0822 −41.0822 

24 −41.3209 −41.3209 −41.3378 −41.3378 
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Table (B.7): NLOS 18 𝐺𝐻𝑧 Averaged Real Measured Data at 330°AoA 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟑𝟑𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −37.246 −37.246 

4 −39.6336 −39.6336 

6 −40.0052 −40.0052 

8 −39.2768 −39.2768 

10 −40.9589 −40.9589 

12 −41.1891 −41.1891 

14 −40.8349 −40.8349 

16 −40.828 −40.828 

18 −40.8703 −40.8703 

20 −41.0182 −41.0182 

22 −41.2438 −41.2438 

24 −40.7897 −40.7897 
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Appendix C: Averaged LOS and NLOS real measured data at 𝟐𝟐 𝑮𝑯𝒛 frequency band 

 

Table (C.1): LOS 22 𝐺𝐻𝑧 Averaged Real Measured Data 

Tx-Rx Separation 

Distance (𝒎) 

Received Power (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −20.5883 −34.3158 

4 −25.4706 −28.8864 

6 −28.2274 −28.9466 

8 −30.5564 −31.0983 

10 −30.8748 −32.7576 

12 −31.5676 −33.0946 

14 −33.0764 −33.9076 

16 −32.9663 −35.6658 

18 −32.8518 −33.5877 

20 −33.6026 −37.0341 

22 −36.9381 −34.2235 

24 −38.7736 −32.2008 
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Table (C.2): NLOS 𝟐𝟐 𝑮𝑯𝒛 Averaged Real Measured Data at 𝟑𝟎° and 𝟔𝟎°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟑𝟎° AoA (dBm) Received Power at 𝟔𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −32.6456 −32.6456 −34.8072 −34.8072 

4 −34.5147 −34.5147 −35.7021 −35.7021 

6 −35.7216 −35.7216 −36.713 −36.713 

8 −36.2883 −36.2883 −36.7372 −36.7372 

10 −36.3463 −36.3463 −37.0305 −37.0305 

12 −36.2224 −36.2224 −37.0168 −37.0168 

14 −35.9854 −35.9854 −37.1399 −37.1399 

16 −36.9318 −36.9318 −37.0905 −37.0905 

18 −36.8798 −36.8798 −36.8996 −36.8996 

20 −36.5678 −36.5678 −37.1595 −37.1595 

22 −37.0281 −37.0281 −37.095 −37.095 

24 −36.9846 −36.9846 −37.1348 −37.1348 
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Table (C.3): NLOS 𝟐𝟐 𝑮𝑯𝒛 Averaged Real Measured Data at 𝟗𝟎° and 𝟏𝟐𝟎°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟗𝟎° AoA (dBm) Received Power at 𝟏𝟐𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −36.308 −36.308 −36.6666 −36.6666 

4 −36.7196 −36.7196 −36.812 −36.812 

6 −37.0411 −37.0411 −37.1717 −37.1717 

8 −37.0575 −37.0575 −37.0418 −37.0418 

10 −37.1566 −37.1566 −37.1693 −37.1693 

12 −37.1193 −37.1193 −37.0319 −37.0319 

14 −37.1709 −37.1709 −37.1233 −37.1233 

16 −37.1016 −37.1016 −37.1411 −37.1411 

18 −37.0692 −37.0692 −37.0729 −37.0729 

20 −37.1505 −37.1505 −37.1802 −37.1802 

22 −37.1408 −37.1408 −37.0323 −37.0323 

24 −37.2454 −37.2454 −37.1466 −37.1466 
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Table (C.4): NLOS 𝟐𝟐 𝑮𝑯𝒛 Averaged Real Measured Data at 𝟏𝟓𝟎° and 𝟏𝟖𝟎°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟏𝟓𝟎° AoA (dBm) Received Power at 𝟏𝟖𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −37.0483 −37.0483 −36.9013 −36.9013 

4 −36.8506 −36.8506 −37.1494 −37.1494 

6 −37.1392 −37.1392 −36.677 −36.677 

8 −37.0764 −37.0764 −36.8977 −36.8977 

10 −37.1955 −37.1955 −36.9753 −36.9753 

12 −37.1243 −37.1243 −36.7631 −36.7631 

14 −37.1134 −37.1134 −36.575 −36.575 

16 −37.0899 −37.0899 −36.993 −36.993 

18 −37.0796 −37.0796 −36.8423 −36.8423 

20 −37.0437 −37.0437 −36.8407 −36.8407 

22 −37.1217 −37.1217 −36.9036 −36.9036 

24 −37.0826 −37.0826 −36.6772 −36.6772 
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Table (C.5): NLOS 𝟐𝟐 𝑮𝑯𝒛 Averaged Real Measured Data at 𝟐𝟏𝟎° and 𝟐𝟒𝟎°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟐𝟏𝟎° AoA (dBm) Received Power at 𝟐𝟒𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −36.8729 −36.8729 −36.7995 −36.7995 

4 −36.8797 −36.8797 −37.1478 −37.1478 

6 −36.9942 −36.9942 −37.1737 −37.1737 

8 −37.1636 −37.1636 −37.134 −37.134 

10 −37.1578 −37.1578 −37.1491 −37.1491 

12 −37.1174 −37.1174 −37.0926 −37.0926 

14 −37.0289 −37.0289 −37.0891 −37.0891 

16 −37.1069 −37.1069 −37.1432 −37.1432 

18 −37.078 −37.078 −37.1426 −37.1426 

20 −37.03 −37.03 −37.1092 −37.1092 

22 −37.0536 −37.0536 −37.1148 −37.1148 

24 −37.1719 −37.1719 −37.1077 −37.1077 
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Table (C.6): NLOS 𝟐𝟐 𝑮𝑯𝒛 Averaged Real Measured Data at 𝟐𝟕𝟎° and 𝟑𝟎𝟎°AoAs 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟐𝟕𝟎° AoA (dBm) Received Power at 𝟑𝟎𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −36.7863 −36.7863 −35.2777 −35.2777 

4 −37.1623 −37.1623 −35.9093 −35.9093 

6 −37.1564 −37.1564 −36.7163 −36.7163 

8 −37.0198 −37.0198 −36.644 −36.644 

10 −37.1072 −37.1072 −36.8838 −36.8838 

12 −37.1498 −37.1498 −36.8681 −36.8681 

14 −37.0156 −37.0156 −36.9396 −36.9396 

16 −37.1263 −37.1263 −37.1297 −37.1297 

18 −37.0454 −37.0454 −36.8425 −36.8425 

20 −37.0771 −37.0771 −37.069 −37.069 

22 −37.1447 −37.1447 −37.1474 −37.1474 

24 −37.1294 −37.1294 −37.0182 −37.0182 
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Table (C.7): NLOS 𝟐𝟐 𝑮𝑯𝒛 Averaged Real Measured Data at 𝟑𝟑𝟎°AoA 

Tx-Rx Separation 

Distance (𝒎) 

Received Power at 𝟑𝟑𝟎° AoA (dBm) 

Tx Antenna 

height (𝟏. 𝟔 𝒎) 

Tx Antenna 

height (𝟐. 𝟑 𝒎) 

2 −32.6274 −32.6274 

4 −34.9093 −34.9093 

6 −36.0243 −36.0243 

8 −36.2 −36.2 

10 −36.6493 −36.6493 

12 −36.365 −36.365 

14 −36.8624 −36.8624 

16 −36.9767 −36.9767 

18 −36.4959 −36.4959 

20 −37.0468 −37.0468 

22 −36.7535 −36.7535 

24 −36.7015 −36.7015 

 




