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ABSTRACT

The present doctoral dissertation focuses on representative-based processing proper for a big set

of high-dimensional data. Compression and subset selection are considered as two main effective

methods for representing a big set of data by a much smaller set of variables. Compressive sensing,

matrix singular value decomposition, and tensor decomposition are employed as powerful mathe-

matical tools to analyze the original data in terms of their representatives. Spectrum sensing is an

important application of the developed theoretical analysis. In a cognitive radio network (CRN),

primary users (PUs) coexist with secondary users (SUs). However, the secondary network aims to

characterize PUs in order to establish a communication link without any interference with the pri-

mary network. A dynamic and efficient spectrum sensing framework is studied based on advanced

algebraic tools. In a CRN, collecting information from all SUs is energy inefficient and computa-

tionally complex. A novel sensor selection algorithm based on the compressed sensing theory is

devised which is compatible with the algebraic nature of the spectrum sensing problem. Moreover,

some state-of-the-art applications in machine learning are investigated. One of the main contri-

butions of the present dissertation is the introduction a versatile data selection algorithm which

is referred as spectrum pursuit (SP). The goal of SP is to reduce a big set of data to a small-size

subset such that the linear span of the selected data is as close as possible to all data. SP enjoys

a low-complexity procedure which enables SP to be extended to more complex selection mod-

els. The kernel spectrum pursuit (KSP) facilitates selection from a union of non-linear manifolds.

This dissertation investigates a number of important applications in machine learning including

fast training of generative adversarial networks (GANs), graph-based label propagation, few shot

classification, and fast subspace clustering.
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CHAPTER 1: INTRODUCTION

Complex systems containing very large numbers of data-gathering devices have been developed in

the last decade. The amount of gathered data in data-driven systems is expanding in an astonish-

ing rate in the recent years. International Data Corporation (IDC) predicts the global data volume

will grow to the order of (∼ 1023 bytes) by 2025 [12]. However, dealing with a large number

of sources of data is challenging especially when each data point belongs to a high-dimensional

measurement. The emerging research area, big data, aims to address challenges of such complex

systems. Representing the underlying structure of data by a succinct format is a crucial issue in

the big data literature. For instance, dimension reduction techniques, compression, and different

clustering-based approaches aim to extract a concise representation of data. A robust representa-

tion should be informative enough for reconstructing the original data given the representatives.

Two popular representations are considered in this dissertation, 1) compression and 2) selection.

Chapter 2 reviews basic data representation methods.

Compressive sensing (CS) has been a popular sampling scheme in the last decade. In CS, a com-

pressed replica of the unknown variables is sensed via a measurement matrix. The unknown

variables are organized in a vector and the sensed measurements can be interpreted as a low-

dimensional representation of the unknown vector. Some efforts are conducted to sense an un-

known matrix under the context of matrix sensing. In this dissertation multi-way sensing for re-

construction of a multi-way tensor given a compressed replica of the tensor of interest is studied.

The proposed approach is employed for dynamic spectrum sensing in presence of collaborative

sensor networks that are communicating over multi-band frequencies over time. Spatial, spectral

and temporal occupancy patterns of the network are projected in entries of an unknown tensor.

However, a compressed replica of the tensor of interest is available to sense. Since there exist

redundancies in the original tensor, the compressed replica contains sufficient information in order
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to reconstruct the original tensor. In Chapter 3 a tensor-based compressive sensing solution for

spectrum sensing is presented.

Removing redundant sensors is an alternative for compression in order to exploit the underlying re-

dundancy in sensor networks. This approach can be conducted by sensor selection. In the present

dissertation, both approaches are studied jointly. In Chapter 4 the problem of E-optimal sensor

selection for compressive sensing-based purposes is presented. Our ultimate goal is to reduce a

big set of equations to a selected set of equations. This selection is conducted such that informa-

tive equations are remained. In other words, the solution of the big systems of equations before

reduction will be as close as possible to that of resulted by the subset of selected equations.

Representatives obtained by compression or algebraic decomposition methods are often not easy to

interpret. Furthermore, obtaining each representative implies processing all data or a large portion

of data. In order to have a straightforward interpretation, it is desired to find the representatives

by selection from data. There are some clustering approaches that select the representatives from

data such as k-medoids clustering [13]. However these clustering methods assign each data to only

one prototype which is the cluster centroid, while in the case of highly structured data only one

prototype from data does not contain sufficient information to capture the underlying structure of

the whole cluster. In this dissertation, it is shown that how we can select a subset of data such that

their linear combination is able to approximate the ensemble of data. Moreover, the linear subspace

spanned by selected data is extended to a non-linear manifold that encompasses the selected data.

Data-driven systems based on data reduction that make the best use of a significantly less amount

of data are of great interest. For example, active learning (AL) [14] aims at addressing informa-

tive sample selection by training a model using a small number of labeled data, evaluating the

trained model, and then querying the labels of selected representatives, which are used later for

training a new model. In this context, preserving the underlying structure of data succinctly by
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representatives is an essential concern. Although each application requires specific considerations,

regardless of the underlying application a versatile cost function for selection can be devised. The

versatile selection problem can be customized in order to be adapted to the target application. Two

main general cost functions are studied in this dissertation. 1) Diversity-based selection and 2)

Representative-based selection. The first track finds a subset of data such that they are as diverse

as possible. The found solution using the second direction provides a subset which does not have

necessarily diverse samples. However, the selected samples are accurate representatives for all

samples including selected and unselected ones.

In some applications such as sensor selection from scattered sensors or sensor placement in an

area, diversity-based selection is desired and there is no advantage to cover unselected sensors

by employing a representative-based selection. On the other hand, in some applications such as

training a machine learning system or video summarization it is essential that selected samples are

suitable representatives from all data including unselected samples.

An example of big data system is wireless sensor networks, where the processing unit has to deal

with an excessively large number of observations acquired by the various sensors. Often there

exist some redundancies within the sensed data and they should be pruned. Sensor selection and

sensor scheduling aim to address this problem. In many applications the sensor selection task is

non-trivial and possibly consists of addressing an NP-hard problem (i.e., there are
(
M
K

)
possibilities

of choosing K distinct sensors out of M available ones). This essentially implies that an optimal

solution cannot be efficiently computed, in particular when the number of sensors becomes ex-

cessively large. A convex relaxation of the original NP-hard problem has been suggested in [15].

The most prominent advantage of this approach over other methods is its practicality, thanks to

many well-established computationally-efficient convex optimization techniques. In addition to

convex relaxation, a sub-modular cost function as the criterion of sensor selection allows us to

take advantage of greedy optimization methods for selecting sensors [16]. The existing studies on
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sensor selection mostly consider heuristic approaches. For example, in [15] the volume of the re-

duced bases is considered. This method is called D-optimality. In addition, A-optimality [17] and

E-optimality [17] are suggested as some other alternative heuristics already introduced in convex

optimization. These heuristics are presented without any specific justification for sensor selection

application. In Chapter 3 we are going to exploit E-optimal criteria more judiciously in favor of

compressed sensing (CS) theoretical guarantees. The proposed approach is employed for dynamic

sensor selection in cognitive radio networks. Moreover, a theoretical investigation is presented for

the performance bound of E-optimal subset selection.

Dimension reduction techniques and clustering-based approaches aim to extract a concise repre-

sentation of data. However, representatives or exemplars obtained by such methods are not helpful

for selection an informative subset. Furthermore, obtaining each representative implies processing

all or a large portion of data. Thus, it is desired to optimally select the representatives from data

samples. There are some clustering approaches that select the representatives from data such as

the k-medoids clustering [13]. These clustering methods assign each data sample to only one pro-

totype which is the cluster center. However, in the case of more structured data only one prototype

from data does not contain sufficient information to capture the underlying structure of the whole

cluster. Randomly selecting K out of M data, while computationally simple, is inefficient in many

cases, since non-informative or redundant instances may be among the selected ones. On the other

hand, the optimal selection of data for a specific task implies solving an NP-hard problem [18]. For

example, finding an optimal subset of K data samples from M to be employed in training a Deep

Learning (DL) network with the best performance requires
(
M
K

)
number of trial and errors, which

is not tractable. It is essential to define a versatile objective function and to develop a method that

efficiently selects the K samples that optimize the objective function. Let us assume the M data

samples are organized as the columns of a matrixA ∈ RN×M . The following is a general purpose

cost function for subset selection, known as column subset selection problem (CSSP), which is an
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open problem [19]:

S∗ = argmin
|S|≤K

‖A− πS(A)‖2
F , (1.1)

where πS is the linear projection operator on the span of K columns of A indicated by set S. This

problem has been shown to be NP hard [18, 20]. Moreover, the cost function is not sub-modular

[21] and greedy algorithms are not efficient to tackle Problem (1.1). Computer scientists and

mathematicians during the last 30 years have proposed many tractable selection algorithms that

guarantee an upper bound for the projection error ‖A−πS(A)‖2
F . These works include algorithms

based on QR decomposition of matrix A with column pivoting (QRCP) [22, 23, 24]; methods

based on volume sampling (VS) [25, 26, 27] and matrix subset selection algorithms [19, 28, 29].

However, the guaranteed upper bounds are very loose and the corresponding selection results are

far from the actual minimizer of CSSP in practice. Interested readers are referred to [30, 28] and

Sec. 2.1 in [31] for detailed discussions. For example, in VS it is shown that the projection error

on the span of K selected samples is guaranteed to be less than K + 1 times of the projection error

on the span of the K first left singular vectors; which is too loose for a large K. Recently, it was

shown that VS performs even worse than random selection in some scenarios [32]. Moreover, some

efforts have been made using convex relaxation and regularization. Fine tuning of these methods

is not straightforward [6, 4, 33]. Moreover their cubical complexity is an obstacle to employ these

methods for diverse applications.

In this work a new fast and accurate solution for Problem (1.1) is proposed with a linear time

complexity. This algorithm is referred as spectrum pursuit (SP) which is presented in Chapter 5.

Theoretical performance bounds of SP are also investigated. It is shown that the proposed approach

reaches the best performance of subset selection in two asymptotic cases. SP has no parameter to be

fine tuned and this desirable property makes it problem-independent. The simplicity of SP enables
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us to extend the underlying linear model to more complex models such as nonlinear manifolds and

graph-based models. The nonlinear extension of SP is introduced as kernel-SP (KSP) in Chapter

5. The superiority of the proposed algorithms is demonstrated in a wide range of applications.

In Chapter 6 some interesting applications of SP and KSP algorithms are presented. These appli-

cations include 1) Training GAN using reduced data, 2) Fast deep neural networks training, 3) fast

subspace clustering, 4) few shot learning, 5) graph central node selection, 6) semi-supervised label

propagation, and 7) open-set identification.

Chapter 7 presents a novel paradigm for multi-way selection from high-dimensional data struc-

tures. Joint selection of columns and rows from a matrix is a simple example of multi-way selec-

tion. The problem formulation and its practical solution are presented in addition to few interesting

applications.
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CHAPTER 2: BACKGROUND

The underlying investigated problems in the present dissertation are introduced in this section.

First the tensor decomposition problem is presented. then spectrum sensing problem is introduced

and a solution using low-dimensional representation is explained. The problem of sensor selection

in reviewed and two main selection strategies are studied.

Notations: Throughout this dissertation, vectors, matrices, and tensors are denoted by bold low-

ercase, bold uppercase, and bold underlined uppercase letters, respectively. The positive orthant

in RP is denoted by RP
+ and it is defined as {x|xp ≥ 0,∀p = 1, · · · , P}, in which xp is the pth

element of x. If T ∈ RP×F×T then (T ):,f,t is a vector of length P , also known as a mode-1 fiber of

T , defined by fixing all the indices but one. Similarly, we have mode-2 and mode-3 fibers. T 1, T 2,

and T 3 are unfolded matrices whose columns are fibers of the first, second and third mode of T ,

respectively. The Khatri-Rao product is denoted by �. Moreover, ◦ denotes the outer product, i.e.,

entries of T = a ◦ b ◦ c are calculated as tpft = apbfct. The outer product of two non-zero vectors

is a rank-1 matrix, similarly the outer product of three non-zero vectors is a rank-1 tensor. The

symbol ∗ denotes the element-wise (Hadamard) product. The n-mode product of a tensor,X , with

a proper sized transformation matrix U is a tensor and is denoted by X ×n U . It transfers each

fiber of the nth mode of the tensor to the corresponding fiber in the output tensor. Mathematically,

Y = X ×n U ↔ Y n = UXn for n = 1, 2, 3,
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Singular Value Decomposition

Throughout the present dissertation, we will see how we can decompose a high-dimensional and

complicate-structured array into a set of low-dimensional and simple-structured components. The

main goal behind these decomposition techniques is one simple idea. The number of unknown

variables can be much lower by the low-dimensional representation. Thus, in presence of lim-

ited observations for estimating a set of unknown variables, a low-dimensional representation is a

clever substitution in order to get a robust solution. There are several methods for decomposition of

a matrix including singular value decomposition (SVD), QR decomposition, CUR decomposition

and lower-upper decomposition. Here, we introduces SVD as the main tool for matrix decompo-

sition which has three main favorable properties. (i) Any matrix with any size has a unique SVD.

(ii) Its computation is linear w.r.t. size and it is proportional to the number of simple-structured

components. (iii) It can be implemented in a recursive manner since components are orthogonal

to each other. For example, finding two optimal components is equivalent to adding 1 optimal

component to the solution for finding the best optimal component.

SVD has a tight relation with Eigen decomposition. However, Eigen decomposition is defined

only for squared matrices. Assume matrixX which is squared is written asQΛQ−1. Columns of

matrixQ are known as eigenvectors ofX . Diagonal entries of matrix Λ are known as eigenvalues.

Since Q−1 cancels the scale of each eigenvector, without loss of generality we can assume that

eigenvectors are normal. If matrix X is symmetric, eigenvectors will be orthogonal to each other.

Then, Q−1 will be equal to QT . Now, we are able to define SVD of a general matrix X with any

size as follows,

X = UΣV T . (2.1)

Here, the columns of matrix U are eigenvectors of XXT which also are referred as left singular
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vectors ofX . Similarly, the columns of matrixV are eigenvectors ofXTX which also are referred

as right singular vectors of X . It is easy to show that non-zero eigenvalues of XTX are equal to

those of XXT . Diagonal elements of matrix Σ are square root of eigenvalues of XTX which

also called singular values. Since XTX is a positive-definite matrix, all of its eigenvalues are

non-negative. Thus, all of singular values also are real and non-negative. SVD plays an important

role in our proposed algorithms in practical applications of the present dissertation. The extension

of SVD for higher dimensional tensors is discussed in the next section.

Span of a set of vectors is defined as the subspace that can be represented as a linear combination of

that set of vectors. Let us split columns of U into two separate matrices as U ‖ and U⊥. Columns

corresponding to non-zero singular values are collected in U ‖ and that columns corresponding to

zero singular values are collected in U⊥. Similarly, let us define V ‖ and V ⊥ by splitting columns

of V . All columns of a matrix are within the span ofU ‖ in its SVD. Similarly, all rows of a matrix

are within the span of V ‖ in its SVD. The span ofU⊥ is referred as the null-space from the column

perspective and the span of V ⊥ is the null-space from row perspective. In other words, if we pick

a vector from span of U⊥ or span of V ⊥, it will be orthogonal to all columns or all rows of the

matrix, respectively.

Tensor Decomposition

Tensor-based methods have been employed in communications and coding frameworks since Sidiropou-

los et. al. introduced them for blind code-division multiple access (CDMA) [34]. Recently, more

advanced coding methods in communication systems are developed based on the tensor decompo-

sition theory [35, 36, 37]. Moreover tensors are employed for massive MIMO channel estimation

in millimeter wave scenarios [38]. The common idea of all tensor-based coding methods is to

perform a joint blind symbol and channel estimation at the receiver, which is feasible due to mild
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conditions for uniqueness of tensor CP decomposition [39].

Utilizing another signal processing model on top of the CP tensor model has also been studied

extensively. For example, a joint problem of sensing and sparsifying for tensor compressive sens-

ing is proposed in [40] and a joint encryption and compression method is proposed for medical

image compression in [41]. In this dissertation, joint factorization of the sensed tensor to a latent

tensor and a non-negative transformation matrix is studied. This problem is a generalization of

three-way compressed sensing [42], when the transformation (sensing matrix) is not known and is

not necessarily a compression matrix.

Our proposed tensor-based approach is mainly based on the CP decomposition [43], which factor-

izes a tensor into a sum of rank-one tensors. For example, a three-way tensor X ∈ RP×F×T of

rank R can be decomposed as

X =
R∑
r=1

aXr ◦ bXr ◦ cXr = [[AX ,BX ,CX ]], (2.2)

where aXr ∈ RP , bXr ∈ RF and cXr ∈ RT are factor vectors of the rth rank-one component. The

factor matrices refer to the collection of factor vectors from the rank-one components, i.e., AX =

[aX1 aX2 . . . aXR ] and likewise for BX and CX . The kruskal-rank, which also is referred to as k-

rank, is a well-known criterion for deriving conditions on the uniqueness of tensor decomposition.

Figure 2.1 shows a 2 × 2 × 2 tensor and provides a toy example that gives us an idea on the

advantage of tensors over matrices. This tensor can be regarded as two consecutive 2 × 2 im-

ages in time in which a pixel is moving from location (1,1) to (2,2). Rank of this tensor is 2.1

Decomposition to summation of rank one tensors is able to bring us 2 components. However, im-

1Similar to matrices, rank function is defined for tensors as the minimum number of rank-1 tensors that reconstructs
the tensor. However, characteristics of tensor rank are quite different. Tensor rank varies based on the assumed
structure on CP factors. Generally, rank of a tensor refers to unconstrained rank in which no structure is assumed for
the factors, however, rank of a matrix refers to the spectral decomposition in which orthogonality is assumed implicitly.
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Figure 2.1: An example illustrating the advantage of tensor vs. matrix decomposition.

posing a proper structure increases the minimum number of required components. For example

sparsity on CP factors come up with 3 distinguished shown tensors. Matricization of the given

data brings us a 4 × 2 matrix. Clearly, the maximum rank is 2 and we are able to extract two

rank one matrices. These rank one matrices are reshaped to their original 3-D locations in the

tensor. As shown, the extracted rank one components from the corresponding matricization of

the tensor are difficult to interpret while the structured rank one tensors extracted by the tensor

decomposition can be interpreted simply to a background (all-one tensor) and two objects. In the

simple example of Figure 2.1, the given tensor can be decomposed to the following three factors,[
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]
◦
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◦
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.

Advantages of tensor-based processing over matrix-based processing:

• Multi-dimensional structures of data can be discovered by exploiting the tensor representa-

tion. Such structures cannot be easily exploited in matrix-based data analysis.
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• As the inherent structures of data is preserved in tensor representation, we can easily exploit

prior knowledge and the constraints imposed by the dynamics of the problem to achieve

more accurate analysis in a concise mathematical formulation.

• Uniqueness of CP decomposition for multi-dimensional tensors is guaranteed under milder

conditions as the dimension of tensor increases.

Spectrum Sensing

Consider an area of interest which contains up to P active PUs. We have deployed N > P

spectrum sensors in the area to measure the power of received signals at different frequency bands.

The channel gain between the pth PU and the nth SU is denoted by γnp. The bandwidth is broken

into F frequency channels. For the sake of conciseness, assumptions for channel gains and signals

of sources are borrowed from [44]. The received PSD at SU/sensor n at time slot t and frequency

channel f , yn(t, f), can be written as follows under a set of mild conditions [44]2,

yn(t, f) =
P∑
p=1

γnpxp(t, f) + zn(t, f) (2.3)

= γTnx(t, f) + zn(t, f), t=1, · · · , T and f= 1, · · · , F.

In this equation γn = [γn1 γn2 . . . γnP ]T is the set of channel gains between all PUs and the

nth sensor. The received noise at nth sensor is represented by zn(t, f). Moreover, x(t, f) =

[x1(t, f) · · · xP (t, f)]T is the propagating power from each of P active PUs at time t and fre-

quency bin f . Due to the non-negative nature of sensed power spectrum data, all the variables are

considered to be non-negative. Let Γ = [γnp] ∈ RN×P denote the collection of channel gains be-

2Please note that duration of each time slot is much more than sampling time. For example, each time slot consists
of 256 samples that enable us to obtain the spectrum for each time slot. Moreover, transmitted signals of PUs are
assumed to be independent of each other.
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tween locations of active PUs and those of sensors. Equation (2.3) can be cast in the tensor format

as

Y = X ×1 Γ +Z. (2.4)

The measured spectrum data is presented by the tensor Y and it is modeled by a mod-1 product

between a non-negative tensor and a non-negative matrix plus the noise tensor, Z. Since location

of SUs and PUs are unknown, X and Γ must be estimated jointly. In practice, only tensor Y is

given and the integer variable P is assumed as the maximum number of PUs in the underlying

model. It is shown that CP factors of Y and CP factors ofX are related in the presence of no noise

(Z = 0). In this case, CP factors corresponding to the second and third ways of these two tensors

are equal. Further, the first factor matrix of Y , denoted byAY , is equal to ΓAX [45]3. Taking the

noise tensor into the account results in different factor matrices for tensor Y and tensor X ×1 Γ.

However, it is shown that CP decomposition is robust against additive noise, i.e., if the energy of

additive noise is bounded, the difference of CP factors of two tensors is also bounded [46].

Fig. 2.2 shows a simple CRN where 7 SUs sense the propagated spectrum from 3 PUs. In this

figure, matrix Γ corresponds to a 7 × 3 matrix. Unique identification of both X and Γ is not a

trivial task. However, an estimated local optimal solution for the joint optimization (2.4) can be

employed to recover the missing spectrum and de-noise the sensed spectrum in tensor Y .

The following problem aims to find the CP factors of the latent tensor, X , and the non-negative

3In this section we deal with two main tensors, Y , and X . CP decomposition of these tensors are written as
[[AY ,BY ,CY ]], and [[AX ,BX ,CX ]], respectively. In the presence of no noise, AY = ΓAX , BY = BX , and
CY = CX .
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Figure 2.2: A simple setup example for a cognitive radio network.

channel gain matrix, Γ,

(ÂX , B̂X , ĈX , Γ̂) = argmin
aX
r ,b

X
r ,c

X
r ,Γ

‖Y −X ×1 Γ‖2
F

subject to: X =
R∑
r=1

aXr ◦ bXr ◦ cXr

AX ≥ 0, BX ≥ 0 and CX ≥ 0

Γ ≥ 0.

(2.5)

In this problem, Γ is an N × P matrix where P < N . The low-rank approximation of the

sensed tensor, denoted by Y L, can be estimated using the underlying low-rank model, i.e., Y L =

[[Γ̂ÂX , B̂X , ĈX ]]. Entries of tensor Y L follow a low-rank pattern while tensor Y corresponds to

a high-rank tensor due to noisy measurements. This problem provides a unique solution under

a set of conditions as will be discussed in the appendix. However, any stationary point for this

problem provides a reconstructive model which can be employed for missing spectrum recovery

and spectrum denoising. In other words, the set of CP factors and the channel gain matrix are a

low-dimensional representation for Y . Contamination of tensor Y by noise and missing entries

does not affect the low-dimensional representation.
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Column Subset Selection Problem

Let a1,a2, . . . ,aM ∈ RN be M given data points of dimension N . We define an N ×M matrix,

A, such that am is the mth column of A, for m = 1, 2, . . . ,M . The goal is to reduce this matrix

into an N × K matrix, AR, based on an optimality metric. In this section, we introduce some

related work on matrix subset selection and data selection.

Selection Based on Diversity

Consider a large system of equations y = ATw, which can be interpreted as a simple linear

classifier in which y is the vector of labels, A represents the training data and w is the classifier

weights. An optimal sense for data selection is to reduce this system of equations to a smaller

system, yR = AT
Rŵ, such that the reduced subsystem estimates the same classifier as the original

system, i.e., the estimation error of ŵ is minimized [47] over an assumed distribution for y. A

typical selection objective is to minimize ‖w − ŵ‖2. This criterion is referred to as the A-optimal

design in the literature of optimization, which is mathematically equivalent to the following prob-

lem [48],

ẑ =argmin
z

tr(
M∑
m=1

zmama
T
m)

−1

, (2.6)

subject to ‖z‖0 = K and z ∈ {0, 1}M ,

where z = [z1 z2 . . . zM ]T and zm indicates the contribution of the mth sample. According to

the constraints only K samples can be selected in the reduced system. This is an NP-hard problem

which can be solved via convex relaxation with computational complexity of O(M3) [49].

However, there are other criteria that have some interesting properties. For example D-optimal
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design optimizes the determinant of a reduced matrix [49]. There are several other efforts in

this area [9, 27, 26, 50, 51]. Inspired by the D-optimal design, volume sampling (VS), which

has received lots of attention, considers a selection probability for each subset of data, which

is proportional to the determinant (volume) of the reduced matrix [26, 52, 47]. The VS theory

expresses that if T ⊂ {1, 2, . . . ,M} is any subset with cardinality K, chosen with probability

proportional to det(AT
TAT), then4,

E{‖A− πT(A)‖2F } ≤ (K + 1)‖A−AK‖2F , (2.7)

where πT(A) is a matrix representing the projection of columns of A onto the span of selected

columns indexed by T. E indicates expectation operator w.r.t. all the combinatorial selection of

K rows of A out of M . AK is the best rank-K approximation of A, that can be obtained by

singular value decomposition and ‖.‖2
F is the Frobenius norm. VS is not a deterministic selection

algorithm, as it gives a probability of selection for any subset of samples, and for which only a

loose upper bound for the expectation of projection error is guaranteed. In contrast, in the present

work a deterministic algorithm is proposed based on direct minimization of projection error using

a new optimization mechanism.

Diversity-based selection is very sensitive to outliers and in some applications these methods are

employed for outlier detection [53, 54]. A set of outlier samples from a dataset has probably more

diverse samples rather than a randomly sampled subset. Thus, diversity-based selection methods

should consider outliers properly. Recently, an exemplar-based subspace clustering method is

proposed using selection [5]. Their employed selection algorithm is based on selecting farthest

sample from previously selected samples and infusing sparsity on the metric of selection. However,

our proposed selection algorithm does not necessarily provide diverse samples far from each other.

4AT is the selected columns ofA indexed by set T.
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Representative Selection

A method for sampling from a set of data is proposed by Elhamifar et. al. based on sparse

modeling representative selection (SMRS) [6]. Their proposed cost function for data selection is

the error of projecting all the data onto the subspace spanned by the selected data. Mathemati-

cally, the optimization problem in [6] can be written as (5.1) which is an NP-hard problem and the

proposed method in [6] tackles this problem via convex relaxation. However, there is no guaran-

tee that convex relaxation provides the best approximation for an NP-hard problem. Furthermore,

such methods that try to solve the selection problem via convex programming are usually compu-

tationally too intensive for large datasets [6, 4, 33, 55]. In this dissertation, a new fast algorithm

for solving Problem (5.4) is proposed.

Dissimilarity-based Sparse Subset Selection (DS3) algorithm selects a subset of data based on

pairwise distance of all data to some target points [4]. DS3 considers a source dataset and its goal

is to encode the target data according to pairwise dissimilarity between each sample of source

and target datasets. This algorithm can be interpreted as the non-linear implementation of SMRS

algorithm [4].
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CHAPTER 3: TENSOR-BASED SPECTRUM CARTOGRAPHY

Spectrum cartography is a promising solution to address today’s spectrum deficiency caused by the

recent spike in demand for wireless technologies [56, 57, 58]. The licensed holders of the spectrum

(a.k.a. primary users or PUs) often under-utilize this valuable resource [59]. It is desired to allow

unlicensed or secondary users (SUs) to coexist with PUs. SUs are allowed to access the spectrum,

given that they do not interfere with the licensed users. This necessitates a cognitive radio system

to sense the spectrum usage and accordingly adapt its spectrum utilization [60, 61].

The spectrum sensing problem is approached using numerous methods [62]. These methods are

ranged from per-bin spectrum sensing [63] to wide-band sensing [64]; non-cooperative sensing

[65] to cooperative sensing [44]; centralized [66] to distributed [67]; and directional sensing using

phased arrays [68] to omni-directional energy detectors. Our work focuses on cooperative central-

ized spectrum sensing using a set of simple energy detectors. Cooperative detection of spectrum

opportunities requires collecting sensed measurements in a fusion center. However, dealing with a

large amount of spectrum measurements is not a trivial task. Efficient representation using high-

dimensional matrices/tensors is an attractive approach for analysis of sensed measurements. In

this way, structured factorization of the received spectrum enables us to capture the underlying

spectrum occupancy patterns [69, 70, 71]. In the present work, we model the propagated power

from the primary transmitters at different locations, time slots, and frequency channels as a multi-

dimensional tensor, which is referred to as the power tensor.

The radio frequency (RF) cartography problem leads to find the propagating power maps across

a network at any frequency channel. This is an ill-posed problem, and therefore it is difficult to

infer unique and meaningful interpretation for the estimated propagating power maps. To alleviate

this issue, we consider the CANDECOMP/PARAFAC (CP) [72] model for the latent tensor and
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we impose smoothness constraint for the interpolated spatial maps. The CP model represents a

D-dimensional tensor via D factor matrices. Each factor matrix contains a set of bases that spans

one way of the tensor. Here, we deal with 3-way tensors, i.e., D = 3. In the proposed framework,

the CP factors capture the patterns of the PUs’ activities over different dimensions of time, space,

and frequency. We propose the tensor-based radio spectrum cartography (TRASC) algorithm to

address the joint problem of tensor decomposition and map interpolation. CP decomposition [72]

and Tucker decomposition [73] are two well-known tensor decomposition methods, which can be

interpreted as two extensions of matrix singular value decomposition (SVD). In this section, we

show that the CP model can fit to the spectrum cartography application.

It is worth noting that for simplicity, we assume a centralized fusion center. Moreover, we assume

that our sensors are energy detectors with omni-directional antennas. It is straightforward to ex-

tend it to a distributed framework and/or scenarios in which sensors are equipped with directional

antennas as presented in [74] for the matrix-based formulation. There are so many efforts form

matrix-based data completion [75, 76, 77]. Our work is the extension for tensor completion. The

main goals of the study in this section are summarized as follows:

• Dynamic spectrum cartography is modeled by a low-rank tensor and the relationship between

the imposed rank and the dynamics of network is studied,

• A novel algorithm, referred to as TRASC is introduced that performs spatially smooth tensor

completion using tensor decomposition and spatial interpolation.

• The applicability of TRASC for the spectrum cartography application, where propagation

parameters such as the location of the transmitters, and fading characteristics are unknown,

is demonstrated.

per.
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Related Work and Preliminaries

Tensor decomposition and multi-way modeling are old problems in mathematics [78]. However,

the first practical applications of tensors dates back to 1981 in Chemometrics [79]. Since then

tensors have found diverse applications in signal processing [80], computer vision [81], and graph

analysis [82].

Tensor-based methods have been employed in communications and coding frameworks since Sidiropou-

los et. al. introduced them for blind code-division multiple access (CDMA) [34]. Recently, more

advanced coding methods in communication systems are developed based on the tensor decompo-

sition theory [35, 36, 37]. Moreover tensors are employed for massive MIMO channel estimation

in millimeter wave scenarios [38]. The common idea of all tensor-based coding methods is to

perform a joint blind symbol and channel estimation at the receiver, which is feasible due to mild

conditions for uniqueness of tensor CP decomposition [39].

Recently, a tensor-based formulation of spectrum sensing has been proposed [83, 84], in which the

received signals are modeled as a tensor. Since the received complex signals contain phase spectral

information via Fourier transform, their formulation requires the sensors to be synchronized and

the channel to be multipath-free. Moreover, it is assumed that the underlying signals are stationary

(the network is static). In contrast, in our proposed framework, our formulation is based on the

power spectrum density (PSD) of the received signals; hence, the sensors are not required to be

synchronized. Moreover, as opposed to [84], we consider the fading and multipath effects using

spatial maps which can be interpreted as a linear transformation. Fu et. al. proposed a power

spectra separation scheme which does not need synchronization [71]. Moreover, they assume that

the transmitted signals from sources are stationary over time. Thus, time variable is eliminated by

taking the PSD from received signals of sensors. In contrast, our proposed scheme assumes that
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the network is dynamic and the received signals at sensors are not stationary. We assume received

signals can be treated as piece-wise stationary processes. Similar to the setup in [44], where a

coherent block is considered, we define time slots such that dynamics of the network are assumed

constant during a time slot and sufficient samples are sensed in order to estimate a reliable PSD

for each time slot. By concatenation of PSD measurements from different sensors over time a

three-way tensor can be constructed. In [85], a tensor-based detection algorithm is proposed for a

receiver equipped with multiple antennas for non-cooperative spectrum sensing. However, in the

present work omni-directional antennas are considered in a cooperative setup. In the presence of a

large amount of training data, machine learning techniques are proposed to estimate opportunities

for communication [86, 87]. Our proposed work focuses on an efficient mathematical model for

model-based spectrum sensing in a cognitive radio network (CRN).

In the most recent work by Zhang et. al, block-term tensor decomposition (BTD) is considered

to model the propagation using a set of low-rank matrices [1]. However, they acknowledge that

low-rank assumption does not take the spatial details of propagation into the account. To solve

this issue, they propose to employ a 2D interpolation as a post-processing step after tensor de-

composition in order to capture more details which are eliminated after low-rank assumption. We

have demonstrated that their main gain comes from interpolation not BTD. We show that the well-

known CP decomposition suffices for modeling cartography problem while spatial CP factors are

obtained through a 2D interpolation. In other words, we demonstrate that the joint problem of

tensor decomposition and interpolation is a powerful framework for cartography. Next, a short

introduction to CP decomposition and spline-based interpolation is presented.

21



=

𝒂1
𝑿

𝒃1
𝑿

𝒄1
𝑋

+  …  +

𝒂𝑅
𝑿

𝒃𝑅
𝑿

𝒄𝑅
𝑿

𝑿

Figure 3.1: Schematic of CP decomposition to summation of rank-one tensors.

CP Decomposition

Our proposed tensor-based approach is mainly based on the CP decomposition [43], which factor-

izes a tensor into a sum of rank-one tensors. For example, a three-way tensor X ∈ RP×F×T of

rank R can be decomposed as

X =
R∑
r=1

aXr ◦ bXr ◦ cXr = [[AX ,BX ,CX ]], (3.1)

where aXr ∈ RP , bXr ∈ RF and cXr ∈ RT are factor vectors of the rth rank-one component

(Fig. 3.1). The factor matrices refer to the collection of factor vectors from the rank-one com-

ponents, i.e., AX = [aX1 aX2 . . . aXR ] and likewise for BX and CX . The kruskal-rank, also

referred to as k-rank, is a well-known criterion for deriving conditions on the uniqueness of tensor

decomposition.

The tensor CP rank may be referred to as unconstrained rank because there is no additional con-

straint on the factors aXr , bXr and cXr . On the other hand, there is the constrained or structured

rank in which the factors are restricted to be within a specific set [43]. For example, non-negative-

rank and symmetric-rank are obtained by imposing nonnegativity and symmetry constraints on the

factors, respectively.

Due to corruption by noise, typical tensors are not low rank and low-rank approximation should be

employed in order to extract a set of meaningful components. However, low-rank approximation
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of tensors is an ill-posed problem. This is because the set of tensors with the rank of at most R is

not a closed set and optimization algorithms for finding CP factors result in an infimum solution

which is not feasible [88]. There are some efforts for approximating rank with other functions

such as nuclear norm1 [90]. In contrast to the matrix rank minimization, tensor rank minimization

cannot be relaxed easily using nuclear norm because the calculation of tensor nuclear norm is an

NP-hard problem [90].

Alternating least squares (ALS) is a well-known method for finding the CP factors [91] of a tensor

X . In this approach, factors are initialized randomly at the beginning and then updated iteratively.

Spline-based Surface Interpolation

Spectrum map of an area contains spatial correlation over neighboring locations. Our proposed

framework estimates a set of principal incomplete spectrum maps such that the actual sensed data

is a linear combination of them. The principal incomplete maps are estimated using CP decom-

position. Interpolation of the principal incomplete maps (spatial CP factors) is the enabling step

toward estimating the actual spectrum map for any arbitrary location. Please note that the contri-

bution of each principal map can be estimated using CP decomposition and the same contribution

coefficients are applied for reconstructing the full spectrum map using the interpolated principal

maps. In the present work, thin plate splines (TPS) is employed for interpolating the spatial incom-

plete maps [92]. TPS is proposed for modeling climate data originally. However, it is an efficient

model for capturing other kinds of spatial dependencies including spectrum cartography [92].

Assume we are given a set of locations (zn, wn) and their corresponding value yn. The problem of

surface interpolation can be cast as finding function f : R2 7→ R such that f(zn, wn) is as close as

possible to yn and at the same time a desirable property is satisfied for function f . Specifically, in

1Nuclear norm is a well-known function to surrogate rank of matrices [89].
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the TPS method a measure for smoothness of f is employed as follows [93],

If =

∫ ∫
(
∂2f

∂z2
+ 2

∂2f

∂z∂w
+
∂2f

∂w2
) dz dw. (3.2)

The coefficient If is called the bending energy of f . Function f is modeled by summation of n

terms given by

f(z, w) =
∑
i

λir
α
i log(ri), (3.3)

where,

ri =
√

(z − zi)2 + (w − wi)2. (3.4)

Equation (4.17) describes the kernel of interpolation. Parameter α is the path-loss coefficient which

is set to 2 for power spectrum propagation in free space [94]. The goal of interpolation is to find

function f and it can be expressed mathematically as follows,

argmin
f

If s.t. yn = f(zn, wn).

Finding an optimized interpolating function is equivalent to estimating λi’s according to (4.17).

Here, for simplicity of notation the minimization is shown w.r.t. function f .

In the next section, the thin plate spline interpolation is integrated with the CP decomposition in

order to address the spectrum cartography problem under missing sensor measurements.
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The TRASC Algorithm

This section presents our main contribution. First, the tensor-based problem formulation for spec-

trum cartography is introduced. The derived formulation is based on partitioning the area to a grid

network and modeling the received spectrum at each grid point by a superposition of the propagat-

ing power from sources. Then, practical assumptions are elaborated to make the problem tractable

and a discussion for rank estimation is exhibited. We suppose the locations of SUs are known

and the goal is to find the propagating power and location of active PUs as the enabling step for

reconstructing the power spectrum map at any arbitrary location and frequency. To achieve this, let

us consider a set of grid points across the area of interest. Let N denote the number of grid points

in the area of interest and G denotes the number of active primary users. The indices of sensors

is a subset of {1, · · · , N}. The frequency bandwidth is broken into F frequency channels. The

received PSD at location/sensor n at time t and frequency channel f can be written as [44]2,

yn(t, f) =
G∑
g=1

φngxg(t, f) + zn(t, f)

= φTnx(t, f) + zn(t, f),

(3.5)

where, φn = [φn1, · · · , φnG]T in which φng is the channel gain between the gth active source

and the nth sensor. The total number of active sources is indicated by G. The propagation

from the gth active source is denoted by xg(t, f) and the collection for all grid points forms vec-

tor x(t, f) = [x1(t, f), · · · , xG(t, f)]T . We assume the measurements are available for T time

slots and F frequency channels. Collaborative estimation of x(t, f) ∈ RG over each time slot

and for each frequency bin requires collecting measurements of all sensors in vector y(t, f) =

[y1(t, f), · · · , yN(t, f)]T ∈ RN . The following minimization problem has been proposed for esti-

2This form requires a set of mild conditions which is out of scope our present work and studied in [44]
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mation of x(t, f) for each time and frequency independently [44]

x(t, f) = argmin
x
‖y(t, f)−Φx‖2, (3.6)

where the nth row of matrix Φ is φTn . The regularized version of (3.6) using `1 constraint has

previously been employed for collaborative spectrum estimation for a given Φ [44, 51].

Let us represent the collection of x(t, f) and y(t, f) for all frequencies and time slots as tensors

X = [xgtf ] and Y = [yntf ], respectively. That is xgft = xg(t, f) and ynft = yn(f, t). Tensor

X ∈ RG×F×T is referred to as power tensor and tensor Y ∈ RN×F×T is referred to as cartography

tensor. Please note that x(t, f) is a vector in RG and y(t, f) is a vector in RN . These vectors point

to the mode-1 fibers of X and Y , respectively. We aim to estimate the propagation power from

each active source using the accessible measurements in Y . Mathematically speaking, we have:

Y = X ×1 Φ +Z, (3.7)

Each entry of matrix Φ ∈ RN×G represents the channel gain between the nth grid point and the

gth source [44]. Estimate the power tensor, X , which is characterized by its CP factors, is an

enabling step toward estimating non-sensed entries of the propagation tensor, Y . Due to narrow

band communication, and the temporal correlation of power propagation at a transmitter, tensor

X is highly structured and can be modeled by a low-rank tensor using the CP decomposition as

stated in (3.1). Each rank-1 tensor, i.e., aXr ◦bXr ◦cXr , represents a principle pattern of the spectrum

propagation. Matrix Φ consists of G number of vectorized maps in which each map is a reshaped

version of a column of Φ. Let define tensor Γ ∈ R
√
N×
√
N×G such that the gth slice of Γ is the

reshaped version of the gth column of Φ. The reshaping operator provides a spatial map in each

slice of Γ such that vicinity is preserved and entries are corresponding to the original area of the

network. Without loss of generality we assume that N is a perfect square number and the area of
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interest consists of
√
N ×
√
N grid points. Moreover, let us define multiplication operator < ·, · >

such that

<X,Γ >= X ×1 Φ. (3.8)

It is interesting to mention that the CP factors of tensor Y in the presence of no noise, i.e., Z = 0,

can be stated as follows in terms of CP factors of tensorX:

aYr = ΦaXr ,

bYr = aXr ,

cYr = cXr .

(3.9)

In the proposed formulation tensor X is assumed to be low-rank and this property is inherited to

Y . Imposing low-rankness on channel gain matrices via Φ turns the problem into a block-term

decomposition. However, in general this matrix is not low-rank even in absence of noise since

propagation pattern is radial. Although a low-rank approximation always exists for the channel

gain matrix, in practice there are some imperfections such as shadowing and obstacles which af-

fects the low-rank approximation parameters. Therefore, CP decomposition is more parsimonious

to model cartography tensor. Moreover, as it will be shown since there are only one parameter

in CPD it is easier to fine tune it and the final performance is more robust to mismatch in rank

selection. Tensor Γ, which is a reshaped version of Matrix Φ, plays a key role in our architecture.

Each slice of this tensor contains an incomplete power propagation pattern from the gth source.

Interpolating these patterns alongside with tensorX results in a completed cartography tensor, Y .

Solving the following problem provides us with two outcomes: (i) the CP factors of the power
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tensor and (ii) principle propagation maps and their interpolation functions.

argmin
aX
r ,b

X
r ,c

X
r ,fg

‖M ∗ (Y − <X,Γ>)‖2
F + α

∑
g

Ig

subject to: X =
R∑
r=1

aXr ◦ bXr ◦ cXr , and

fg(zi, wi) = Γg(zi, wi)

(3.10)

Since sensors are distributed in a small subset of {1, · · · , N}, we need to reduce the problem to

only the known information. Binary tensor M shows the sensed entries of tensor Y and operator

∗ refers to the element-wise product. Function fg interpolates the incomplete power spectrum map

corresponding to the gth slice of Γ. The bending energy of fg(z, w) is denoted by Ig which is

defined in (3.2) and variable α controls smoothness of the interpolation function. Each slice of

tensor Γ is a 2D incomplete surface since the sensed tensor Y is incomplete. Interpolation of

all slices of Γ results in completion of Y . Please note that each slice of Γ exploits a separate

interpolating function. This problem can be regarded as a combination of CP decomposition and

2D surface interpolation. Here, we assume that sources are distinguished based on their spatial

distance and their spectral signature over time. For example, if the spectral pattern of propagating

power from a location is changed after a certain time, there is two distinguished sources.

In the proposed model, parametersG andR depend on the actual number of active users. However,

the actual number of active users is unknown in a realistic network. Therefore, a large enough

estimation can be substituted. In order to make the model more parsimonious, we assume that

R = G. The proposed problem can then be simplified to the following form by elimination of
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parameter G and the auxiliary variableX .

argmin
φr,br,cr,fr

‖M ∗ ( Y −
R∑
r=1

φr ◦ br ◦ cr )‖2
F + α

∑
r

Ir

subject to: fr(zi, wi) = Γr(zi, wi) ∀ i ∈ Ω.

(3.11)

In this problem φr is the vectorized replica of the rth principle spectrum map and it can be in-

terpreted as a CP factor of tensor Y w.r.t. the spatial dimension. In other words, the first CP

factor is regularized to have the minimum bending energy in order to have a smooth map over

interpolated locations. Tensor Y is an incomplete tensor w.r.t. non-sensed locations. However, a

spatial interpolation can reveal us a completed principle map. Each principle map is interpolated

using a function which is regularized to have a smooth behavior. This regularization is inspired

by prior work in the literature of interpolation as discussed in Sec. . The interpolator function

is constrained to be equal to the principle maps at the observed locations indexed in set Ω. The

coordinate of observed locations are shown by (zi, wi). Low-rank assumption for the cartography

tensor is helpful for the making the problem identifiable. However, fine local details of the spec-

trum maps are lost in the found low-rank structure. Two dimensional interpolation is employed in

order to keep details in the sensed data and to infuse these details for interpolation of non-sensed

locations. Surface interpolation helps CP factors to obtain spatial smooth factors. Alternating least

squares is the practical approach for solving the proposed problem in which each iteration corre-

sponds to a least squares problem with missing entries. The steps for solving this problem will be

explained in Section . It is worthwhile to mention that interpolating br and cr results in increasing

both spectral and temporal resolution. However, in the present work we study cartography which

is focused on increasing the spatial resolution.
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Figure 3.2: framework of the proposed joint tensor decomposition and surface interpolation. This scheme
only shows a big picture of the proposed work. Practically, CP decomposition is implemented iteratively.
In the proposed algorithm, interpolation is performed alongside iterations of CP decomposition. In other
words, we solve a joint problem of decomposition and interpolation.

Our proposed optimization problem is based on assuming tensor Y to be low-rank. The relation

of rank to dynamics of the network is investigated in the appendix from the mathematical point of

view. However, in a practical situation, a proper rank is chosen empirically which will be discussed

in Sec. .

Alternating Least Squares Solution

The main proposed formulation is a joint optimization problem. In order to solve it, we employ

block coordinate descent algorithm in order to break the main problem into a set of consecutive

problems. Each subproblem is a minimization problem in terms of only one unknown parameter.

min
Φ
‖M 1 ∗ (Y 1 −Φ(C �B)T ))‖2

F (3.12a)

min
B
‖M 2 ∗ (Y 2 −B(C �A)T ))‖2

F (3.12b)
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min
C
‖M 3 ∗ (Y 3 −C(B �A)T ))‖2

F (3.12c)

min
fr

Ir s.t. fr(zi, wi) = Γr(zi, wi) ∀i ∈ Ω. (3.12d)

The first three subproblems are borrowed from the plain CP decomposition. The last subproblem

attempts to estimate R interpolating function for each spatial function. The solution of the last

subproblem can be obtained by an interpolation technique. In our work we employ thin-plate

splines method to solve the last subproblem as discussed in .

A fundamental difference with the plain CP decomposition is restriction of entries for only those

that are sensed. Considering missing entries in a least square problem is discussed in the next

subsection. Since, it is desired to obtain an online spectrum map, the first subproblem should be

rewritten in terms of the last sensed spectrum slice over time. Moreover, considering the last time

slot for updating the spatial maps helps us to model the changing sensed entries over time. Let

Y t denote the entries of tensor Y at the tth time slot and M t shows the sensed entries. Thus,

restricting the first subproblem in (3.12a) into the last time slot results in the following equation.

min
Φ
‖M t ∗ (Y t −Φ(Bdiag(Ct))T ))‖2

F . (3.13)

Here, Ct refers to the tth row of C. The closed form solution of the introduced subproblems

considering the mask is discussed next.
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Least Square Solution with Missing Entries

Our main proposed algorithm requires solving a general least square problem with missing entries

along iterations. Let us formalize this problem as follows for a given matrix Y , a given matrix U ,

and known entries organized in a binary matrix denoted byM ,

Ẑ = argmin
Z

‖M ∗ (Y −UZ)‖2
F (3.14)

The solution of this problem w.r.t. Z given Y , U , and the mask is straightforward which is

indicated in Alg. 1 referred to as missing entries least squares (MELS). Please note that MELS

solves a basic optimization problem and our main proposed algorithm is built upon it iteratively.

In MELS, each column of Z can be computed independently.

Algorithm 1 Missing Entries Least Squares (MELS).

Require: Y ∈RN×F,U ∈RN×R, and the mask,M .

Output: Z ∈ RR×F .
FOR f = 1, · · · , F

2: D = diag(M(:, f))

3: W = UTDU
4: Z(:, f) = W−1UTDY (:, f)

END FOR

Alg. 1 is a simple solution for (3.14) which is a basic problem in linear algebra. However, it plays

a key role in our main algorithm. The solution of (3.14) is referred as MELS(Y ,U ,M ). Our

main proposed algorithm which is presented later needs the solution for the least squares problem

with missing entries iteratively. The main algorithm is discussed next which is built based on Alg.

1.

32



Implementation of TRASC for Power Map Reconstruction

In this section the practical algorithm for solving (3.11) is proposed. The sensed incomplete tensor

is decomposed into a set of CP factors considering the known entries. Then, the spectral and tem-

poral factors are kept and spatial factors are interpolated in each iteration of tensor decomposition.

The power spectrum at any arbitrary location and in each frequency can be inferred via tensor

reconstruction of CP factors. Alg. 2 presents the steps of the TRASC algorithm that is a joint

tensor decomposition and 2D interpolation for spectrum cartography. Spectral and temporal CP

factors, i.e., matricesB andC, are initialized by a plain CP decomposition on Y Ω where unknown

entries are set to 0. The initial value for spatial factors is estimated using the MELS algorithm in

Line 2 of the algorithm. In Alg. 2, TPS() refers to thin-plate splines interpolation method which

is introduced in Sec. This interpolation needs a 2D incomplete plate as in input in addition to the

indices of known entries and regularization parameter introduced in Sec. .

In Alg. 2, Y t = Y (:, :, t) is a slice of tensor Y corresponding to the time slot t. Please note

that Y t is an N × F matrix which has F columns. Each column has N elements corresponding

to measurements of all spectrum sensors. In other words, each column of Y t is a 1D collection

of all power spectrum sensors within the 2D network. The order for vectorization is arbitrary;

however, in Line 8 of the algorithm, the operator reshape is the inverse operator for the employed

vectorization. Here, Φ refers to the full spatial factors andAt refers to the incomplete spatial maps

corresponding to time slot t. CP decomposition using ALS algorithm can be categorized as a block

coordinate descent algorithm. It is shown that if optimization along any coordinate direction yields

a unique minimum point then the main cost function is convergent using a coordinate descent

method [95]. Line 3, Line 4 and Line 7 of the TRASC algorithm is identical to the conventional

ALS algorithm for CP decomposition. The main variables are computed in these three steps.

However, we define a dependent variable which is obtained by interpolation of the spatial factors.
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Algorithm 2 Tensor-based Radio Spectrum Cartography (TRASC).
Require: Y Ω, R, Ω, and N .

Output: Y .

1: InitializeB and C by CP factors of Y Ω

2: Φ← MELS(Y T
1 ,B �C,M) %solution of (3.12a)

While (The stopping criterion is not met)

3: B ← MELS(Y T
2 ,C �Φ,M) %solution of (3.12b)

4: C ← MELS(Y T
3 ,B �Φ,M) %solution of (3.12c)

5: FOR t = 1 ... T

6: F = Bdiag(Ct)

7: At
Ω = (F †Y t

Ω)T %solution of (3.13)

8: FOR r = 1 ... R

9: Γr = TPS(reshape(at
Ω, [
√
N,
√
N ]),M) %solution of (3.12d)

10: φr = vec(Γr)

END FOR
11: Y t = ΦF T

END FOR

END While

Note that convergence of TRASC algorithm is inherited from convergence of the ALS algorithm

for CP decomposition [96]. Thus, convergence of the main variables results in convergence of the

dependent variable which is interpolated.

Rank Estimation in a Dynamic Environment

As it is shown in Sec. ??, the rank of sensed tensor in the absence of noise is proportional to

dynamic parameters of the problem including the number of active sources and the number of

changes in the spectral pattern of each source. Moreover, mobility of sources is equivalent to mul-

tiple active locations with distinguished temporal signatures. Thus, velocity of sources is another

important parameter which affects the underlying rank of the sensed tensor.

Rank estimation considering the dynamics of network is a two-sided problem. The first aspect is
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Figure 3.3: The practical implementation of TRASC with adaptive rank estimation in a dynamic radio
environment.

that all parameters affecting the rank are unknown in the proposed framework. On the other hand,

we do not need to estimate all of these parameters separately in order to estimate a fitted rank.

In other words, we devise a practical method that estimates the proper rank experimentally. The

impact of the unknown dynamic parameters is projected on the estimated rank. The least squares

term in (3.11) which is the main objective is considered as a measure for estimating a fitted rank.

We evaluate this term first by using a small number as the rank and solving the problem. Then, we

increase the rank gradually to reach a point that the residual error does not improve further. In the

experimental results we will see the performance of rank estimation and evaluate the sensitivity of

estimated rank.

A practical framework of cartography method should include a block for rank estimation based on

the dynamic behavior of network. Fig. 3.3 shows the diagram of the proposed dynamic cartography

via TRASC equipped with a block for rank estimation.

Experiments

The TRASC algorithm is evaluated for dynamic spectrum cartography. The experimental setup

is similar to that of [1]. Specifically, we consider F = 16 channels and our area of interest with

the size of 50 × 50 m2 is discretized into 51 horizontal bins and 51 vertical bins, i.e., N = 2601.
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The primary active users are considered static or mobile and T = 100 time slots are employed.

The spatial propagation pattern of each transmitter is synthesized using a path-loss model and

the spatial correlated log-normal shadowing model [97]. The attenuation from location (z, w) to

(zi, wi) is expressed by

‖(z − zi)2 + (w − wi)2‖−η10αr(z,w)/10,

where,

E{αr(z, w)αr(z
′, w′)}=σrexp(−‖(z − z′)2 + (w − w′)2‖/Xc).

Parameter Xc is called decorrelation distance which is ranged from 50 to 100 for a typical outdoor

environment [97]. The spectral activity pattern of each transmitter is assumed as summation of

three sinc functions as explained in [1] as follows:

br(f) =
3∑
i=1

qri sinc2(
(f − f ri )

wri
), (3.15)

where, qri follows a uniform distribution between 0.5 and 2. Moreover, f ri and wri are the central

frequency and the width parameter of each function, respectively. The width parameter is drawn

from a uniform distribution between 2 and 4.

The performance of different spectrum sensing algorithms are evaluated via the cartography error

which is defined as

e =
‖log(Y )− log(Ŷ )‖F

‖log(Y )‖F
. (3.16)

Matrix Y indicates the power spectrum map and Ŷ refers to the interpolated map using a set of

measurements. Employing logarithm scale results in less bias for high power spectrum areas of

the network. Thus, we have a more reliable measure for comparison of the interpolated low-power

details in the area of interest. Two different sensing patterns are employed in our experiments as

36



(a) (b) (c)

(d) (e) (f)

Figure 3.4: Comparison between the original and the recovered spectrum maps. (a) The original power
spectrum map. The grid is 50 × 50, however, 6 columns and 6 rows of the original power spectrum map
are measured. The power spectrum is measured at these locations only. (b) The recovered spectrum from
missing and noisy sensed data using a plain CP decomposition and interpolating the unread measurements
via CP reconstruction. (c) The recovered spectrum via block-term decomposition. (d) The plain 2D plate
splines method is employed for interpolating the power spectrum map. (e) The proposed method in [1] via
the block-term decomposition which post-processed using 2D plate splines. (f) Our proposed method that
employs CP decomposition and 2D plate splines jointly.

suggested in [1]. In the first pattern, a line of horizontal grid points and a line of vertical grid

points are scanned. This pattern is referred as structured pattern. The second pattern corresponds

to random sampling of grid points in the network.

Fig. 3.4 shows the original power spectrum map in a frequency band which is sampled in a small

subset of locations versus the recovered power spectrum map using different recovery algorithms.

In Fig. 3.4b the recovered spectrum using a plain CP decomposition is shown. In other words,

only a low-rank decomposition is employed to interpolate the incomplete sensing results. The

same strategy can be repeated using any other tensor decomposition model. Fig. 3.4c shows the

interpolation result using the plain block-term tensor decomposition [1]. Kernel-based interpola-

tion methods interpolate the incomplete set of measurements via neighborhood information. How-
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Figure 3.5: The interpolated spatial components using our proposed framework. The rank of CPD is
assumed to be 2. A linear combination of these two factors is able to reconstructs the power spectrum map
in any frequency band.

ever, these methods neglect the global correlation among measurements in space, spectral bands

and time. Fig. 3.4d shows the interpolated map using 2D plate splines method [98]. Fig. 3.4e

shows the result of coupled BTD where the pathloss gains are corrected using plate splines as a

post-processing. In Fig. 3.4f, our proposed framework is evaluated which employs an iterative ap-

proach between model-based CP factors and neighborhood-based splines. The last two subfigures

correspond to the joint methods that exploit both tensor-based decomposition and interpolation. As

it can be seen, utilizing both techniques improves the accuracy of spectrum recovery. Our proposed

joint method estimates the low-power source at the top right of the area more accurate. However,

in the next simulations their performance will be compared quantitatively.

Fig. 3.5 exhibits two interpolated CP spatial components. At each iteration of TRASC, a set

of spatial CP factors are estimated and interpolated. Plate splines method is utilized to obtain

interpolated CP factors as the basic components to reconstruct the desired spectrum map based on

them.

In the next experiment, we study the performance of two basic methods based on tensor decom-

position and neighborhood interpolation in terms of the normalized error of cartography defined

in (3.16). Moreover, in this experiment we consider the BTD method for cartography [1]. Fig.

3.6b shows the cartography error of different methods over time. Tensor-based methods need a

fine tuning of rank in practice. In this experiment it is assumed that the assumed rank differs +1
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Figure 3.6: Spectrum map reconstruction error for several algorithms. (a) The rank for the tensor-based
methods is assumed to be the best possible rank. (b) The rank for the tensor-based methods is assumed to
differ from the best possible rank by +1.

from the best possible rank. As it can be seen and as it is mentioned in [1], the block-term tensor

decompistion is highly sensitive to the rank. However, our proposed structured CP decomposition

is not highly sensitive to the rank. In Fig.3.6b the cartography error for 100 time slots is plotted.

Tensor-based methods also are compared with the naive interpolation on independent channels

for each time slot using TPS interpolation. In some time slots, the performance of the coupled

block-term decomposition is close to the performance of our framework. However, the coupled

block-term decomposition is performing worse than TRASC in average over time.

Unlike the coupled block-term decomposition method [1], our framework is an iterative approach
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which performs both tensor decomposition and 2D spline interpolation at each iteration. However,

any iterative approach raises the convergence issue which must be investigated. Fig. 3.7 shows

the performance of the proposed framework over iterations in terms of the normalized cartography

error.

0 10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

Figure 3.7: The convergence behavior of the proposed framework. In each iteration of the proposed algo-
rithm, all tensor CP factors are updated and a more accurate model is estimated for reconstruction of power
spectrum map.

An adaptive rank estimation method introduced in the previous section is presented next. Fig. 3.8

shows the residual error of the main cost function (3.11) versus the assumed rank. There are two

static sources in the area and each one has three active bands based on (3.15). The cartography error

can be interpreted as a generalized error for unseen grid points and the residual error represents the

error of TRASC only for the sensed grid points. This concept is similar to the train error and the

test error in machine learning systems. Increasing the rank improves the residual error, however,

after a certain point it will cause over-fitting for the general cartography error.

The behavior of TRASC w.r.t. the assumed rank is smooth while the method based on BTD

introduced in [1] is highly sensitive to the assumed rank of BTD. Fig. 3.9 shows the sensitivity of

cartography based on BTD w.r.t. the assumed rank. As it can be seen, this method only performs

efficiently for a specific rank. This problem makes BTD not viable in the cartography application.

In Fig. 3.10a, our proposed spectrum sensing framework is compared with the block-term tensor

decomposition in terms of the number of sensed grid points. In structured sampling an entire line
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Figure 3.8: (a) The effect of assumed rank on the residual error of cost function (3.11). (b) Sensitivity to
the proposed framework w.r.t. the assumed CP rank.

of horizontal/vertical grid points are sensed. However, in the random sampling the sensed grid

points have no spatial structure.
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Figure 3.9: Sensitivity of BTD to the assumed rank.

4 6 8 10
0.05

0.1

0.15

(a)

2 4 6 8 10 12 14 16 18 20

0.02

0.04

0.06

0.08

(b)

Figure 3.10: (a) The number of structured measurements versus the normalized cartography error. (b) The
number of random measurements versus the normalized cartography error.

In each iteration of our framework, a 2D interpolation is applied on all spatial CP factors. The

impact of the regularization parameter which controls the smoothness of interpolation functions

is studied in Fig. 3.11. A low value for parameter α corresponds to a non-smooth interpolating

function. However, there is a wide range for the smoothing parameter such that the cartography

error is improved.
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Figure 3.11: The impact of the smoothness parameter in 2D splines interpolation on the overall perfor-
mance of the proposed framework.

A moving source can be modeled using multiple sources in different time slots since it is propa-

gating from a grid point and it will be propagating from another neighboring point in the next time

slot. Thus mobility increases the complexity and consequently the underlying rank of TRASC. Fig.

3.12 shows the cartography error of two moving sources while their speed is denoted as number

of grid points that are paved in T = 100 time slots. As it can be seen, for a higher speed, a larger

number for the rank needs to be considered.
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Figure 3.12: The performance of the proposed framework in presence of moving sources in terms of the
normalized cartography error. The speed is denoted as the number of paved grid points in T time slots where
T = 50 time slots are considered. .

Conclusion

A new framework for dynamic spectrum cartography is proposed. The thin plate spline interpola-

tion method and the tensor CP decomposition algorithm are employed jointly in a unified frame-

work. An iterative algorithm, referred to as TRASC, is introduced for estimating CP factors and

the parameters of interpolation. The proposed joint decomposition and interpolation is used for
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tensor completion to address the problem of spectrum cartography under the shadowing channel

model and transmitters mobility. Our proposed cartography technique is shown to be as accurate as

the state-of-the-art method while it is less sensitive to the model’s parameters such as the assumed

rank of tensors. It is shown that the rank of a cartography tensor depends on the dynamics of the

problem such as the number of active sources and their number of spectral changes over time. In

order to make the proposed approach practical, TRASC can be integrated with an adaptive rank

estimator to adjust the rank over time according to the dynamics of the network.
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CHAPTER 4: E-OPTIMAL SENSOR SELECTION

Collaborative estimation of a sparse vector x by M potential measurements is considered. Each

measurement is the projection of x obtained by a regressor, i.e., ym = aTmx. The problem of

selecting K sensor measurements from a set of M potential sensors is studied where K � M

and K is less than the dimension of x. In other words, we aim to reduce the problem to an under-

determined system of equations in which a sparse solution is desired. Sparsity facilitates employing

the compressive sensing approach where the compressed measurements are selected from a large

number of potential sensors. This dissertation suggests selecting sensors in a way that their corre-

sponding regressors construct a well conditioned measurement matrix. Our criterion is based on

E-optimality, which is highly related to the restricted isometry property that provides some guar-

antees for sparse solution obtained by `1 minimization. Data/feature selection is an enabling step

for processing a huge set of data. However, the proposed basic selection algorithm is not tractable

for huge number of data. The proposed basic E-optimal selection is vulnerable to outlier and noisy

data. The robust version of the algorithm is presented for distributed selection for big data sets.

Moreover, an online implementation is proposed that involves partially observed measurements

in a sequential manner. Our simulation results show the proposed method outperforms the other

criteria for collaborative spectrum sensing in cognitive radio networks (CRNs).

Our suggested selection method is evaluated in machine learning applications. It is used to pick

up the most informative features/data. Specifically, the proposed method is exploited for face

recognition with partial training data.

Complex systems containing very large numbers of data-gathering devices, were developed in the

last decade. However, dealing with large number of sources of data is challenging. The emerging

research area, big data, aims to address challenges of such complex systems. Representing the
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underlying structure of data by a succinct format is a crucial issue in the big data literature. For

instance, dimension reduction techniques and different clustering-based approaches aim to extract

a concise format of data. Representatives obtained by such methods are often not easy to interpret.

Furthermore, obtaining each representative implies processing of all data or a large portion of

data. In order to have a straightforward interpretation, it is desired to find the representatives by

selection from data. There are some clustering approaches that select the representatives from data

such as k-medoids clustering [13]. However these clustering methods assign each data to only

one prototype which is the cluster representer, while in the case of highly structured data only one

prototype from data does not contain sufficient information to capture the underlying structure of

the whole cluster.

An example of big data system is wireless sensor networks, where the processing unit has to deal

with an excessively large number of observations acquired by the various sensors. Often there

exist some redundancies within the sensed data and they should be pruned. Sensor selection and

sensor scheduling aim to address this problem. In many applications the sensor selection task is

non-trivial and possibly consists of addressing an NP-hard problem (i.e., there are
(
M
K

)
possibilities

of choosing K distinct sensors out of M available ones). This essentially implies that an optimal

solution cannot be efficiently computed, in particular when the number of sensors becomes ex-

cessively large. A convex relaxation of the original NP-hard problem has been suggested in [15].

The most prominent advantage of this approach over other methods is its practicality, thanks to

many well-established computationally-efficient convex optimization techniques. In addition to

convex relaxation, a sub-modular cost function as the criterion of sensor selection allows us to

take advantage of greedy optimization methods for selecting sensors [16]. The existing studies

on sensor selection mostly consider heuristic approaches. For example, in [15] the volume of

the reduced bases is considered. This method is called D-optimality. In addition, A-optimality

[17] and E-optimality [17] are suggested as some other alternative heuristics already introduced in
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convex optimization. These heuristics are presented without any specific justification for sensor

selection application. In this chapter we are going to exploit a criteria more judiciously in favor of

compressed sensing (CS) theoretical guarantees.

Motivation

Compressed sensing is a technique by which sparse signals can be measured at a rate less than

conventional Nyquist sampling theorem [99, 100]. There exist vast applications of CS in signal

and image processing [101], channel estimation [102], cognitive radio [103] and spectrum sensing

[104]. CS aims to recover a sparse vector, x, using a small number of measurements y. The CS

problem can be formulated as,

x̂ = argmin
x
‖x‖0 s.t. y = Φx, (4.1)

where, ‖.‖0 represents the number of non-zero elements of a vector. Φ ∈ RK×N is called mea-

surement matrix that provides usK measurements collected in y. These measurements sense from

an unknown N dimensional vector. Exact solution of the above optimization problem is through

the combinational search among all possible subsets. Due to its high computational burden, this

algorithm is impractical for high dimension scenarios. Many sub-optimal algorithms have been

proposed such as OMP [105], smoothed `0 [106] and basis pursuit [107]. Basis pursuit is based

on relaxing `0 to `1 norm and is popular due to theoretical guarantees and reasonable computa-

tional burden [108]. The theoretical guarantees for `1 minimization arise from several sufficient

conditions based on some suggested metrics. These include the mutual coherence [109], null space

property [110], spark [111] and restricted isometery property (RIP) [112]. Except for the mutual

coherence, none of these measures can be efficiently calculated for an arbitrary given measurement

matrix Φ. For example, the RIP requires enumerating over an exponential number of index sets.

46



RIP is defined as follows.

Definition 1 [112] A measurement matrix is said to satisfy symmetric form RIP of order S with

constant δS if δS is the smallest number that

(1− δS)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δS)‖x‖22, (4.2)

holds for every S-sparse x (i.e. x contains at most S nonzero entries).

Based on this definition several guarantees are proposed in terms of δ2S , δ3S and δ4S in [113] and

[114] in order to guarantee recovering S-sparse vectors. By S-sparse we mean a vector that has

S non-zero entries. In [115] an asymmetric form of definition 1 is introduced in order to more

precisely quantify the RIP.

Definition 2 [115] For a measurement matrix the asymmetric RIP constants δLS and δUS are defined

as,

δLS (Φ) = argmin
c≥0

(1− c)‖x‖22 ≤ ‖Φx‖22, ∀x ∈ XNS ,

δUS (Φ) = argmin
c≥0

(1 + c)‖x‖22 ≥ ‖Φx‖22, ∀x ∈ XNS ,
(4.3)

where, XN
S refers to the set of S-sparse vectors in RN .

[115] Although both the smallest and largest singular values of ΦS
TΦS

1 affect the stability of the

reconstruction algorithms, the smaller eigenvalue is dominant for compressed sensing in that it

allows distinguishing between sparse vectors, XN
S , given their measurements by Φ.

A sensor selection method inspired by the RIP of a matrix is designed. The goal is to reduce a

1S represents a set with cardinality of S and ΦS represents any combination of columns of Φ.
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measurement matrix to only a small fraction of its rows, while optimizing the proposed RIP-based

criterion. In other words we aim to reduce number of equations such that the reduced system of

equations would be a well-conditioned inverse problem.

For many scenarios, the big data are modeled by matrices and tensors. While conventional numer-

ical algebra has been of interest for decades in many fields of sciences, it has been revisited for

analysis of large datasets. For example algebraic tools such as singular value decomposition and

subspace clustering are well-known methods for data mining, however their essential considera-

tions for big data analysis are studied recently under the context of big data [116, 117, 118]. To this

aim, parallel, distributed, scalable, and randomized algorithms are developed based on novel opti-

mization strategies such as ADMM (alternating direction method of multipliers) [119, 120, 121].

Selection strategies are helpful for big data analysis and there is a strong connection between matrix

subset selection and other analysis methods based on low-rank data expression [31]. A modified

matrix subset selection is proposed in Chapter III of [122] in which big data considerations are

addressed by a randomized approach. In this section, a successive and a parallel algorithm are

proposed to tackle big data scenarios. The parallel algorithm is designed based on distribution of

data on machines. Moreover, theoretical bounds are studied.

The main objectives are summarized as,

• The link between matrix subset selection, especially volume sampling and sensor selection,

is investigated,

• A new criterion for matrix subset selection is proposed, which results in a new sensor selec-

tion method,

• The suitability of the E-optimal criterion is discussed, which is equivalent to optimization of

an upper bound for RIP coefficients in compressive sensing literature,
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• An approximation for RIP coefficients is proposed and utilized to extend E-optimality to an

RIP-based criteria, and

• Successive and parallel algorithms are proposed as practical algorithms for selection from

large data sets. Their performances are compared with the centralized algorithm.

Problem Statement and Related Work

Solving the sensor selection problem by evaluating the performance for each of the possible

choices of
(
M
K

)
is impractical unless the sizes are sufficiently small.

Suppose we want to estimate a vector x ∈ RN from M linear measurements, corrupted by additive

noise, given by

y = Ax + ν, (4.4)

where, y ∈ RM andA ∈ RM×N and ν is normally distributed with zero mean and σ2 variance. In

other words, we want to only select just K rows of A to have K measurements out of maximum

M measurements. The maximum likelihood (ML) estimator is given by [15],

x̂ML = (ATA)−1ATy. (4.5)

The estimation error x− x̂ has zero mean and the covariance matrix is equal to

ΣML = σ2(ATA)−1. (4.6)

To involve selection operator in the equations let us first write the ML solution as follows,

x̂ML = (
M∑
m=1

amaTm)

−1 M∑
m=1

ymam, (4.7)

where, aTm is the mth row of A. The estimation error is distributed in a high dimensional ellipsoid
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that its center is located at origin and its shape is according to the covariance matrix of error [15].

Minimization of volume of this ellipsoid (D-optimality) is the heuristic used in [15] that results in

the following problem:

ŵ = argmin
w

log det(
M∑
m=1

wmamaTm)

−1

,

subject to ‖w‖0 = K and w ∈ BM ,

(4.8)

where w determines whether or not each column is involved and B = {0, 1}.

The computationally tractable algorithms are divided into two main categories, convex relaxation

and greedy selection. The first approach approximates the search space to the nearest convex set

and exploits convex optimization methods to solve the problem, while greedy methods gradually

select suitable sensors or prune inefficient ones.

Convex Relaxation

A convex relaxation for (5.2) is proposed in [15] as given by

ŵ = argmin
w

log det(
M∑
m=1

wmamaTm)

−1

,

subject to ‖w‖1 = K and w ∈ CM ,

(4.9)

for which `0 norm is replaced by `1 norm and C, the continuous set [0, 1], is used instead of B.

Another heuristic (A-optimality) is proposed in [123] based on minimization of MSE= E[‖x −
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x̂‖22] = σ2tr(
∑M

m=1 amaTm)
−1

given by,

ŵ = argmin
w
‖w‖1 ,

subject to tr(
M∑
m=1

wmamaTm)

−1

≤ η and w ∈ CM ,
(4.10)

where, η is a regularization parameter. As η increases, the number of selected sensors would be

decreased. There is a performance gap between the best subset and the heuristic solution of the

convex relaxation for maximizing the volume. Although simulations show the gap is small in many

cases, there is no guarantee that the gap between the performance of the chosen subset and the best

performance is always small [15].

Greedy Algorithms

The greedy algorithms are faster than convex relaxation methods in addition to providing some

guarantees for the optimality of the solution in the case of a sub modular condition [124]. For

example, it is possible to rewrite (5.2) as the following sub-modular problem [16],

ŵ = argmax
w

log det(
M∑
m=1

wmamaTm),

subject to ‖w‖0 = K and w ∈ BM .

(4.11)

To solve this problem, we can select sensors sequentially. At the step t, a sensor will be selected

that maximizes log det{(
∑t−1

m=1 aSmaTSm
)+aza

T
z }with respect to az in which Sm stacks the indices

of the selected sensors in previous iterations and the obtained z is the index of the new selected

sensor. Solving the maximization results in aSt . This procedure will continue till t = K.
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Matrix subset selection

The sensor selection problem is highly related to column/row sub-matrix selection, a fundamental

problem in applied mathematics. There exists many efforts in this area [9, 27, 125, 50]. Gener-

ally, they aim at devising a computationally efficient algorithm in which the span of the selected

columns/rows cover the columns/rows space as close as possible. Mathematically, a general guar-

antee can be stated as one of the following forms [27, 126],

E{‖A− πT(A)‖2
F} ≤ (K + 1)‖A−AK‖2

F ,

‖A− πT(A)‖2
F ≤ p(K,M,N)‖A−AK‖2

F ,

in which, πT(A) represents projection of rows of A on to the span of selected rows indexed by T

set. E indicates expectation operator with respect to T, i.e., all the combinatorial selection of K

rows of A out of M . Moreover, p(K,M,N) is a polynomial function of the number of selected

elements, the number of columns and the number of rows. AK is the best rank-K approximation

ofA that can be obtained by singular value decomposition. The first form suggests the distribution

of potential sets for selection and it expresses an upper bound for expected value of error. The

second form guarantees existence of a deterministic subset that bounds the error by a polynomial

function of the parameters.

Volume sampling is the most well-known approach to achieve the desired selection that satisfies

one of the aforementioned bounds. The following theorem expresses the probabilistic form volume

sampling.

[[27]] Let T be a random K−subset of rows of a given matrixA chosen with probability
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Pr(T) =
det(ATA

T
T)∑

|U|=K det(AUA
T
U)

Then,

E{‖A− πT(A)‖2
F} ≤ (K + 1)‖A−AK‖2

F .

Volume sampling considers more probability of selection for those rows whose volume is greater.

The volume of a subset of a matrix, AT, is proportional to the determinant of ATA
T
T . Thus, (5.2)

aims to find the most probable subset according to volume sampling.

Volume sampling and D-optimality pursue the same heuristic objective. This heuristic does not

promote a well-shaped matrix for compressive sensing purposes based on RIP. However, the anal-

ysis of optimization w.r.t the RIP coefficient is not an easy task due to the columns combinatorial

behavior in addition to row selection for the basic sensor selection problem. To eliminate the

column combinations, we consider all of the columns and consequently we come up with an opti-

mization problem w.r.t the minimum eigenvalue that is known as E-optimality in the optimization

literature [17, 51]. Assume a simple selection from rows of A ∈ R100×3. Each row of A, associ-

ated with a sensor, corresponds to a point in R3. We are to select 2 sensors out of 100 based on

D-optimality and E-optimality [51]. Both solutions are initialized by the same sensor (sensor 1)

and the criteria for the next selection varies. The D-optimal solution aims to maximize the sur-

rounded area (gray area in Fig. 4.1) which is vulnerable to be an ill-shaped area while, E-optimal

solution comes up with a well-shaped area due to maximizing the minimum eigenvalue (shaded

area in Fig. 4.1).2

2The presented intuition about D-optimality and E-optimality relates to the condition number of a matrix in linear
algebra [127]. Diverged eigenvalues results in a large condition number and an ill-conditioned system of equations;
accordingly, we refer to the polygon of an ill-conditioned system of equations as ill-shaped where the vertexes of
shape are the rows of the matrix. On the other hand, close eigenvalues correspond to a small condition number and
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Figure 4.1: Comparison of D-optimality and E-optimality for selecting 2 sensors in the 3D space. The gray
area is the maximum achievable area by selecting the second sensor based on D-optimality. The shaded area
is a well-shaped polygon obtained by E-optimality.

The following simple example illustrates the effect of E-optimality. Consider two matrices,

2 0

0 0.5


and

1 0

0 1

. The determinant of both matrices are equal, thus D-optimality does not favor one over

the other, however, the second matrix is optimum based on E-optimality.

As we will see in the next section, for selection ofK rows ofA ∈ RM×N , the E-optimal criterion is

equivalent to optimizing the RIP coefficient of order N , which is an upper bound for any arbitrary

order of RIP coefficients. In the next section E-optimality will be exploited to develop a new

sampling method for which its performance guarantee is analyzed. E-optimal criterion suggests

optimization of an upper bound for any order of RIP [7].

a well-conditioned system of equations. The corresponding polygon is referred as well-shaped in Fig 4.1. Having
well-conditioned matrices, is a central concern in CS as evidenced by the role played by the RIP [128].
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E-optimal sampling

Remark 1 promotes us to develop a new matrix subset selection method that reduces the matrix

to have a well-conditioned sub-matrix in the CS sense. The dominant factor of RIP constant

comes from the minimum eigenvalue of the reduced matrix. It suggests to exploit the following

optimization problem for sensor selection,

ŵ = argmin
w

‖(
M∑
m=1

wmamaTm)

−1

‖,

subject to ‖w‖0 = K and w ∈ BM .

(4.12)

In which, ‖.‖ denotes the spectral norm of a matrix that is defined as its maximum eigenvalue.

The following lemma shows that the minimum eigenvalue is an upper bound for δLS . For any

A ∈ RM×N , the following inequality holds.

1− σmin(AA
T ) = δLN(A) ≥ δLN−1(A) ≥ · · · ≥ δL2 (A).

Proof: According to the definition of RIP constant δS and considering that the set of at most S-

1 non-zero vectors is subset of the set of at most S non-zero vectors, it easily concluded that

δS(A) ≥ δS−1(A) for any S = 2, · · · , N .

Lemma suggests that E-optimality, i.e., minimization of δLN , actually is equivalent an upper bound

for an arbitrary order of RIP coefficient.

Similar to volume sampling, we design a probability of sampling according to their minimum

eigenvalue.
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Definition 3 Given a matrix A ∈ RM×N , E-optimal sampling is defined as picking a subset of T

with the following probability,

Pr(T) =
σ2

min(AT)∑
|U|=K σ

2
min(AU)

.

Definition 4 Given a matrixA ∈ RM×N , δ̄LK is defined as one minus the mean of minimum eigen-

values ofA’s sub-matrices with K columns. Mathematically, it can be expressed as follows,

δ̄LK(A) = 1− E{σ2
min(AS)},

in which S indicates a subset of K columns ofA.

Definition 5 [111] Given a matrix A ∈ RM×N , the spark of A is defined as the smallest number

of columns that are linearly dependent. It can be stated as follows,

Spark(A) = min ‖x‖0 s.t. Ax = 0 and x 6= 0.

The upper bound for spark is the rank of matrix plus 1. However any linear dependencies among

some columns of the matrix may decrease the spark. Based on the above definitions we present the

following theorem that expresses an upper bound for projection error of E-optimal sampling [7].

Assume spark ofA ∈ RM×N is greater than K + 1. E-optimal selection of K rows implies

E{‖A− πT(A)‖2
F} ≤

M −K
C(K + 1)

1− δ̄LK+1(AT )

1− δ̄LK(AT )
,

where C is a positive number a function of the dependencies of rows.

Proof: See appendix.
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Table 4.1: Complexity of different selection strategies.

Algorithm Complexity
Convex Optimization [15] O(M3)
Volume sampling [9] O(KNM2logM)
Greedy Submodular Selection [16] O(MK3)
Greedy E-optimal selection (proposed) O(MNK2)

E-optimal sampling implies an upper bound for the expectation of projection error in a probabilistic

manner. However, we need to select some sensors deterministically. To this aim, we propose

the following iterative algorithm. Actually, this algorithm is an approximation for the maximum

likelihood estimator in which the likelihood comes from the suggested probability in Definition 3.

Table 4.1 compares computational burden of three well-known selection methods with the pro-

posed method. Convex relaxation is not able to work effectively for big data sets since the com-

plexity of the algorithm grows with M3 [15]. Complexity of volume sampling also depends on

M2. Likewise, complexity of greedy algorithms which process data one-by-one increase linearly

w.r.t size of data. However, in some big data scenarios we still need to decrease computational

complexity w.r.t data size. To this aim in Section , two remedies are studied based on data parti-

tioning.

Algorithm 3 Greedy E-Optimal Sensor Selection
Require: A and K

1: Initialization: S with a random sensor
2: for k = 1, · · · , K
3: for m = 1, · · · ,M
4: T = S

⋃
{m}

5: p(m) = σmin(AT)
6: end
7: sk = argmax

m
p(m)

8: S = S
⋃
sk

9: end
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RIP-Based Sensor Selection

The structure of the reduced measurement matrix plays a critical role in sparse recovery [129, 130].

Several criteria have been suggested to evaluate suitability of a measurement matrix including the

mutual coherency and the RIP coefficient. In order to guarantee a well-conditioned matrix to

recover a S-sparse vector, the criteria based on RIP depend on the RIP constant of order PS.

Different guarantees suggest some bounds in terms of δ2S, δ3S and δ4S , i.e., δPS for P = 2, 3, 4

[113] [114]. As Remark 1 suggests, the lower RIP constant defined in (4.3) is the dominant factor

for compressive sensing. Thus, we employ the lower constant of order PS in (4.2) denoted by δLPS

(4.3) to propose the following problem for sensor selection,

Ŵ = argmin
wkm∈{0,1}

δLPS(WA),

subject to ‖wk‖0 = 1 ∀k = 1, · · · , K.
(4.13)

In which W ∈ RK×M reduces the matrix A ∈ RM×N by some selected rows. I other words,

matrixW is the selector operator and the goal of sensor selection is to estimate this matrix. P is a

constant between 2 and 4 and wk is the kth row of W . In each row of W there is only one entry

1 and all the other entries are zero, i.e., ‖wk‖0 = 1. According to the definition of RIP, the above

problem can be cast to the following form,

Ŵ = argmax
wkm∈{0,1}

min
x
‖WAx‖2

2,

subject to ‖wk‖0 = 1, ‖x‖2 = 1 and ‖x‖0 ≤ PS.

(4.14)

This problem is a jointly combinatorial search with respect to both W and x. It is shown that

finding the solution with respect to x is NP-hard with a fixed W [131]. On the other hand, with
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a fixed x, it is easy to show that the problem is sub-modular with respect to W . The reduction

matrix selects the most significant entries of the error y −Ax. In the next section we will propose

an optimization algorithm that first approximates the solution w.r.t x and then pursues a greedy

method to update W . Please note that by ignoring the last constraint, the problem turns into the

E-optimal sensor selection.

Although matrix subset selection and sensor selection formulation are highly related to each other,

they have their own approaches to the problem. Sensor selection aims to reduce a system of

equations which is not specified for a fixed unknown vector. For instance, in Problem (4.14) we

minimize w.r.t x and Problem (5.2) is derived by minimizing expectation of estimation error of

x. However, a specific x generates the corresponding values of potential sensors. So far we have

assumed that we do not optimize the problem for a specific observed y. If we have access to the

measurements in a fusion center, we can exploit this information in the selection decision. To

consider more valuable measurements, their values are involved in the following problem in which

we call it data-aware RIP based sensor selection.

Ŵ = argmax
wkm∈{0,1}

min
x
‖WAx‖22 + λ‖W (y −Ax(O))‖22,

s.t. ‖wk‖0 = 1, ‖w(m)‖0 ≤ 1, ‖x‖2 = 1 and ‖x‖0 ≤ PS.
(4.15)

This problem promotes the sensor selection to select sensors from areas with high vulnerability to

error. In a same time, their corresponding bases construct a well-conditioned matrix based on RIP

coefficient. w(m) denotes the mth column of W . The constraint, ‖w(m)‖0 ≤ 1 avoids repetitive

selection of the same sensor. Note that repetitive selection may occur for large values of λ and

there is no need for this constraint in (4.14) because a repetitive column results in a zero eigenvalue
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while the cost function maximizes the minimum eigenvalue. By considering the model’s error, we

aim to compensate the error of model by an intelligent sensor selection. Aggregating all sensors’

measurements in a fusion center is in contrast with the goal of sensor selection. However, we

devise a dynamic framework that needs a partial set of sensors for adapting the sensor selection

algorithm with the dynamic of the sensors. These measurements might be derived by a low-

frequency sampling from all sensors or set of recent measured sensors. O denotes the set of

observed measurements and x(O) refers to the estimation based on the partial observed data.

Ax(O) indicates the approximation of the measurements y. x(O) is obtained by solving the

following regression problem.

x(O) = argmin
x
‖yO −AOx‖2

2 + λLASSO‖x‖1. (4.16)

Where λLASSO regularizes sparsity. In order to obtain the error of model, we need to observe all the

sensors, while we aim to keep the number of observed sensors limited. The following interpolation

in terms of the observed sensors is exploited to derive the error of model for all sensors.

ym =

∑
j∈O γmjyj∑
j∈O γmj

, (4.17)

where γmj is a similarity function between mth and j th sensor. The estimated observation of unob-

served sensors help us to evaluate their fidelity to the model. E.g., if the interpolated measurement

of the mth sensor, ym, also satisfies ym ≈ aTmx(O), it implies that this sensor can be predicted

by some other sensors based on the model. Thus, this sensor is reliable and it does not maximize

the cost function (4.15) significantly. This data-driven approach is inspired by dynamic sensor

selection introduced in [132, 133]. For a given model M on the data, dynamic sensor selection

determines set S such that the estimation error of the rest of sensors, Sc, is minimized. The esti-

mation is obtained based on the model,M, and observed sensors, S [132]. The assumed model in
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our proposed approach is indicated in (4.4).

The parameter λ in (4.15) regularizes the weight of the energy of error and the RIP coefficient of

selected bases. In other words, W reduces the rows of A in an optimal sense and simultaneously,

it selects some vulnerable sensors to model’s error. In the experimental results we will show the

effect of the regularization parameter. According to our simulations, the importance of the main

term of objective function is more than the energy of the model’s error. Even by λ = 0 we have a

well-spread set of selected sensors corresponding to a well-conditioned system of equations while,

by λ → ∞ a set of concentrated sensors would be concluded which corresponds to an ill-posed

system of equations. Simulations show a relatively wide range of λ could be a good choice.

Finding RIP of a matrix requires solving an NP-hard problem [131]. Thus, for a large-scale prob-

lem, it is not feasible to search among all the subsets. A greedy algorithm is proposed to approxi-

mate the RIP of a matrix. To this end, let us consider the following problem.

δPS(A) =

1−min‖Ax‖22 st: ‖x‖2 = 1 and ‖x‖0 ≤ PS.
(4.18)

The solution is approximated in (4.19). The suggested problem neglects the last constraint in

(4.29) and obtains a solution, then projects the obtained solution to the feasible set spanned by the

neglected constraint.

δ̃PS(A) =

1− ‖AΩ`2(TPS{argmin
x
‖Ax‖22 st: ‖x‖2 = 1 })‖22.

(4.19)
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In which, TPS : RN → RN is the truncate function that keeps only PS most significant entries

and makes the rest zero. As the truncated vector no longer satisfies the unit norm constraint,

Ω`2 : RN → RN normalizes the truncated vector to the unit `2 ball. The solution of the alternative

problem denoted by δ̃PS(A) can be solved efficiently using singular value decomposition.

δ̃PS(A) = 1− ‖Ax∗‖22, x∗ = Ω`2(TPS{U(:, k)}),

A = V TΛU, (4.20)

in which, U(:, k) is the kth column3 of U . In other words, x∗ is obtained by setting it to the

normalized and truncated Eigenvector corresponding the minimum Eigenvalue. By exploiting the

approximation of δPS the sensor selection problem can be cast as the following form,

Ŵ = argmin
wkm∈{0,1}

δ̃PS(WA) st: ‖wk‖0 = 1, ∀k = 1, · · · ,K . (4.21)

By using the obtained approximation in (4.20), we conclude

Ŵ = argmax
wkm∈{0,1}

‖WAx∗‖22 st: ‖wk‖0 = 1, ∀k = 1, · · · ,K , (4.22)

3The kth column is represented by U(:, k) and the kth row is represented by U(k, :) in Algorithms 1 and 2. More-
over, U(S, :) represents the reduced matrix by some selected rows indicated by S set.
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in which,

x∗ = Ω`2(TPS{U(:,K)})

WA = V TΛU . (4.23)

Algorithm 4 shows the steps of our proposed greedy algorithm to solve the obtained optimization

problem. To evaluate each sensor we need to compute the most dominant k eigen components

which implies performing singular value decomposition (SVD). However, truncated SVD up to

the kth component will be sufficient. A similar algorithm can be used to solve Problem (4.15).

To this aim, Step 6 in Algorithm 4 should be modified to consider the error of mth sensor, i.e.,

p(m) = ‖x∗‖2
2 +λ|ym−aTmx(O)|. However, it is not practical to have all the measurements at the

fusion center. An online algorithm is proposed that observes one new measurement sequentially.

In each sequence, the observed set of sensors is updated and this set is initialized by the output

of Algorithm 4. In other words, the selected sensors in Algorithm 4 are sensed. Our data-aware

algorithm needs an approximation of the observed data in terms of the corresponding reduced A

using (4.31).

As mentioned in the last section, the online data-aware framework, Algorithm 5, uses an interpo-

lation as the prediction of unobserved measurements. It will be an enabling step for estimation of

model’s error in order to adapt the sensor selection to the measurements. The interpolation is based

on weighted averaging of observed measurements where the weight is a similarity metric that de-

pends on the underlying application. For example, we consider a simple channel gain between two

sensors in CRNs simulations which is an inverse function of distance as the similarity criterion in

4.17.

The bottleneck of complexity order of Algorithm 4 at the kth iteration is performing a truncated singular
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value decomposition to obtain the first k eigen components. Thus, the complexity of the algorithm in the

kth iteration will be O(kMN2}) [134]. Therefore, selection of K sensors implies complexity order of

O(K2N2M).

Algorithm 4 and Algorithm 5 can be implemented in a distributed manner similar to the proposed idea in

Section . The selection procedure is as same as before in each machine but the number of data are decreased

by factor C which is the number of machines. This makes complexity toO(K2N2M ′) where, M ′ = M/C.

Distributed Implementation

Data summarizing is an enabling step for more complicated processing procedures. For example,

computational burden for training a recognition system increases tremendously by the size of the

training data. However, in some cases even data summarizing is not tractable due to the size of data.

A naive approach for data summarizing is randomly sampling from data to make it sufficiently

small.

There exist some attempts to design randomized algorithms for matrix subset selection [126]. The

idea is based on combining deterministic and randomized methods, using a two-phase algorithm.

Algorithm 4 The blind RIP-based Sensor Selection
Require: A, S and K

1: Initialization: W = 0 ∈ RK×M and S = ∅
2: for k = 1, · · · , K (Optimization of the kth row ofW )
3: for m = 1, · · · ,M
4: SVD onA(S

⋃
m, :) to obtain U in (4.23)

5: x∗ = Ω`2(TPS{U(:, k)})
6: p(m) = ‖Ax∗‖2

2

7: end
8: sk = argmax

m
p(m)

9: S = S
⋃
sk andW k,sk = 1
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Algorithm 5 The data-aware RIP-based Sensor Selection
Require: A, S, K, λ and λLASSO

Initialization:O = Output of Algorithm 1
2: while O 6= {1, · · · ,M}
W = 0 ∈ RK×M , S = ∅

4: Observe 1 new measurement and update O
Interpolate yO using yO using (4.17)

6: for k = 1, · · · , K
for ∀m ∈ Sc

8: SVD onA(S
⋃
m, :) to obtain U in (4.23)

x∗ = Ω`2(TPS{U(:, k)})
10: x(O) = LASSO(A,yO, λLASSO) using (4.31)

p(m) = ‖Ax∗‖2
2 + λ|ym − aTmx(O)|

12: end
sk = argmax

m
p(m)

14: S = S
⋃
sk andW k,sk = 1

end
16: O = O

⋃
S and return to 2.

The first phase selects O(klog(k)) rows of the matrix. Then, deterministic subset selection finds

exactly the k most informative rows of the matrix. This randomized algorithm achieves the fol-

lowing bound [126],

‖A− πT(A)‖2
F ≤ O(klog

1
2 (k))‖A−AK‖2

F ,

This bound suggests us that a judiciously or even randomly set of rows of A can provide us a

submatrix with a close subspace to the original matrix. The submatrix might be more convenient

to deal with, specially when the data size is big. In this section, data partitioning is studied as an

enabling step for successive and parallel processing.
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Successive Processing

In order to make the problem tractable, we can employ a method based on successive processing of

partitioned data. Suppose data matrixA is partitioned into C blocks that each block,Ac, contains

Mc rows of A. At the first stage K rows are selected out of M1 rows of the first partition. The

selected rows are forwarded to the next stage in order to perform selection among M2 data of

the second part, as well as the already K selected rows. It means at the second stage there are

M2 + K data and the goal is to select only K rows to feed to the next stage. Alg. 6 shows the

steps of successive E-optimal sensor selection algorithm. In the experimental results section the

performance of this method will be presented.

In addition to the successive method, there is another solution for scenarios that data can be in-

dependently processed over distributed machines in a parallel manner. The successive approach

performs a series of selection procedures and all of these procedures can be implemented in a same

machine. However, in some scenarios we have access to multiple processing nodes in a network.

In this case it is desired to implement a distributed algorithm, which is able to process different

part of data simultaneously. We study two methods for distributing data, random partitioning and

designed partitioning.

Algorithm 6 Successive E-optimal row selection
Require: A, C, and K

1: Initialization: S by ∅.
2: PartitionA to C parts (Ac indicates the indices ofAc).
3: for c = 1, · · · , C
4: Z = S

⋃
Ac

5: S← select K rows ofAZ using Alg. 1.
6: end
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Random Partitioning

In this section, the given matrix,A, is randomly broken into {Ac}Cc=1, in which each submatrix containsMc

rows of the original matrix. In order to ensure that row space of each submatrix is close enough to the row

space of the original matrix, we need to derive a lower bound on the number of members of each submatrix.

To this aim we assume union of subspaces model for the whole data.

Assumption 1: The matrix A can be expressed as a union of subspaces, i.e., A = [U1Q1, · · · ,ULQL]T .

Assume rank ofA isR and rank of each subspace is R
L , where, {U l ∈ RN×

R
L }Ll=1 and {Ql ∈ R

R
L×M ′}Ll=1,

and M ′ = M/L� R
L .

Assumption 1 implies that the original matrix, A, is a union of L subspaces in which intrinsic dimension

of each subspace is at most R/L. This assumption is reasonable for many scenarios in signal processing

and data mining [135, 136]. The following lemma suggests an upper bound for the number of parallel

machines in order to ensure that the row space of each portion of data is equal to the original data with a

high probability.

Assume A follows Assumption 1. If the rows of A are equally partitioned among C parts and samples of

each part are drawn uniformly at random and C satisfies the following inequality,

C ≤ M

Lξ
(
2 + (3/ξ)log2L

δ

) , (4.24)

where,

ξ = 10γmax(R/L, logM/L)log
2R

δ
,

then the row space of each part spans row space of A with probability at least 1 − 2δ − 2 L4

M3 . proof: See

Appendix.

Proposition 1 The order of minimum number of samples for each parallel machine is O(R) in order to

make sure that the span of selected rows is equal to that of the original matrix in each machine with a high
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probability.

This proposition is clearly derived by the steps of proof of Lemma in the appendix. It suggests that each

each machine needs a portion of data such that the required size of each portion is linearly dependent to the

rank of the original matrix.

Assume K samples are drawn from each partition and KC samples are selected in the first phase. The

second phase aims to select only the K most informative samples among the initial selection. Volume sam-

pling and the proposed sampling method select the corners of data such that the selected points constructs

a polygonal in which their vertexes are far from each other. However, the selected point could be outlier

data, i.e., data is not concentrated about some selected samples. We need to ensure that each selected point

represents a relatively large number of non-selected data. Selection algorithms that work based on relative

structure of samples are complicated and they can not be used for the big data regime. To tackle this prob-

lem a concentration-based selection is performed in the second phase of selection on the KC selected data.

K-medoids clustering is a generalization of K-means in which the data centers are selected from the sample

points of data. In the first phase we ensure that all the vertexes of the hull of data are selected and in the

second phase K-mediods algorithm shrinks the selected data to only K samples. This two-phase algorithm

is the practical application which can be exploited for big data sets. As we will see in the simulation results,

the overall two-phase process is faster than performing selection on the whole data using Alg. 3 and it is

much faster than performing k-mediods algorithm for whole data. Alg. 7 shows steps of the proposed two-

phase algorithm for selecting from big data. This algorithm is the robust and practical version of Alg. 3 for

real scenarios which a huge number of noisy data are given.

Designed Partitioning

The best case scenario of data structure and partitioning is illustrated here in order to show an intuition on

appropriate partitioning of data. Assume the data can be modeled by a union of orthogonal subspaces as

described in the following assumption,
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Algorithm 7 two-phase selection algorithm
Require: A, K, C.

1: AssignA(c) ∀c = 1, · · · , C.
2: for c = 1, · · · , C
3: U (c) ←Algorithm 1 (A(c), K).
4: End for
5: U = [U (1), · · · ,U (C)].
6: K-medoids to select K data from U .
7: END

Assumption 2: The matrixA can be expressed as a union of orthogonal subspaces, i.e.,A = [U1Q1, · · · ,ULQL]

and U = [U1, · · ·UL] is an orthogonal matrix.

Although this structure is restricted and real data do not follow the orthogonality constraint, it suggests us a

sub-optimum data partitioning strategy. A subspace clustering algorithm as a partitioning method can reveal

us the optimum partitions where the number of optimum parts is equal to L in Assumption 1. The following

lemma shows that the optimum selection of K rows from all rows of A is equivalent to the selection from

only KC rows that found by C parallel machines, each machine reporting K rows. Assume A follows

Assumption 2 and it is partitioned by subspace clustering where C = L. Let S∗ denotes the solution of the

following problem,

argmin
|S|=K

‖A− πS(A)‖2F . (4.25)

Each parallel machine has to select K rows by solving following problem,

Sc = argmin
S⊂Ac

‖Ac − πS(Ac)‖2F s.t. |S| = K. (4.26)

Then,

S∗ ⊂
C⋃
c=1

Sc.

proof: See appendix.

Inspired by Lemma , we suggest to partition rows ofA according to the underlying subspaces and select K

rows at each distributed node. The results of each distributed selection are aggregated in a center and the
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final selection aims to select K rows from only those KC rows rather than all the rows of A. Algorithm

8 summarizes the steps of partitioning based on subspace identification. This algorithm at each iteration,

finds a subspace of A and then it finds all the rows that lie on this subspace. Theses rows rows construct a

partition. The rows of the found partition are removed from A and this procedure is applied on the rest of

rows, until all of rows are partitioned. At the stage 4 of the algorithm, inspired by Proposition 1, we need to

take O(R) rows in order to ensure that the sampled rows spans sufficiently close subspaces to the whole set

of rows. At the stage 5, any subspace clustering method can be applied. This topic is a well-studied research

and there are well-known algorithms such as K-subspaces, and sparse subspace clustering [137, 11].

Random partitioning requires selection of sufficiently large number of rows in order to be sure that all of

the subspaces of rows are spanned. However, the designed partitioning needs only spanning a specific sub-

space. Aggregating rows belonging same subspace in the same partition results in more accurate distributed

selection. However, this method needs prior processing on the top of the main selection algorithm.

Algorithm 8 Subspace-based data partitioning
Require: A, R, ε.

1: A(1) ← A
2: c = 1
3: WHILE all rows are not partitioned.
4: D← Select sufficiently large number of rows fromA(c).
5: U c ← Identify 1 subspace ofAD
6: Ac ← Determine rows ofA(c) that lie on subspace U c by distance less than ε.
7: A(c+1) ← Remove rows of Ac fromA(c).
8: c← c+ 1
9: END

Reliability Estimation and Dynamic Sensor Selection

Collaborative sensor networks may collect redundant information which results in a larger number of sen-

sor nodes than is needed. While, pruning unnecessary data is essential, Algorithm 3 is measurement-

independent and it reduces the underlying equations of the network to shrink the equations to a well-
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conditioned set of sub-equations regardless of dynamic of the network. This measurement-independent

approach is optimal in an averaged sense, i.e., for different possible measurements. It is appropriate for a

static regime or initialization of a dynamic sensor selection. This section proposes a dynamic sensor selec-

tion framework which considers measurements for sensor selection. First of all, let us define the dynamic

sensor selection systematically as follows,

Definition 6. (Dynamic Sensor Selection) [132]: For a given modelM on the data, determine set S such

that the estimation error of the rest of sensors, Sc, is minimized. The estimation is obtained based on the

model,M, and observed sensors, S.

We assume the compressed sensing model (4.4) for power spectrum sensing. Let us denote the obtained

spectrum power vector by the subset S of sensors at time t as xtS. A proper selection of S enables to

predicting the power spectrum throughout the network’s area.

In order to keep track of the network’s dynamic, we propose to sample most of the nodes in a low rate mode;

while some selected nodes should provide us with data sampled at a high rate enabling estimation of a high

temporal resolution power spectrum map. In this framework, there is no completely switched off sensors,

but we collect data from low-sampling rate sensors to dynamically select the sensors with high sampling

rate. Therefore, we have two following types of sensors in our proposed framework,

1. High-sampling-rate selected (active) sensors: These are a small fraction of sensors selected

by an underlying sensor selection mechanism in order to access real-time data and generate a

dynamic power spectrum map. The active sensors report their sensing at rate fh = 1 sample

per time block.

2. Low-sampling-rate sensors: All sensors collect and report their data in a low-rate mode,

resulting in less bandwidth and power consumption. The low-rate data enables us to validate

the estimated power spectrum map. The low-sampling sensors report their sensing at rate

fl = 1
nl

sample/time. I.e., 1 sample per nl time blocks is collected. It should be mentioned
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that the measurements from low-sampling rate sensors will not contribute in estimating x.

They will be used to determine the reliability of estimation as we will discus below.

The dynamic sensor selection aims to select some sensors as the active-mode set. The rest of sen-

sors are marked as power efficient low sampling rate sensors. If the active set is selected properly,

the rest of sensors can be predicted accurately by the assumed model and the active selected sen-

sors. The ability of sensing is assumed same for all sensors and only the sensing time is different.

However, different bandwidth for sensing can be considered in a more sophisticated framework

which is out of scope of the present work. Selected sensors contain sufficient information enabling

them to predict the rest of sensors by the assumed model on the spectrum (4.32). Low sampling

rate data may cause obsolete information vulnerable to large deviation from the model. Moreover,

changes in the dynamic of network also may cause large deviations between the model’s estimation

and the low sampling rate data. The following expression defines a new metric called reliability

for sensor m at time t.

r(t)
m =

exp(−σ(t− tm))

1 + |ym − E(t)(m,S)|2
. ∀m ∈ {1, · · · ,M} (4.27)

in which,

E(t)(m,S) = aTmx
(t−1)(S)

In (4.27), x(t−1)(S) is the estimation of power propagation at time t − 1 based on collected data

from active sensors indexed by S. Moreover, E(t)(m,S) is the estimation of the measurement of

mth sensor at time t. σ is a temporal forgetting factor. tm is the last time that sensor m is sampled

and the corresponding measurement is ym. The reliability of each sensor consists of two terms. The

numerator indicates how fresh is our observation. Obsolete data results in unreliable observation.

The denominator shows the power of model for estimation of unseen regions. Accurate estimation

of the observation of sensor m using the active demonstrates that the sensor m has a reliable
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Figure 4.2: The main framework of the proposed reliability based sensor selection.

sensing. The proposed dynamic sensor selection framework is illustrated in Fig. 4.2. We propose

to consider the reliability of sensors in the sensor selection procedure in order to determine a

proper subset which is able to compensate large model’s error for the low-rate sampled sensors.

Mathematically speaking, the static E-optimal sensor selection algorithm is modified as follows,

S = argmax
|S|≤K

λmin(ASA
T
S ) + γ‖uS‖2

2, (4.28)

in which, γ is the regularization parameter and um = r−1
m represents unreliability and uS is the sub-

vector of u indexed by set S. The superscript (t) is removed due to simplicity of notation. It means

we are looking for unreliable sensors to select them for the next time slot in order to compensate

the model’s error.

Optimization and Complexity

In order to cast the dynamic sensor selection (4.28) in a tractable formulation, first let us rewrite

the minimum eigenvalue as the following problem.

λmin(A) = min‖Ax‖22 s.t. ‖x‖2 = 1. (4.29)
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Problem (4.28) can be written in the following form,

W (t) = argmax
W

min
x
‖WAx‖22 + γ‖Wu(t)‖22 s.t. (4.30)

‖x‖2 = 1 ,Wij ∈ {0, 1}, ‖wk‖0 = 1 and ‖wm‖0 ≤ 1.

In which W ∈ RK×M reduces the matrix A ∈ RM×N by some selected rows. wk represents the

kth row of W and wm indicates the mth column of W . The last constraint ‖wm‖0 ≤ 1 avoids

repetitive selection of the same row (sensor). This problem implies eigenvalue optimization over

combination of rows ofA that it is shown to be NP-hard [131]. Accordingly, we propose a greedy

algorithm to solve (4.30).

Algorithm 9 shows the steps of our proposed greedy algorithm to solve the obtained optimization

problem. This algorithm optimizes the reduction matrix row-by-row where the reliability of the

non-selected sensors are being considered. Assume the algorithm aims to select a new sensor at the

kth iteration. Up to current iteration, k− 1 sensors already are selected. The algorithm evaluate the

non-selected sensors one-by-one in order to find the sensor that maximizes the objective function.

The objective function is a weighted summation of the minimum eigenvalue of the restricted set of

rows (sensors) and their corresponding unreliability weights. To evaluate each sensor we need to

compute the most dominant k eigen components which implies performing singular value decom-

position (SVD). However, truncated SVD up to the kth component will be sufficient. An online

algorithm is proposed that observes the non-selected sensors with a low sampling rate as depicted

in Fig. 4.2. In each sequence, the observed set of sensors is updated as well as their corresponding

reliability weights. The first step to update the reliability is estimating the propagation using only
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Algorithm 9 Reliable E-optimal Sensor Selection
Require: A, S, K and r
Output: The selected set S and reduction matrixW .

Initialization: W = 0 ∈ RK×M and S = ∅
for k = 1, · · · , K (Optimization of the kth row ofW )

for ∀m ∈ Sc
SVD:A(S

⋃
m, :) = V TΛU

x∗ = U(:, k)
p(m) = ‖Ax∗‖2

2 + γu(m)
end

sk = argmax
m

p(m)

S = S
⋃
sk andW k,sk = 1

end for

the current active sensors. To this aim the following problem must be solved.

x(t)(S) = argmin
x
‖W (t)(y − Ax)‖2

2 + λLASSO‖x‖1. (4.31)

Here λLASSO regularizes sparsity andW indicates the reduction matrix to the selected set S. Those

sensors whose measurements are matched with the estimated power density map are marked as

reliable. A consistent definition is proposed in (4.27) which considers the deviation of actual

measurements from the estimation of the model as a metric for reliability. The subscript t is

removed in Algorithm 2 for simplification. Algorithm 10 shows the overall process of spectrum

sensing using the selected sensors.

The bottleneck of complexity order of Algorithm 9 at the kth iteration is performing a truncated

singular value decomposition to obtain the first k eigen components. Thus, the complexity of the

algorithm in the kth iteration will be O(kMN2) [134]. Therefore, selection of K sensors implies

complexity order of O(K2MN2).
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Algorithm 10 Spectrum Sensing using Dynamic Sensor Selection
Require: A, S, K, λ, fl and λLASSO.
Output: Power spectrum for each time x(t).

Initialization: S = Output of Algorithm 1 and x(S) = Result of Problem (4.31)
2: for a new time block (t)

sample M × fl sensors
4: Update tm = t for the sensed sensors

Update reliability using (4.27)
6: S(t) = Output of Algorithm 9

x(t)(S(t)) = Result of Problem (4.31)
8: end for

Experimental Results

Our proposed schemes are evaluated in three cases including sensor selection in cognitive radio

networks (CRNs), data selection for supervised learning, and performance evaluation using syn-

thesized data. The underlying model is y = Ax. Matrix A in CRNs is an array of channel gains

from different locations of the network to locations of sensors. In the case of supervised learning,

A is the collection of training data. x and y are specified for a test data. However, it is desired

that the trained system works for any test data. In the first case, we are estimating a specific x

which corresponds to a specific y. While for supervised learning it is desired that the selected data

constructs a well-conditioned inverse problem that is averagely appropriate for any test data. Thus,

we exploit Algorithm 5 only for the first application where we access to the actual measurements

of sensors in an online manner.

Sensor Selection in CRNs

The simulations are performed for collaborative spectrum sensing. Our goal is to estimate vector

x that indicates transmitted spectrum power at some candidate points. We assume a network setup

the same as that of [138]. Consider Ns transmitters and M receivers in an area. The receivers

76



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Candidate Points for Transmitters

Potential Sensors

Figure 4.3: An example setup with 25 candidate points as transmitters.

receive a superposition of the transmitter signals. Figure 4.3 shows a setup consist of Ns = 25

potential transmitters and 2 active points. The received signals are contaminated by channel gain

and additive noise, represented by,

ym = Amx + σ2
m1, ∀m = 1 . . .M, (4.32)

where, 1 ∈ Rn, ym ∈ Rn in which n is the number of frequency samples in each time slot.

Moreover,AT
m contains the corresponding channel gains and σ2

m represents noise power at the mth

receiver. The following problem aims to estimate x

x̂ = argmin
x,σ
‖y −Ax− σ ⊗ 1‖2

2 + γ‖x‖1, (4.33)

in which σ ∈ RM indicates the noise level of each sensor. y and A are concatenation of ym

and Am respectively and ⊗ denotes kronecker multiplication. Each entry of x determines the

contribution of the sth source on the sensed data. Due to scarce presence of active transmitters and

their narrow band communication, ‖x‖1 is exploited which encourages sparsity.

Suppose we have potentially 300 sensors and they are estimating an x ∈ R36 that has only 5 active

transmitters. Figure 4.20 shows the performance of different algorithms versus the number of
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Figure 4.4: Performance of different sensor selection algorithms in terms of number of selected sensors
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Figure 4.5: Performance of the selection algorithm in presence of 0dB AWGN.

selected sensors. Successful recovery is defined as true estimation of the support of sparse vector

using the measurements.

For the first experiment, Problem (4.33) is solved 200 times by different selected sensor sets for

each algorithm. Additive noise is not considered and the iterative re-weighted least square algo-

rithm is employed to obtain the sparse solution [139]. As it can be seen in Figure 4.20, among the

blind methods, sensor selection using RIP coefficient δ2S has the best performance. In the case of

known data in a fusion center, the information of sensed data has a great effect on the centralized
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estimation. The data-aware algorithm observes some sensors in an online manner. 4

Fig. 4.5 shows performance of the proposed selection algorithm in a dynamic system where status

of the network is changed at time slot 25 and 60. Switching of any propagation point causes a status

change. This simulation is performed in presence of 0dB AWGN in addition to 6 tab multi-path

fading. As it can be seen the blind algorithm performs better than random selection, however, the

selected sensors are fixed and independent of the dynamic of system.

Fig. 4.21 exhibits the effect of involving sensors measurements in the data-aware sensor selection

algorithm. Random sensing of only 3% of data (9 sensors within 300 sensors) prior to sensor

selection makes an improvement in normalized estimation error; similarly, usage of 15% of data

significantly improves the performance to be close to the centralized sensor selection which access

to 100% of the data. The normalized error is defined as follows as the criterion for performance,

normalized error =
‖x∗ − x(O)‖2

‖x∗‖2

.

In which, x∗ is the ground truth solution.

4The initial sensors can be determined by our blind RIP-based sensor selection and then in each time slot a new
sensor will be observed.
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Figure 4.7: Performance of our Data-aware algorithm.

Another simulation is performed to select 20 sensors out of 200 ones to determine the power spec-

trum in 36 candidate points while 10 of them are active. Figure 4.7(a) shows the performance

of our proposed data-aware method in terms of MSE of the sparse vector estimation while λ is

assumed 0.7. The performance improves as the number of observed sensors increases. The per-

formance obtained by observation of 50% of data (100 sensors) is about that of all the sensors

because of the redundancy among the sensors. It can be seen in Figure 4.7(b) that the error of

estimation is significantly decreased by setting λ = 0.7. However, an efficient value of γ depends

on the problem setup and should be tuned. Setting γ = 0 is equivalent to the static E-optimal

sensor selection. Simulation shows the proposed reliable sensor selection performs better than the

static sensor selection for a relatively wide range of γ, i.e., the problem is not very sensitive to

well-tuning of this parameter.

Fig. 4.8 shows the power spectrum of a network in an area. We have potentially 200 sensors,

however we are allowed to use only 8 sensors for collaborative spectrum estimation. The selected

sensors using the blind and data-aware RIP based are marked in this figure. As it can be seen,

the selected sensors of the blind RIP based are spread in the area while the selected sensors by

the data-aware algorithm have a tendency to move toward the more eventful areas of the network.
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Figure 4.8: The true spectrum in the area of interest along the selected sensors obtained by 3 methods in
spatial domain

Figure 4.9: The error of estimated spectrum in the area of interest corresponding to Fig. 4.8. (Left) RIP
based, Algorithm 1. (Middle) Online RIP based, Algorithm 2 while only 5% of sensors are sensed. (Right)
Centralized RIP based, Algorithm 2 while all the sensors are sensed. λ is assumed 0.7

Figure 4.22 shows the error of estimated spectrum using different selected sensors in the setup of

Fig. 4.8. To this end, first, the spectrum is estimated in all of sensors and the error is obtained

by Euclidean distance of the estimated spectrum and the actual measurements, then a weighted

averaging is performed to interpolate the spectrum error in every point.

Data Selection for Supervised Learning

In this section, the applicability of the proposed selection technique in feature and data selection is

studied. This is a challenging problem in computer vision and machine learning [140].
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Figure 4.10: The projection error of the training data into the subspace spanned by the selected rows.

We evaluate the performance of our method as well as other algorithms for finding appropriate

representatives for classification. The training data set is reduced to only some selected data for

each class. The classifier is then trained solely by the reduced set. We assume that if the represen-

tative data are informative enough about the initial data set, the classification performance should

be close to the comprehensive classifier. We compare our proposed algorithm with some standard

methods for finding representatives. These methods are Kmedoids [141], volume sampling [126],

and a simple random selection. Some basic classifiers are utilized for learning and evaluating

the test data including nearest neighbor (NN), nearest subspace (NS) [142], sparse representation

based classifier (SRC) [143], and linear support vector machine (SVM) [144].

Extended Yale-B face images dataset [145] is used to perform the simulations. The dataset consists

of 38 subjects in which there exist 56 images for each subject. Data is split into two groups: train

set and test set that contain 51 and 5 images, respectively. The selection algorithms aim to pick up

a few training images among all 51 ones to train a general classifier which is able to identify the

test images.
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Fig. 4.10 shows the normalized error of the projection of training data on the subspace spanned

by the representatives. In this figure matrix T is the collection of the training data which repre-

sentatives are selected from them. It is obvious that PCA indicates the best normalized error 5.

I.e., it can be interpreted as a lower bound for the projection error on any low-dimensional space.

However, we aim to indicate the subspace only using few images of the training data set. The

performance of random selection, K-medoids, D-optimal, and our suggested E-optimal selections

are shown in this figure.

The projection error of test data is depicted in Fig. 4.11. In this figure matrix T is the collection of

the test data which are not seen for selection procedure. Although the error of PCA representatives

for training data is much less than the other methods due to over-learning of the bases, in the case

of test data the performance of our suggested selection is approximately the same as that of PCA

representatives. This means, we could span a generalized subspace by only using few selected

images that are able to cover the desired signal space as well as PCA method that uses all of the

training data.

Fig. 4.12 shows 40 images from the third subject of Extended Yale-B data set. As an example we

are to select 6 images using K-medoids and our suggested algorithm. The results are shown in Fig.

4.13. The selected set of images using K-medoids do not contain the shadowing effect from the

front side while our selection capture from different point of views.

The effect of data partitioning using the successive E-optimal selection on the performance of se-

lection is studied for a larger data set. MISNT data set is used which contains 60, 000 sample

images of handwritten digits [146]. Two criteria are considered, the first one is recognition rate

using the learned classifier by reduced data and the second criterion is running time for data selec-

5According to the definition of PCA, it spans the best low-rank subspace that minimizes the normalized error
defined in Fig. 4.10 for a set of training data.
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Table 4.2: Accuracy of different classifiers using partial data for learning of Extended Yale-B dataset with
5 representatives.

NN NS SRC SVM
Random 26.8% 45.3% 72.0% 55.7%
Kmedoids 39.0% 61.1% 82.6% 68.2%
Volume sampling 76.3% 71.6% 88.9% 85.3%
E-optimal 77.9% 82.6% 94.2% 90.0%
All Data 81.4% 95.8% 97.1% 98.7%
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Figure 4.11: The projection error of the test data into the subspace spanned by the selected rows.

tion and data classification. Reducing the number of training data may decrease the performance

of a classifier. A proper selection aims to preserve the recognition rate about the one using full

data. On the other hand, reduced data make the training algorithm fast. Exploiting full data needs

no process for selection but the training process needs a high amount of computations.

The basic E-optimal criterion is vulnerable to outlier data. It aims to select the most distinguished

samples. However, unusual samples are probably different from each other and they satisfy the

E-optimal criterion. The proposed two-phase algorithm first selects some candidates for final se-

lection using E-optimal criterion and in the second phase the final selection reduces candidate

samples to exact K selection. Fig. 4.14 shows the effect of two-phase algorithm on selection from
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Figure 4.12: Training data corresponding to the third subject of Extended Yale-B data set. This data set
contains different angles of shadowing for each subject.

(a) Selected faces by K-Medoids selection. (b) Selected faces by E-optimal selection.

Figure 4.13: Comparison of the proposed E-pptimal representatives versus K-mediods selection.

5842 samples of digit 4. The selected samples by E-optimal criterion are exceptional hand-written

characters for digit 4. While, the two-phase algorithm selects visually proper representative for

this class. Quantitative measures also will be demonstrated.

Sparse subspace classifier is learned by only few selected data. Four criteria are investigated for

selection. D-optimal, the proposed E-optimal, K-medoids and the proposed two-phase algorithm

are utilized for selection. D-optimal and E-optimal are vulnerable to outlier data as depicted in

Fig. 4.14 (a). The k-medoids algorithm performs better than greedy algorithms for selection as it

finds some points that data are concentrated around them. However, k-medoids algorithm is not

tractable for real-time processing of big data. Our suggested two-phase algorithm outperforms K-
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(a) E-optimal criterion on the whole data.
(b) Two phase distributed selection based
on E-optimality.

Figure 4.14: 12 selected images of digit 4 from 5842 images.
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Figure 4.15: Performance of nearest subspace classifier learned by few data from each class.

medoids in terms successful classification rate. In addition to better representatives, our two-phase

selection performs much faster than K-medoids algorithm. The running time of algorithms are

shown in Fig. 4.16. Reducing the number of training signals saves a huge computation burden for

training the classifier. In this figure algorithms are performed using an Intel Xeon CPU 3.7 Ghz

and 8 GB RAM. A simple one nearest neighbor classifier needs 784 seconds to classify 5000 test

images. While by selecting data it decreases to 2.83 seconds.

Deep learning achieves the best results for classification of MNIST data set. In order to compare

the the effect of data selection on the state of the art method of classification, a deep neural net-

work is learned with the selected data. MLP network and Capsules network [147] are employed

to perform classification. Table 4.3 summarizes the accuracy of learned classifiers. The MLP
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network has three layers and the hidden layer contains 1000 neurons. As it can be seen selected

training set improves the classification rate. For example, the learned network using 2,000 ran-

dom images is working worse than the network which is learned by 1,000 selected images as the

training set. However, Capsule net which exhibits one of the best performances for MNIST data

set is less sensitive to the input training data and the improvement is less than that of MLP. Table

4.4 shows processing time for selection from 60,000 images for K-medoids algorithm and our pro-

posed two-phase algorithm. Please note that the proposed algorithm can be implemented parallel

which reduces the running time significantly. However, the centralized algorithm is simulated. The

effect of data reduction on the speed of learning a deep network is presented in Table 4.5. The run-

ning time for one epoch is reported. MLP needs 20 epochs for convergence and it takes 500 epochs

for CapsNet to reach the best performance. Thus, running time of MLP for whole data is about 30

seconds and for CapsNet is about 266 minutes. While, using only 1000 samples the running time

for MLP decreases to only 1 second and for CapsNet it takes less than 3 minutes. Deep learning

simulations are performed on Chainer framework [148] using 1 GPU of Nvidia TitanX and 12 GB

RAM.
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Figure 4.16: Running time of selecting few data from each class.
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Table 4.3: Performance of selection algorithms in terms percentage of classification rate using a deep neural
network learned by partial data. The original data set contains 60,000 training images. (Left) K-medoids,
(Middle) two-phase. (Right) Random Selection. Each classifier is learned by only 200, 500, 1000 and 2000
training data out of 60,000. The performance of MLP using all 60, 000 samples is 98.25 and it is 99.66 for
the CapsNet architecture.

200 500 1, 000 2, 000
MLP 87.45 88.26 80.84 89.81 91.12 88.52 92.13 93.11 91.03 93.79 94.50 92.91
CapsNet 84.38 81.85 78.61 92.76 93.10 91.87 96.11 96.62 95.72 97.91 97.69 97.59

Table 4.4: Running time (seconds) of data selection corresponding to Table 4.3.

200 500 1000 2000
K-medoids 193.4 218.4 433.2 1328
two-phase 31.61 160.8 191.3 280.6

Synthesized Data

In the first setup, data are generated on 10 subspaces within R500. Each subspace is ranked 4 and

there are 1000 samples per each subspace. The goal is to select some data that spans all the rest

of data. Obviously, the union of data is ranked at most 40. Thus, 40 data can be sufficient to build

a subspace that reconstructs all data. Fig. 4.17 shows normalized projection error of data on the

span of selected data. D-optimal and E-optimal criteria are able to select 40 samples that exactly

recover all data. However, E-optimal solution achieves lower errors when the rank of data is not

estimated accurately.

Table 4.5: Running time (seconds) of neural network learning corresponding to Table 4.3. Running time
per epoch is reported.

200 500 1000 2000 60, 000
MLP 0.029 0.04 0.051 0.078 1.55
CapsNet 0.073 0.18 0.39 0.88 32.18
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Figure 4.17: Error of subspace identification using selection.

Matrix A is generated using the union of subspaces model. In order to make the synthetic data

more realistic, we generalize Assumption 1 for simulations by considering non-uniform character-

istics of subspaces. The rank and the number of members of each subspace are also considered

random and the generated data is contaminated by noise. Moreover, the span of subspaces may

be overlapped. Matrix A is modeled by XD +N . Rows of D spans the synthesized row space

and coefficients X specify contribution of rows of D for constructing each row of A. Matrix N

represents the AWGN noise.

Fig. 4.18 compares the performance of two proposed distributed schemes with the lower bound

indicated by PCA and the upper bound that corresponds to the random selection. The dimension

of data is 100 and 50, 000 data are generated. SNR is +20dB and K = 10 data are selected.

C = 1 points to the non-distributed implementation. Random partitioning deteriorates the per-

formance significantly. However, it is still much better than purely random selection. The perfor-

mance of random selection is evaluated by averaging of performances of 100 different randomly

selected rows. The subspace-based partitioning preservers the performance using the proposed

pre-processing. K-subspaces algorithm is exploited for subspace identification [137]. The com-

putational burden of the proposed distributed algorithm is demonstrated in Fig. 4.19 in terms of

running time. As the number of distributed nodes increases, each node performs less computations.
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Figure 4.18: Performance of the distributed selection algorithm in terms of number of distributed nodes.
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Figure 4.19: Complexity of the distributed selection algorithm in terms of number of distributed nodes.

However, the pre-processing for partitioning implies more complex operations.In this simulation

both distributed selection and partitioning are performed by a same processor. In Fig. 4.19 the bot-

tleneck of the designed partitioning scheme comes from complexity of partitioning. While, a more

powerful processor can be employed in a fusion center to perform the needed pre-processing oper-

ations. Moreover, as only one subspace is needed in each succession, faster subspace identification

algorithms can be employed rather than K-subspaces.

In this chapter the problem of sensor selection is considered and its relation to existing work on

matrix subset selection is elaborated. We developed a new subset selection method as an extension
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for the well-known volume sampling. Our criteria is based on E-optimality which is in favor of

compressive sensing theory. Moreover the E-optimal criterion is extended to RIP-based sensor se-

lection. Selection is an enabling step for efficient processing of a large amount of data, however for

many cases selection from large data also is challenging. To this aim, successive and distributed

implementation of the proposed algorithm are developed. Experimental results indicate the perfor-

mance of our suggested sensor selection algorithm in cognitive radio networks’ spectrum sensing

as well as supervised learning with partial selected data.

Dynamic Sensor Selection

The simulations are performed for collaborative spectrum sensing. The setup for generating data

are employed from [138]. Our goal is to estimate vector x that indicates transmitted spectrum

power at some candidate points.

For the first simulation suppose we have potentially 300 sensors and they are estimating an x ∈ R36

that has only 5 active transmitters. The location of sensors are derived from a uniform distribution

and the active transmitters are selected randomly and the results are averaged for 200 different

realizations. The following linear measurements are sensed by sensors m = 1 . . .M ,

ym = aTmx + νm,

where, νm indicates additive white Gaussian noise. ams shows the sth entry of am is the channel

gain between the mth sensor and the sth potential source. The channel gain between two points is

assumed by one over squared distance of two points. Since, the ability of sensors is considered

the same over spectrum, thus the simulations are performed for a single spectrum band. The same

procedure can be performed for multi-band spectrum regime independently. Figure 4.20 shows

the performance of different static algorithms versus the number of selected sensors. Static refers

to measurement-independent methods. In this experiment the SNR is set to +20dB. Successful
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recovery is defined as true estimation of the support of sparse vector using the measurements.

Problem (4.31) is solved 200 for each algorithm. The Sparse solution is obtained using the iterative

re-weighted least square algorithm [139]. As it can be seen in Fig. 4.20, E-optimal based sensor

selection has the best performance.

Fig. 4.21 exhibits the effect of involving reliability on the static sensor selection. Suppose there

are 300 potential sensors and the low-sampling rate is set equal to 1
30

. It means in each time block

10 new measurements contribute to construct the reliability weights (4.27). Observation of new

measurements of one time block makes an improvement in normalized estimation error; similarly,

usage of 5 time blocks significantly improves the performance to be close to the estimation after

30 time blocks in which all the sensors are observed. The forgetting factor is set to 0 as the state of

network is not changed during observation of 30 time blocks. Thus, aggregating the measurements

without the forgetting factor is optimum. The normalized error, ‖x∗ − x(S)‖2/‖x∗‖2, is defined as

the criterion for performance, where, x∗ is the ground truth solution.

Fig. 4.22 visualizes the error of spectrum sensing in the area of network for the setup of Fig. 4.21.

We are to choose 8 sensors.

Fig. 7 shows that the error of estimation is significantly decreased by setting γ = 0.7 for the setup
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Figure 4.20: Performance of different static sensor selection algorithms in terms of number of selected
sensors.
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Figure 4.22: The error of estimated spectrum in the area of interest. (Left) E-optimal, Algorithm 1. (Mid-
dle) Reliable E-optimal, Algorithm 2 after sensing in one time block. (Right) Reliable E-optimal, Algorithm
2 while all the sensors are sensed after 30 time blocks. γ is assumed 0.7

of Fig. 4.21. However, an efficient value of γ depends on the problem setup and should be tuned.

Setting γ = 0 is equivalent to the static E-optimal sensor selection. Simulation shows the proposed

reliable sensor selection performs better than the static sensor selection for a relatively wide range

of γ, i.e., the problem is not very sensitive to well-tuning of this parameter.

In addition to power spectrum map, the proposed framework is able to generate a new network pro-

file which can provides us trustworthy of the estimated spectrum for each point of the network. We
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Figure 4.23: MSE error versus different values of γ.
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Figure 4.24: Reliability maps of 4 time blocks illustrate how the proposed framework evolves in time in
order to select adapted sensors to the dynamic of network after state transition. Sensors within unreliable
(red) areas have more chance of selection.

call this side output reliability map. Interpolation of the estimated reliability of sensors through-

out the network’s area, generates the reliability map. Fig. 4.24 visualizes the temporal effect of

dynamic sensor selection using the reliability map. Unreliable areas are indicated by red and blue

areas represent reliable estimation of spectrum. Reliable sensor selection aims to compensate un-

reliability by considering more chance for red regions. In the next time slot the error for those

regions are compensated. In this figure, each state of the network corresponds to a specific set of

active PUs.

Fig. 4.25a shows the location of active PUs for a dynamic network with 3 states. There are 90

time blocks and the state of network is changed in blocks 24 and 59. The forgetting factor is set

to 0.1/(∆T ) in which ∆T is the time difference of two consecutive time blocks. Fig. 4.25b and

Fig. 4.26 show the performance of sensor selection in terms of average network reliability and the

spurious error of spectrum sensing which is defined by ‖x̂spurious‖1 =
∑

i 6∈x∗ support |x(S)i|.As it can

be seen, the reliability is increased and the undesired power propagation is decreased by exploiting

the dynamic framework, especially for the second state.
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Figure 4.25: (a) A dynamic network with 3 states for the location of active PUs. The shaded blue squares
represent active PUs. (b) The effect of reliable sensor selection for compensation of the model error in the
reliable sensor selection procedure.
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Figure 4.26: The effect of reliable sensor selection for compensation of the model error in the reliable
sensor selection procedure.

Conclusion

The problem of sensor selection is considered and its relation to existing work on matrix subset

selection is elaborated. We developed a new subset selection method as an extension of the well-
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known volume sampling. Our criteria is based on E-optimality, which is in favor of compressive

sensing theory. We extended the static E-optimal sensor selection to a dynamic sensor selection

method that exploits the measurements in an online manner. The experimental results indicate

the efficiency of our suggested sensor selection algorithm in cognitive radio networks’ spectrum

sensing.
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CHAPTER 5: SPECTRUM PURSUIT: DATA REDUCTION BASED ON

PRESERVING SPECTRAL STRUCTURE

Column subset selection problem (CSSP) aims to find a subset of a dataset such that the linear

combination of selected samples approximates the entire dataset. This chapter presents an efficient

solver for CSSP, referred to as Spectrum Pursuit (SP), in which samples are selected to pursue the

most significant spectral components of the entire data. SP has a linear computational complexity

w.r.t. number of original samples. This is a significant improvement over state-of-the-art tech-

niques with cubical complexity. In addition to its simplicity, SP is an accurate solver for CSSP and

is parameter-free that makes it a universal and efficient selection algorithm for many applications.

At each iteration of SP, one selected sample is updated by capturing maximum information from

the structure of the data based on spectral decomposition. We show that SP is an optimal selector

for sampling from linear subspaces. Moreover, a tight upper bound for projection error on the

span of selected data is presented. Furthermore, the superiority of SP is demonstrated on learning

based on representatives for ImageNet dataset; training a generative adversarial network (GAN) to

generate multi-view images on CMU Multi-PIE dataset, and fast subspace clustering on MNIST

dataset.

With the ever-increasing proliferation of sensing devices, a massive amount of data is available for

machine learning (ML) purposes. However, processing/labeling/communication of a large number

of input data has remained challenging. Therefore, novel ML methods that make the best use of a

significantly less amount of data are of great interest. For example, active learning (AL) [14] aims

at addressing this problem by training a model using a small number of labeled data, evaluating

the trained model, and then querying the labels of selected representatives, which are used later

for training a new model. In this context, preserving the underlying structure of data succinctly by
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representatives is an essential concern.

Dimension reduction techniques and clustering-based approaches aim to extract a concise repre-

sentation of data. However, representatives or exemplars obtained by such methods are often not

easy to interpret. Furthermore, obtaining each representative implies processing all or a large por-

tion of data. Thus, it is desired to optimally select the representatives from data samples. There

are some clustering approaches that select the representatives from data such as the k-medoids

clustering [13]. These clustering methods assign each data sample to only one prototype which

is the cluster center. However, in the case of more structured data only one prototype from data

does not contain sufficient information to capture the underlying structure of the whole cluster.

Randomly selecting K out of M data, while computationally simple, is inefficient in many cases,

since non-informative or redundant instances may be among the selected ones. On the other hand,

the optimal selection of data for a specific task implies solving an NP-hard problem [18]. For

example, finding an optimal subset of K data samples from M to be employed in training a Deep

Learning (DL) network with the best performance requires
(
M
K

)
number of trial and errors, which

is not tractable. It is essential to define a versatile objective function and to develop a method that

efficiently selects the K samples that optimize the objective function. Let us assume the M data

samples are organized as the columns of a matrixA ∈ RN×M . The following is a general purpose

cost function for subset selection, known as column subset selection problem (CSSP), which is an

open problem [19]:

S∗ = argmin
|S|≤K

‖A− πS(A)‖2
F , (5.1)

where πS is the linear projection operator on the span of K columns of A indicated by set S. This

problem has been shown to be NP hard [18, 20]. Moreover, the cost function is not sub-modular

[21] and greedy algorithms are not efficient to tackle Problem (5.1). Computer scientists and
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mathematicians during the last 30 years have proposed many tractable selection algorithms that

guarantee an upper bound for the projection error ‖A−πS(A)‖2
F . These works include algorithms

based on QR decomposition of matrix A with column pivoting (QRCP) [22, 23, 24]; methods

based on volume sampling (VS) [25, 26, 27] and matrix subset selection algorithms [19, 28, 29].

However, the guaranteed upper bounds are very loose and the corresponding selection results are

far from the actual minimizer of CSSP in practice. Interested readers are referred to [30, 28] and

Sec. 2.1 in [31] for detailed discussions. For example, in VS it is shown that the projection error

on the span of K selected samples is guaranteed to be less than K + 1 times of the projection error

on the span of the K first left singular vectors; which is too loose for a large K. Recently, it was

shown that VS performs even worse than random selection in some scenarios [32]. Moreover, some

efforts have been made using convex relaxation and regularization. Fine tuning of these methods

is not straightforward [6, 4, 33]. Moreover their cubical complexity is an obstacle to employ these

methods for diverse applications.

Recently, we have proposed a low-complexity approach to solve CSSP, referred to as iterative

projection and matching (IPM) [3]. IPM is a greedy algorithm that selects K consecutive and

locally optimal samples, yet without the option of revisiting the previous selections and escaping

from local optima.

In this chapter, we propose a solver for CSSP, referred to as Spectrum Pursuit (SP) and experiments

show that SP provides an accurate solution for CSSP. Fig. 5.1 shows the concept behind the

proposed algorithm for data selection. Assume we are not restricted to select representatives from

data samples and we are allowed to generate pseudo-data and select them as representatives. In

this scenario, the best K representatives are the first K spectral components of data according to

the definition of singular value decomposition (SVD). However, the spectral components of data

are not among data members. Our proposed algorithm aims to find K data samples such that their

span is close to that of the first K spectrum of data obtained from the ensemble of data. Fig.
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Figure 5.1: A dataset consisting of 20 real images is considered as blue dots. The best possible subspace
that spans the dataset is shown in green. However, the significant eigenfaces (green dots) are not among
the dataset. We look for the best 3 out 20 real images whose span is the closest to the span of 3 green
eigenfaces; the best subspace is shown in blue. There are

(
20
3

)
possible combinations from which the best

representatives must be selected.

5.1 shows the intuition of our proposed algorithm. In other words, Our proposed algorithm finds

some pseudo-samples efficiently (which are not among our dataset) and then a few real samples are

matched with the found pseudo-samples, iteratively. Iterative methods for finding low-dimensional

representations are previously explored [149, 150]. Moreover, a tight upper bound for projection

error of selection is derived.

Problem Statement and Related Work

Let a1,a2, . . . ,aM ∈ RN beM given data points of dimensionN . We define anN×M matrix,

A, such that am is the mth column of A, for m = 1, 2, . . . ,M . The goal is to reduce this matrix

into an N × K matrix, AR, based on an optimality metric. In this section, we introduce some

related work on matrix subset selection and data selection.
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Selection Based on Diversity

Consider a large system of equations y = ATw, which can be interpreted as a simple linear

classifier in which y is the vector of labels, A represents the training data and w is the classifier

weights. An optimal sense for data selection is to reduce this system of equations to a smaller

system, yR = AT
Rŵ, such that the reduced subsystem estimates the same classifier as the original

system, i.e., the estimation error of ŵ is minimized [47] over an assumed distribution for y. A

typical selection objective is to minimize ‖w − ŵ‖2. This criterion is referred to as the A-optimal

design in the literature of optimization, which is mathematically equivalent to the following prob-

lem [48],

ẑ =argmin
z

tr(
M∑
m=1

zmama
T
m)

−1

, (5.2)

subject to ‖z‖0 = K and z ∈ {0, 1}M ,

where z = [z1 z2 . . . zM ]T and zm indicates the contribution of the mth sample. According to

the constraints only K samples can be selected in the reduced system. This is an NP-hard problem

which can be solved via convex relaxation with computational complexity of O(M3) [49].

However, there are other criteria that have some interesting properties. For example D-optimal

design optimizes the determinant of a reduced matrix [49]. There are several other efforts in

this area [9, 27, 26, 50, 51]. Inspired by the D-optimal design, volume sampling (VS), which

has received lots of attention, considers a selection probability for each subset of data, which

is proportional to the determinant (volume) of the reduced matrix [26, 52, 47]. The VS theory

expresses that if T ⊂ {1, 2, . . . ,M} is any subset with cardinality K, chosen with probability
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proportional to det(AT
TAT), then1,

E{‖A− πT(A)‖2F } ≤ (K + 1)‖A−AK‖2F , (5.3)

where πT(A) is a matrix representing the projection of columns of A onto the span of selected

columns indexed by T. E indicates expectation operator w.r.t. all the combinatorial selection of

K rows of A out of M . AK is the best rank-K approximation of A, that can be obtained by

singular value decomposition and ‖.‖2
F is the Frobenius norm. VS is not a deterministic selection

algorithm, as it gives a probability of selection for any subset of samples, and for which only a

loose upper bound for the expectation of projection error is guaranteed. In contrast, in the present

work a deterministic algorithm is proposed based on direct minimization of projection error using

a new optimization mechanism.

Diversity-based selection is very sensitive to outliers and in some applications these methods are

employed for outlier detection [53, 54]. A set of outlier samples from a dataset has probably more

diverse samples rather than a randomly sampled subset. Thus, diversity-based selection methods

should consider outliers properly. Recently, an exemplar-based subspace clustering method is

proposed using selection [5]. Their employed selection algorithm is based on selecting farthest

sample from previously selected samples and infusing sparsity on the metric of selection. However,

our proposed selection algorithm does not necessarily provide diverse samples far from each other.

Representative Selection

A method for sampling from a set of data is proposed by Elhamifar et. al. based on sparse

modeling representative selection (SMRS) [6]. Their proposed cost function for data selection is

1AT is the selected columns ofA indexed by set T.
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the error of projecting all the data onto the subspace spanned by the selected data. Mathematically,

the optimization problem in [6] can be written as,

argmin
|T|=K

‖A− πT(A)‖2F . (5.4)

This is an NP-hard problem and the proposed method in [6] tackles this problem via convex re-

laxation. However, there is no guarantee that convex relaxation provides the best approximation

for an NP-hard problem. Furthermore, such methods that try to solve the selection problem via

convex programming are usually computationally too intensive for large datasets [6, 4, 33, 55]. A

new fast algorithm for solving Problem (5.4) is proposed.

Dissimilarity-based Sparse Subset Selection (DS3) algorithm selects a subset of data based on

pairwise distance of all data to some target points [4]. DS3 considers a source dataset and its goal

is to encode the target data according to pairwise dissimilarity between each sample of source

and target datasets. This algorithm can be interpreted as the non-linear implementation of SMRS

algorithm [4].

Spectrum Pursuit (SP): Our Proposed Selection Method

In this section, an iterative and computationally efficient algorithm is proposed for approximat-

ing the solution to the NP-hard selection problem (5.4). The proposed algorithm iteratively finds

the best direction on the unit sphere2, and then from the available samples in dataset selects the

sample with the smallest angle to the found direction. In this section, we present details of our

algorithm and investigate its properties.

2In unit sphere, every point corresponds to a unique direction.
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The Spectrum Pursuit Algorithm

Projection of all the data onto the subspace spanned by the K columns of A, indexed by T,

i.e., πT(A), can be expressed by a rank-K factorization, UV T . In this factorization, U ∈ RN×K ,

V T ∈ RK×M , and U includes the K columns of A, indexed by T which are normalized to have

unit length. Therefore, optimization problem (5.4) can be restated as

argmin
U ,V

‖A−UV T ‖2F s.t. uk ∈ A, (5.5)

where, A = {ã1, ã2, . . . , ãM}, ãm = am/‖am‖2, and uk is the kth column of U . It should be

noted that U is restricted to be a collection of K normalized columns of A, while there is no

constraint on V . Since Problem (5.5) involves a combinatorial search and is not easy to tackle, we

modify (5.5) into two consecutive problems. The first sub-problem relaxes the constraint uk ∈ A

in (5.5) to a moderate constraint ‖u‖ = 1, and the second sub-problem reimposes the underlying

constraint. These sub-problems are formulated as

(u,v) =argmin
u,v

‖A−UkV
T
k
− uvT ‖2F s.t. ‖u‖ = 1, (5.6a)

m(k) =argmax
m

|uT ãm|. (5.6b)

Here m(k) is the index of the kth selected data point and am(k) is the selected sample. MatrixU k is

obtained by removing the kth column ofU . Matrix V k is defined in a similar manner. Subproblem

(5.6a) is equivalent to finding the first left singular vector (LSV) of Ek , A − U kV
T
k

. The

constraint ‖u‖ = 1 keeps u on the unit sphere to remove scale ambiguity between u and v.

Moreover, the unit sphere is a superset for A and keeps the modified problem close to the recast

problem (5.5). After solving for u (which is not necessarily one of our data points), we find the

data point that matches u the most (makes the smallest angle with u) in (5.6b).
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Figure 5.2: Two consecutive iterations of SP algorithm. The first LSV of the residual matrix is a vector on
SN−1 and the goal is to find K samples which pursuit the spectral characteristics of dataset over iterations.

SP is a low-complexity algorithm with no parameters to be tuned. These properties in addition to

its superior performance (as will be shown in many scenarios in Section 6) make SP very desirable

for a wide range of applications.

Time complexity order of computing the first singular component of an M ×N matrix is O(MN)

[151]. As the proposed algorithm only needs the first singular component for each selection, its

time complexity is O(KNM), which is much faster than convex relaxation-based algorithms with

complexity O(M3) [49]. It is worthwhile to mention that the condition which needs to be satisfied

for a good performance is K ≤ N < M . This ensures that the calculated first LSV is reliable

because when we access to a small number of data points (small M ), the first LSV is highly

dependent on each single data point. While given a large number of samples (large M ), the first

LSV is robust to changes in the dataset. SP also performs faster than the K-medoids algorithm

and volume sampling, whose complexity are of the order O(KN(M −K)2) and O(MKN logN),

respectively [152, 9]. The steps of the SP algorithm are elaborated in Algorithm 11 and Fig. 5.2

illustrates Problem (5.6) pictorially.
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Algorithm 11 Spectrum Pursuit Algorithm
Require: A and K

Output: AT
1: Initialization:

T←A random subset of {1, . . . ,M} with |T| = K
{Tk}Kk=1 ← Partition T into K sets that each one has 1 element.
iter= 0
while the stopping criterion is not met

2: k =mod(iter,K)+1
3: Uk = normalize column(AT\Tk

)

4: V k = ATUk(UT
k
Uk)−1

5: Ek = A−UkV k
T

6: uk = first left singular-vector of Ek by solving (5.6a)
7: Tk ←− index of the most correlated data with uk(5.6b)
8: T←−

⋃K
k′=1 Tk′

9: iter=iter+1
end while

The following theorem shows that SP selects diversely from a union of subspaces.

Theorem 1 Assume columns of A lie on P clusters and each cluster forms a kp-dimensional

subspace in which
∑P

p=1 kp = K ≤ N . Selection of K samples using SP provides exactly kp

samples from each cluster.

Sequential SP

An interesting property of Eigen decomposition is its sequential property. It means that the best

rank-K approximation of a dataset is exactly equal to the best approximation with rank of K − 1

plus one new component which is orthogonal to the previously found components. However, a

selection problem generally does not have a sequential solution. In other words, selection problems

have a combinatorial solution and the bestK subset of data is not related to the bestK−1 samples

of data.

In some applications such as active learning or online data reduction, it is essential that the se-

lection be sequential. In these scenarios, data are selected over time one by one consecutively,
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and previously selected samples are already processed and cannot be replaced with another sam-

ple. The sequential version of SP is previously presented as the iterative projection and matching

(IPM) algorithm [3]. IPM is a very simple and relatively accurate data selection algorithm. For the

sake of consistency, to the sequential implementation of SP is referred as IPM in this manuscript.

The steps in IPM are summarized in Alg. 12.

Algorithm 12 Iterative Projection and Matching Algorithm [3]

Require: A and K
Output: AS
Initialize Alg. 11 with S = {} and perform only K iterations

The first selected sample using IPM is the sample which is the most correlated with the first left

singular vector (LSV) of data. The first selected sample is denoted bym(1). After selecting the first

data point (am(1)), we project all data points onto the null space of the selected sample. This forms

a new data matrix A(I − ãm(1)ãTm(1)), where I is an identity matrix. We select one more sample

in the same fashion utilizing the new matrix to find the second data point. This process continues

until we select K data points. It should be noted that the null space of selected sample(s) indicates

a subspace that the selected sample(s) cannot span. Therefore, the next selected data is obtained by

only searching in this null space. Fig. 5.3 shows an intuitive explanation of one iteration of IPM

algorithm. First, the leading LSV is computed, and then the most correlated sample in the dataset

is matched with the computed singular vector. Next, all data are projected onto the null space of

the matched sample. The projected data are ready to perform one more iteration, if required.

A Lower Bound on Maximum Correlation

In this section, we derive a lower bound on the maximum of the absolute value of the correlation

between columns of Ek and the first LSV defined in Alg. 11.

Next, we present a lemma that guarantees the existence of a column in Ek which is highly corre-
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Figure 5.3: A toy example that illustrates the first iteration of the sequential SP (IPM). (Left) The most
matched sample with the first left singular vector, v, is selected. (Right) The rest of samples are projected
on the null space of the selected sample in order to continue selection in the lower dimensional subspace.

lated with the first LSV, illustrating the fact that the direction of selected sample will not be distant

from the optimal direction shown by the first LSV.

Lemma 1 Let ek1, e
k
2, . . . , e

k
M ∈ RN construct columns of Ek. In each iteration, let σ1, u and v

denote the first singular value, the corresponding left and right singular vectors ofEk, respectively.

Then, there exists at least one column in Ek (corresponds to a data point) such that the absolute

value of its inner product with u is greater than or equal to σ1√
M

. Hence, max
m
|uTekm| ≥ σ1√

M
for

each iteration k.

The following proposition states a lower bound on the maximum of the absolute value of the

correlation between data points a1,a2, . . . ,aM andu, when data are normalized on the unit sphere.

First, let us define the following measure.

Definition 6 Rank-oneness measure (ROM) of a rankRmatrixAwith singular values σ1, σ2, . . . , σR

is defined asRA =

√
σ2
1∑R

r=1 σ
2
r

= σ1
‖A‖F

.
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Proposition 2 Assume columns of Ek are normalized to lie on the unit sphere. There exists at

least one column, eki , such that the correlation coefficient between aki and the first left singular

vector of Ek is greater than or equal toREk
.

Upper Bound on Projection Error

The main theoretical result of our work relates to the upper bound for projection error of selec-

tion of a new sample using SP. All proof for the theoretical results are provided in the appendix.

Theorem 2 If the columns of matrix A contain M zero-mean samples in N dimensional space

and ai is the first selected sample using SP, then,

‖A− πi(A)‖2
F ≤

(
1 +R2

A(1 +RA)(1−RA)
)
‖A−A1‖2

F ,

where ‖A− πi(A)‖2
F is the projection error on the span of the selected sample andA1 is the best

rank-one approximation.

Obviously, ‖A − A1‖2
F is the lower bound for projection error based on the definition of SVD.

However, this theorem states that the upper bound is a scale (≥ 1) of the lower bound and the scale

is 1 +R2
A(1 +RA)(1−RA).

Proposition 3 Assume ai is the first selected sample using SP. Then,

‖A− πi(A)‖2
F ≤ 1.25‖A−A1‖2

F .

When RA = 1, the upper bound of projection error is equal to its lower bound since the dataset
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is rank-one. Thus, any selection (even random selection) provides the same subspace which is

equal to the subspace of rank-one approximation. On the other hand, when RA is too small,3

distribution of points in the dataset is symmetric. Thus, a specific data point does not have a

priority to be selected. Therefore, for such datasets even random selection of a sample provides a

close projection error in comparison to the best projection error. In other words, for very low-rank

and very high-rank datasets, selection is not challenging and there are trivial solutions. The most

challenging scenario for selection of a new sample occurs, whenRA =
√

2/2 and the gap between

the lower bound and the upper bound is maximized. In this case, the role of selection algorithm

is more critical because the dataset is neither highly structured nor symmetrically-spread in the

space. Interested readers are referred to the appendix.

Robustness to Perturbation

Data selection algorithms are vulnerable to outlier samples. Since outlier samples are more

spread in the space of data, their span covers a wider subspace. However, the spanned subspace

by outliers may not be a proper representative subspace. DS3 adds a penalty to the cost function

in order to reject outliers [4]. Our proposed algorithm computes the first singular vector as the

leading direction in each iteration. We show here that this direction is the most robust spectral

component against changes in the data. First consider the autocorrelation matrix of data defined

as, C =
∑M

m=1 ama
T
m.

Eigenvectors of this matrix are equal to left singular vectors ofA. Adding a new row inA does not

change the size of matrix C, but perturbs this matrix. The following lemma shows the robustness

of eigenvectors of C against perturbations.

3Please note thatRA is greater than 1/
√
N .
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Lemma 2 Assume square matrixC and its spectrum [λi,ui]. Then, the following inequality holds,

‖∂ui‖2 ≤
√∑

j 6=i

1

(λi − λj)2
‖∂C‖F .

Definition 7 The sensitivity coefficient of the ith eigenvector of a square matrix is defined by, si ,√∑
j 6=i

1
(λi−λj)2

.

It is easy to show that s1 < s2. Based on Lemma 2 and this definition the following proposition

suggests a condition to satisfy s1 < si, ∀i ≥ 2.

Proposition 4 Assume square matrixC and its spectrum [λi, vi], where the gap between consecu-

tive eigenvalues is decreasing. Then, s1 < si, ∀i ≥ 2.

The proofs of Propositions and Lemmas in this section are presented in the supplementary material.

Moreover, the results of Proposition 2 and 4 are also verified in the appendix.

Residual Descent Implementation

The best minimizer for (5.6a) is the first LSV. However, restriction to data samples does not

imply that the most correlated sample with the first LSV is necessarily the best minimizer for

(5.6a), although in most cases the most correlated sample with the first LSV is the best minimizer.

In order to find the best sample that minimizes (5.6a) at each iteration, we propose to collect a few

samples that are correlated with the first LSV and compute residual error for these samples. Let Ω

denote the set of P most correlated samples with the first LSV. The modified version of Problem
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Figure 5.4: SP-RD algorithm does not select directly the most correlated sample with the first left singular
vector. First, a small subset of samples which are correlated with the first left SV are grouped. Then, the
sample which is the best minimizer for (5.7c) is selected.

(5.7) can be written as follows.

(u,v) =argmin
u,v

‖A−UkV
T
k
− uvT ‖2F s.t. ‖u‖ = 1, (5.7a)

Ω =argmax
|Ω|=P

∑
c∈Ω

|uT ẽc|, (5.7b)

Sk =argmin
c∈Ω, v

‖A−UkV
T
k
− uvT ‖ s.t. u = ãc. (5.7c)

Residual error over iterations of SP is not necessarily decreasing. To make the error monotonically

decreasing, as a sufficient condition for convergence, we can include the index of the previously

selected sample in for Ω for updating the kth selected sample. Selection cost function (projection

error) can be made monotonically decreasing by modifying set Ω over iterations. We refer to the

modified algorithm as spectrum pursuit with residual descent (SP-RD). In order to select K sam-
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ples, the lower bound for selection cost function is ‖A − AK‖ in which AK is the best rank-K

approximation ofA. Since the cost function is monotonically decreasing, and it is lower bounded,

the modified algorithm is convergent. However, simulation experiments show the plain SP algo-

rithm is also observed to be empirically convergent for real and synthetic datasets. Alg. 13 and

Fig. 5.4 show the steps in SP-RD algorithm.

Algorithm 13 Spectrum Pursuit Algorithm with Residual Descend (SP-RD)
Require: A, P and K

Output: AS
1: Initialization:

S←A random subset of {1, . . . ,M} with |S| = K
{Sk}Kk=1 ← Partition S into K sets that each one has 1 element.
iter= 0
while the stopping criterion is not met

2: k =mod(iter,K)+1
3: Uk = normalize column(AS\Sk )

4: V k = ATUk(UT
k
Uk)−1

5: Ek = A−UkV k
T

6: uk = first left singular-vector of Ek by solving (5.7a)
7: Ω←− indices of the most P correlated data with u (5.7b)
8: Ω = Ω

⋃
Sk

9: Sk ←− the sample in Ω that minimizes (5.7c)
10: S←−

⋃K
k′=1 Sk′

11: iter=iter+1
end while

Kernel SP: Selection based on a Locally Linear Model

The goal of CSSP introduced in (5.1) is to select a subset of data whose linear subspace spans

all data. Obviously, this model is not proper for general data types that mostly lie on nonlinear

manifolds. Accordingly, we generalize (5.1) and propose the following selection problem in order

to efficiently sample from a union of manifolds

argmin
|S|≤K

M∑
m=1

‖am − πSm(am)‖2F s.t. Sm ⊆ S ∩ Ωm, (5.8)
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where Ωm represent the indices of local neighbors of am based on an assumed distance metric.

This problem is simplified to CSSP in Problem (5.1) if Ωm is assumed to be equal to {1, · · · ,M}.

Problem (5.8) is written for each column ofA separately in order to engage neighborhood for each

data. This problem facilitates fitting a locally linear subspace for each data sample in terms of its

neighbors. Nonlinear techniques demonstrates significant improvement upon linear methods for

many scenarios [153, 154, 155].

Here we propose an extension of SP, referred to as kernel SP (KSP), to tackle the combinatorial

search Problem (5.8). Manifold-based dimension reduction techniques and clustering algorithms

do not provide prototypes suitable for data selection. However, inspired by spectral clustering of

manifolds [156], main tool for nonlinear data analysis that partitions data into nonlinear clusters

based on spectral components of the corresponding normalized similarity matrix, we formulate

KSP as

S = argmin
|S|≤K

‖L− πS(L)‖2
F , (5.9)

whereL = D−
1
2SD−

1
2 , is the normalized similarity matrix of the data. MatrixS = [sij] ∈ RM×M

is defined as the similarity matrix of data and D is a diagonal matrix and dii =
∑

j 6=i sij . The

similarity matrix can be defined based on any similarity measure. A typical choice is a Guassian

kernel with parameter α. Note that problem (5.9) is the same as problem (5.1), whereA is replaced

by L. The steps of the KSP algorithm are summarized in Algorithm 14.

Fig. 5.5 illustrates the impact of nonlinear modeling on a toy example containing a set of 100×100

images where each image is a rotated and resized version of other images (Fig. 5.5(a)). Since

none of the images lie on the linear subspace spanned by the rest of images, the ensemble of these

data do not form a linear subspace. Therefore, this dataset is of high rank and the union of linear

subspaces is not a proper underlying model for it. The KSP algorithm is implemented using a

Gaussian kernel with parameter α, i.e., sij , e−α‖ai−aj‖2 . As shown in Fig. 5.5 (c), the nonlinear
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Figure 5.5: (a) A dataset lies on a two dimensional manifold identified by two parameters, rotation and size. How-
ever, the rank of corresponding matrix to this dataset is a large number. (b) Linear embedding using linear PCA
and selection using linear SP. (c) nonlinear embedding using tSNE[2] and selection using kernel-SP. Un-selected and
selected samples are shown as red and black dots in the embedded space, respectively.

selection algorithm has been able to discover the intrinsic structure of data and select data from

more distinguished angles than that of Fig. 5.5 (b) in which the plain SP is applied.

Algorithm 14 Kernel Spectrum Pursuit

Require: A, α, and K

Output: S

1: S←Similarity Matrix: sij =e−α‖ai−aj‖22

2: Form diagonal matrixD where dii =
∑

i 6=j sij

3: L = D−1/2SD−1/2.

4: S← Apply SP on L with K (Alg. 11)

Conclusion

A novel approach to data selection from linear subspaces is proposed and its extension for selec-

tion from nonlinear manifolds is presented. The proposed SP algorithm demonstrates an accurate
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solution for CSSP. Moreover, SP and KSP have shown superior performance in many applications

which will be shown in the next chapter. The investigated fast and efficient deep learning frame-

works, empowered by our selection methods, have shown that dealing with selected representatives

is not only fast but can also be more effective.
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CHAPTER 6: APPLICATIONS OF DATA SUBSET SELECTION

To validate our theoretical investigation and to empirically demonstrate the behavior and effec-

tiveness of the proposed selection technique, we perform extensive sets of experiments considering

several different scenarios. We divide our experiments into three different subsections.

In the first section we show the effectiveness of SP in selecting the most informative representa-

tives, by training the classifier using only a few representatives from each class. Afterwards, in

Section application of SP in fast subspace clustering is illustrated. It is shown that SP outperforms

the state-of-the-art selection-based subspace clustering in terms of grouping accuracy.

Representatives for Multi-PIE Dataset

Here, we present our experimental results on CMU Multi-PIE Face Database [157]. We use

249 subjects from the first session with 13 poses, 20 illuminations, and two expressions. Thus,

there are 13 × 20 × 2 images per subject. Fig. 6.1 shows 10 selected images from 520 images

K
-M

ed
D
S3

SP
V
S

Figure 6.1: Selection of 10 representatives out of 520 images of a subject. IPM and SP select from more
diverse angles.
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of a subject. As it can be seen, the results of K-medoids and DS3 algorithms are concentrated

on side views, while our selection provides images from more diverse angles. IPM and SP select

from different angles, while the selected images by DS3 and K-medoids contain repetitious angles.

Fig. 6.2 shows the performance of different selection algorithms in terms of normalized projection

error and running time. It is evident that our proposed approach finds a better minimizer for CSSP

defined in Equation (5.1) and is able to do so in orders of magnitude less time than the state of the

art methods based on convex relaxation. The total computational burden of SP is more than that of

IPM and SP solves CSSP more accurately.

Employing SP-RD which is introduced in Alg. 13 is able to further improve the accuracy of

CSSP solution. However, SP-RD algorithm needs parameter P . As P increases, a better solution

is achieved. Parameter P can be set according to the accessible computation power. Fig. 6.3

compares the performance of IPM and SP with SP-RD with three different parameters. In Fig. 6.3

in addition to error ratio, the running time for selecting 10 representatives per class for 249 classes

is presented in the parentheses in a plot legend box on top left as an indicator for computational

burden .

Representatives To Generate Multi-view Images Using GAN

Next, to investigate the effectiveness of the proposed selection, we use the selected samples to

train a generative adversarial network (GAN) to generate multi-view images from a single-view

input. For that, the GAN architecture proposed in [10] is employed. Following the experiment

setup in [10], only 9 poses between π
6

and 5π
6

are considered. Furthermore, the first 200 subjects

are used for training and the rest for testing. Thus, the total size of the training set is 72, 000, 360

per subject. All the implementation details are same as [10], unless otherwise is stated1.

1We use the code provided by the authors at https://github.com/bluer555/CR-GAN
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Figure 6.2: Performance of different methods in terms of their accuracy for CSSP defined in (5.1). The
proposed SP algorithm is compared with IPM [3], and DS3 [4], FFS [5], SMRS [6], 2phase [7], K-medoids
[8] and volume sampling [9]. (Top) The ratio of projection error using selection algorithms to projection
error of random selection for selecting K representatives from each subject, averaged over all the subjects.
(Bottom) Running time of different algorithms versus number of input samples for selecting 10 samples.
Our SP algorithm is slower than IPM, however, it is more accurate.
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Figure 6.3: The ratio of projection error as a function of K selected samples for each class of Multi-PIE
dataset. It is averaged for all 250 classes and the running time for selecting from the whole dataset is reported
in the parenthesis. IPM and SP do not require any parameter, and Parameter P in SP-RD algorithm does not
need tuning. It can be fixed according to the accessible computational power.
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Figure 6.4: Multi-view face generation results for a sample subject in testing set using CR-GAN [10]. The
network is trained on a selected subset of training set (9 images per subject) using random selection (first
row), K-medoids (second row), DS3 [4] (third row), and SP (fourth row). The fifth row shows the results
generated by the network trained on all the data (360 images per subject). SP generates closest results to the
complete dataset.

We select only 9 images from each subject (1800 total subjects), and train the network with the

reduced dataset for 300 epochs using the batch size of 36. Fig. 6.4 shows the generated images

of a subject in the testing set, using the trained network on the reduced dataset, as well as using

the complete dataset. The network trained on samples selected by SP (fourth row) is able to

generate more realistic images, with fewer artifacts, compared to other selection methods (rows

1-3). Furthermore, compared to the results using all the data (row 5), it is clear that SP generates

the closest results to the complete dataset. This is because, as demonstrated in Fig. 6.1, samples

selected by SP cover more angles of the subject, resulting in better training of the GAN. See

supplementary material for further experiments and sample outputs.

For a quantitative performance investigation, we evaluate the identity similarities between the real
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Table 6.1: Identity dissimilarities between real and generated images by network trained on reduced (using
different selection methods) and complete dataset.

Method Rand K-Med FFS DS3 IPM SP
9 per subj 0.562 0.599 0.608 0.602 0.553 0.550
360 per subj 0.5364

Table 6.2: Accuracy (%) of ResNet18 on UCF-101 dataset, trained using only the representatives selected
by different methods. The accuracy using the full training set (9537 samples) is 82.23%.

Samples per class 1 2 3 4 5 6 7 8 9 10
Random 54.6 64.7 69.2 70.5 72.9 74.0 76.0 75.6 76.0 77.0
K-medoids 61.0 67.7 69.4 70.9 71.7 72.0 72.5 75.2 73.6 73.5
DS3[4] 60.8 69.1 74.0 75.2 74.9 75.3 75.8 77.0 77.6 76.6
IPM 62.3 69.4 72.1 73.5 75.3 77.0 77.2 77.4 77.5 78.1
SP 62.3 70.8 74.2 74.6 76.9 77.6 78.1 78.4 78.7 79.2

and generated images. For that, we feed each pair of real and generated images to a ResNet182,

trained on MS-Celeb-1M dataset [159], and obtain 256-dimensional features. `2 distances of fea-

tures correspond to the face dissimilarity. Table 6.1 shows the normalized `2 distances between the

real and generated images, averaged over all the images in the testing set. Our method outperforms

other selection methods in this metric as well. Thus, from Fig. 6.4 (qualitative) and Table 6.1

(quantitative), we can conclude that the SP-reduced training set contains more information about

the complete set, compared to other selection methods.

Representatives for ImageNet

In this section, we use ImageNet dataset [160] to show the effectiveness of SP in selecting the

representatives for image classification task. To this end, first, we extract features from images

2We use the naive ResNet18 architecture as described in [158].
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Table 6.3: Top-1 classification accuracy (%) on ImageNet, using selected representatives from each class.
Accuracy using all the labeled data (∼ 1.2M samples) is 46.86%. Numbers in () show the size of the selected
representatives as a % of the full training set.

Images per Class 1 5 10 50
(0.08%) (0.4%) (0.8%) (4%)

Random 3.18 8.71 12.97 25.61
K-Medoids 11.78 17.01 17.56 26.86
IPM 12.50 21.69 25.26 30.77
SP 12.50 23.02 26.91 32.48

in an unsupervised manner, using the method proposed in [161]. Next, we perform selection

in the learned 128-dimensional space and perform k-nearest neighbors (k-NN) using the learned

similarity metric, following the experiments in [161]3. Here, we show that we can learn the feature

space and the similarity metric in an unsupervised manner, as there is no shortage of unlabeled

data, and use only a few labeled representatives to classify the data.

Due to the high volume of this dataset, selection methods based on convex-relaxation, such as DS3

[4] and SMRS [6], fail to select class representatives in a tractable time (as discussed before and

shown in Fig. 6.2 for Multi-PIE dataset). Table 6.3 shows the top-1 classification accuracy for the

testing set using k-NN. Using less than 1% of the labels, we can achieve an accuracy of more than

25%, showing the potential benefits of the proposed approach for dataset reduction. Classification

accuracy of k-NN, using the learned similarity metric, reflects the representativeness of the selected

samples, thus highlighting the fact that SP-selected samples preserve the structure of the data fairly

well.

3We use the feature space generated by the ResNet50 backbone, as provided in https://github.com/
zhirongw/lemniscate.pytorch
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Fast Subspace Clustering

In this section, we apply our data selection method for carrying out fast subspace clustering.

Subspace clustering is reviewed in [162]. In [163] and [164], sparse sub-space clustering is dis-

cussed. In subspace clustering, the goal is to identify some low-dimensional subspaces, the union

of which encompasses the ensemble data. The data A ∈ RN×M is a collection of points from G

independent linear subspaces Sg, g ∈ [1, · · · , G]. The gth subspace contains Mg data points, the

union of which forms the entire dataset. Let all the data in Sg be denoted with Ag ∈ RN×Mg . In

[163], the following problem is considered in order to find the similarity coefficients of the data,

aka LASSO:

min
Z
‖Z‖1 subject to A = AZ, diag(Z) = 0. (6.1)

The coefficients in Z ∈ RM×M represent the similarity, i.e. how each data element can be ex-

pressed as a summation of other data elements. The matrix Z is used to form the symmetric

matrix W = Z + ZT , which is fed into the spectral clustering algorithm. This framework is

known as sparse subsapce clustering (SSC) which exploits whole data to perform LASSO. Fig. 6.5

shows the idea behind sparse subspace clustering in which few critical data identify the underlying

clusters and then whole data are clustered accordingly. In [5], authors propose a different method

in achieving the matrix W based on (k-NN). We use the same approach in finding the similarity

matrix to feed it to the spectral clustering algorithm. Next, we apply SP to select the data and show

that this selection method achieves better accuracy in subspace clustering in comparison to other

known selection methods including the one introduced in [5]. This framework reduces the com-

plexity in comparison to utilizing the entire data for subspace clustering (as in [163]) significantly,

since finding representatives and performing regression on a subset of selected data reduces to the

following computations:

min
Z̃
‖A−ASZ̃‖F ,
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Table 6.4: Unsupervised clustering accuracy for MNIST handwritten dataset.

Method Accuracy clustering on all data
Rand 40.5% Kmeans SSC[11]
K-medoids 46.5%
FFS [5] 49.4%
DS3 [4] 48.3% 47.1% 48.2%
IPM [3] 48.9%
SP 52.0%

where AS shows the selected columns of the data matrix and Z̃ ∈ SK×M indicates coefficients

for samples of the entire data. In addition, we improve the accuracy further in comparison to the

methods which initially select the data and apply the clustering, since the SP algorithm selects

data evenly from a union of low-rank subspaces as shown in Theorem 1. Please note that the

reduced regression problem is an over-determined system of equations and it does not require

regularization. While the original problem is under-determined. Thus LASSO is employed to

obtain a robust regression.

We implement the subspace clustering on synthesized and real datasets. First, we synthesize two 4-

dimensional clusters in 20-dimensional space. We assign the data to two low-dimensional labeled

classes. The synthetic data is contaminated with additive noise and 10% of the dataset includes

outliers. The comparisons of different selection algorithms are shown in Fig. 6.6. For K = 8 sam-

ples, where K is the dimension of the union of the two clusters (rank-8 subspace), SP reaches the

highest accuracy in subspace clustering. It is worth noting that SP achieves a maximum accuracy

level extremely close to the maximum of 96.47% which is obtained on full data using SSC.

In the second set of experiments, we use the MNIST handwritten digit dataset for unsupervised

clustering. First, we perform our subspace clustering into 10 clusters and then compare the clus-

ters with the oracle labels in order to report a clustering accuracy score. Interestingly, the selection

and clustering using SP reaches higher accuracy than performing clustering on the entire data as

shown in Table 6.4.
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Figure 6.5: Two approaches for subspace clustering. (a) Identify subspaces directly from ensemble of data.
(b) First select a set of representatives and then identify subspaces accordingly. Our selection algorithm
facilitates the second approach.
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Figure 6.6: Accuracy of clustering of two synthetic clusters contaminated with noise and containing 10%
outlier samples. Clustering of full data results in 96.47% accuracy using SSC [11].

Conclusion

Some applications of the proposed SP algorithm are presented in this chapter. It is shown that

selection makes the main task faster while we can keep the accuracy as of whole data. This chapter

only presented a selected applications. Interested readers are referred to published works in order

to find more applications [3, 165].

125



CHAPTER 7: MULTI-WAY SELECTION

Matrix factorization provides a concise representation of data via low-rank approximation. Despite

desirable uniqueness conditions and computational simplicity of the well-known singular value de-

composition (SVD), it comes with some fundamental shortcomings. The intrinsic structure of data

is not inherited to the singular components. Moreover, SVD implies orthogonality on the compo-

nents which is irrelevant to the underlying structure of the original data. This enforced structure

makes the bases, a.k.a. singular vectors, hard to interpret [166]. On the other hand, it is shown

that borrowing bases from the actual samples of a dataset provides a robust representation, which

can be employed in interesting applications where sampling is their heart [167]. This problem is

studied under the literature of column subset selection problem (CSSP) [9, 19] and CUR decom-

position [168, 169]. A general problem for CSSP and CUR can be written in the following form

[170]:

(Sc,Sr) = argmin
Sc,Sr

‖X − πrSr(πcSc(X))‖2F , (7.1)

where,X∈RN×M is the data matrix containing M data points in an N -dimensional space. Here,

πcSc(.) and πrSr(.) indicate column space projection and row space projection, respectively. These

operators project all columns (rows) to a low-dimensional subspace spanned by selected columns

(rows) of matrix X indexed by the set Sc (Sr). The chronological order in applying πcSc(.) and

πrSr(.) does not affect the problem since these operators are linear. Moreover, substituting πrSr with

the identity projection simplifies the problem to CSSP. Fig. 7.1 illustrates the structure of CUR

matrix decomposition as a self-representative approach. The column-wise projection is a matrix

multiplication from the left side and the row-wise projection is a matrix multiplication from the

right side. Mathematically speaking,

πrSr(π
c
Sc(X)) = C(CTC)−1CT X RT (RRT )−1R. (7.2)
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Matrix C contains few columns indexed by set Sc and matrix R contains few rows indexed by set

Sr from the original matrix X . A versatile metric for evaluating the performance of a data subset

selection algorithm can be defined by the approximation error resulted from the projection of the

entire data to the span of selected rows/columns. How close to the optimal selection an algorithm

can reach, is determined by comparing its approximation error to the best low-rank approximation

error specified by the spectral decomposition. Recently, we proposed a fast and accurate algorithm

for solving CSSP which is called spectrum pursuit (SP) [165].
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Figure 7.1: Two columns and three rows from matrix X are selected and organized in matrix C and R.
The outer product of each pair of a selected column and a selected row constructs a rank-1 matrix, i.e., cirTj .
The contribution amount of each pair is reflected in variable uij . The core matrix U is the collection of all
uij’s. The goal is to minimize ‖X − X̂‖F where X̂ = CUR.

Inspired by SP, we propose a new algorithm to address the more general case of the CUR matrix

decomposition. Extension to multi-way selection targets the following goals:

• A novel algorithm for CUR decomposition, referred to as two-way spectrum pursuit (TWSP), is

proposed. TWSP provides an accurate solution for CUR decomposition.

• TWSP enjoys a linear complexity w.r.t. the number of columns and the number of rows of a matrix.

• TWSP is a parameter-free algorithm that only requires the number of desired columns and rows for

selection. Thus, TWSP does not require any parameter fine-tuning.

• The TWSP algorithm is put to the test and investigated in a set of synthetic and real experiments.
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• The role of the core matrix U in CUR decomposition is illustrated which shows the connection

between selected columns and rows. Based on analysis of U , an interesting application for joint

sensor/channel selection is presented.

Selecting the most diverse subset of data in an optimal sense is studied vastly [9, 26, 7]. How-

ever, these methods do not guarantee that the unselected columns are well represented by the

selected ones. Further, outliers are selected with a high probability using such algorithms due

to their diversity [165]. A more effective approach is selecting some representatives which are

able to approximate the rest of data accurately [171] as defined as a special case of (7.1). This

is an NP-hard problem [172] and there are several efforts for solving this problem [30, 9, 28, 3].

There are computationally expensive approaches based on convex relaxation [171, 173] that are

not computationally feasible for large datasets since their complexity is of order O(M3), where

M is the number of original columns. Recently, we proposed a new algorithm for solving CSSP

with a linear complexity Which is called Spectrum pursuit (SP) [165]. The SP algorithm finds K

columns ofX such that their span is close to that of the best rank-K approximation ofX . SP is an

iterative approach where at each iteration one selected sample is optimized such that the ensemble

of selected samples describes the whole dataset more accurately. SP finds representatives such that

the column space is spanned accurately via consecutive rank-1 approximations. In this section, we

extend the SP algorithm for selecting columns and rows jointly such that their outer product can

represent the whole matrix accurately. A naive approach is applying SP algorithm on the matrix of

interest to select a subset of columns and applying SP on its transpose in order to find a subset of

rows. However, this approach is not efficient and we will compare it with our proposed approach

which is optimized through a joint representation of selected columns and selected rows.
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Two-way Spectrum Pursuit

The introduced joint column/row subset selection in (7.1) can be written as a CUR decomposition

in the following form in which factor matrices must be drawn from actual columns/rows of the

original matrix as

(C,U ,R) = argmin
C,U ,R

‖X −CUR‖2F , (7.3)

s.t. ck ∈ Xc and rk ∈ Xr.

In this problem, Xc, and Xr indicate the set of normalized columns and rows of matrixX , respec-

tively. Here, ck and rTk denote the kth column and the kth row of C and R, respectively. In other

words, Xc = {X(:,m)/‖X(:,m)‖} for all columns and Xr = {X(n, :)/‖X(n, :)‖} for all rows.

Please note that replacing constraints in (7.3) with orthogonality constraint on ck’s and on rk’s

results in the truncated singular value decomposition (SVD) with K most significant components.

In this case,C andR contain the first K left singular vectors and the first K right singular vectors

of X , respectively. Moreover, the core matrix will be diagonal and the entries will be singular

values with diagonal entries as singular values. However, the underlying constraints in (7.3) turn

the problem into a joint subset of row and column selection problem instead of matrix low-rank

approximation problem.

To solve this complicated problem, we split it into two consecutive problems for optimization of

the kth selected column/row. Our optimization approach is alternative, i.e., a random subset of

columns and rows are picked. Then, one column or row is considered to be replaced with a more

efficient one at each iteration. Since scale of a vector does not change its span, without loss of

generality assume that the column or the row subject of the optimization lie on the unit sphere. At
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each iteration, a rank-1 component is optimized characterized by cgT or hrT given by

argmin
c,W , g

‖X −CkWR︸ ︷︷ ︸
Ec

−cgT ‖2F s.t. ‖c‖2 = 1 (7.4a)

argmin
h, Y , r

‖X −CY Rk︸ ︷︷ ︸
Er

−hrT ‖2F s.t. ‖r‖2 = 1 (7.4b)

Matrix Ck is the set of selected columns except the kth one and Rk is the set of selected rows

except the kth row. The first subproblem can be solved easily w.r.t. c using singular value de-

composition. In other words, cgT and hrT are the best rank-1 approximations of the residual

Ec and Er, respectively. The obtained c/r is the best column/row that can be added to the pool

of selected columns/rows. However, the obtained vector is not available in the given dataset as a

column or row since it is a singular vector which is a function of all columns/rows. The following

step re-imposes the underlying constraints at each iteration,

Sck = argmax
m
|xTmc|, ∀xm ∈ Xc (7.5a)

Srk = argmax
n
|xTnr|, ∀xn ∈ Xr (7.5b)

Here, Sck indicates a singleton that contains kth selected column and Srk corresponds to the kth se-

lected row. In each iteration, one column or one row is the subject of optimization. The impact

of the latest estimation for that column/row on the representation is neglected. Then, an optimized

replacement is found. At each iteration of TWSP, sub-problems in (7.4) are solved and their solu-

tions are matched to the accessible column samples and row samples through matching equations

in (7.5). The new selected column or row is stored in Sck or Srk, respectively. At each iteration

we need to compute only the first singular vector and there are fast methods to do so [174]. The
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pair of (7.4a) and (7.5a) optimizes and matches a column. Similarly, performing (7.4b) and (7.5b)

provides us an optimized row. However, we do not update both of them in each iteration. In fact,

we need to perform a column update or a row update in each iteration. It should be determined

that which update (column or row) is more efficient in the current iteration. To this aim, first we

choose a random previously selected column and a random previously selected row. Then, we

find the best possible replacement column and the best possible replacement row. Accordingly, we

choose whichever who minimizes the cost function more. The best modified column-wise subset

is denoted by S̃c and S̃r denotes the best row-wise modified subset. Alg. 15 indicates the steps of

TWSP algorithm. Here, † refers to the Moore–Penrose pseudo-inverse operator. Iterations can be

terminated either once CUR decomposition error is saturated or reaching a maximum number of

iterations.

The proposed TWSP provides the selected columns and selected rows in order to form matrix C

andR in CUR decomposition. It is straightforward to estimate the core matrixU . Mathematically,

U = C†XR†. (7.6)

This matrix is a two-way compressed replica of the whole dataset and it contains valuable infor-

mation in practice as will be discussed in Sec. . In general, the number of selected columns may

differs from the desired number of rows. Here, K1 refers to the number of columns and K2 points

to the number of rows. It is worthwhile to mention that the complexity order of TWSP is bottle-

necked by computational burden for two pseudo-inverses and two singular vectors computation.

Thus, the complexity can be expressed as O(NK2
1 +MK2

2 +MN) per iteration and the algorithm

needsO(max(K1, K2)) iterations. In the next section, we evaluate the performance of our proposed

algorithm.

The CSSP and CUR decomposition problems are NP-hard, i.e., finding an optimal solution re-
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quires a combinatorial search to find the best columns and rows. The proposed TWSP algorithm

minimizes the main cost function (7.1) in practice. However, there is no theoretical guarantee for

convergence of the proposed TWSP algorithm Alg. 15. In order to improve the convergence be-

havior of TWSP, we evade updating both columns and rows in each iteration. Rather, we prioritize

updating of a row or a column to the one which exhibits a smaller projection error and a better min-

imizer for the cost function per each iteration. The implementation steps of TWSP are summarized

in Alg. 15.

N-way Spectrum Pursuit

Organization of high-volume data using a matrix and matrix subset selection are well-known so-

lutions for efficient data representation and sampling. However, matrices are not suitable for more

complex data. For example assume an fMRI dataset for a group of patients. Corresponding to

each voxel (3D pixel) of brain there is an fMRI time-series. Thus, we measure a signal for each

time slot of each voxel. Moreover, there are patients and each patient has independent measure-

ments. Let denote the measurement at voxel (x, y, z) and time t for patient p using a function

f(x, y, z, t, p). This function is a 5-dimensional tensor. This organized and concise representation

cannot be achieved using matrix-based representation. However, sampling from multi-dimensional

tensors is not studied and it needs a deep insight to the problem. As the future direction of this

proposal, multi-way data reduction problem will be introduced and solved efficiently.

The projection operator is denoted by πP (X) and defined as P (P TP )−1P TX . This operator

projects all columns of X on the subspace spanned by columns of P . For tensors, two projec-

tion operators are defined. 1) n-mode projection which is denoted by π(n)
P (X) and 2) Coupled-
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Algorithm 15 Two way spectrum pursuit (TWSP)

Require: X∈RN×M, K1 and K2.

Output: Sc and Sr.
Initialization:
Sc ←A random subset of {1, . . . ,M} with |Sc| = K1

Sr ←A random subset of {1, . . . , N} with |Sr| = K2

{Sck}Kk=1←Partition Sc into K1 subsets.
{Srk}Kk=1←Partition Sr into K2 subsets
i = rnd(K1) and j = rnd(K2)
while a stopping criterion is not met

Sc
i

= Sc\Sci
Ci ← remove column i in matrix C
W = C†iXR

†

Ec = X −CiWR (Null space projection)
c = find the first left singular vector of Ec (7.4a)
Sci ←− the most correlated column of E with c (7.5a)
S̃c ←−

⋃K1
i′=1 S

c
i′

C = X(:, S̃c)
ec = min

U
‖X −CUR‖F

Sr
j

= Sr\Srj
Rj ← remove row j in matrix R
Y = C†XR†j
Er = X −CY Rj (Null space projection)
r = find the first right singular vector of Er (7.4b)
Srj ←− the most correlated row of E with r (7.5b)
S̃r ←−

⋃K2
j′=1 S

r
j′

R = X(S̃r, :)
er = min

U
‖X −CUR‖F

IF ec < er

Sc ←− S̃c
i = rnd(K1)

else
Sr ←− S̃r
j = rnd(K2)

projection which is denoted by πA,B,C(X). Mathematically,

π
(n)
P (X) = X ×n P (P TP )−1P T
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and,

πA,B,C(X) = argmin
X̃

‖X − X̃‖F s.t. X̃ ∈ Ω.

Set Ω ⊂ RI×J×K is a set of tensors that are linear combination of R tensors determined by ar ◦

br ◦ cr for r = 1, · · · , R. The coupled-projection can be computed by,

vec(πA,B,C(X)) = P (P TP )−1P Tvec(X).

In this equation the rth column of P is vec(ar ◦ br ◦ cr).

The final mission of the present dissertation is to design a tensor-based selection framework for

reducing a multi-way structure of data into a set of fibers that reconstructs the original tensor. Two

celebrated tensor decomposition algorithms are employed to this aim. Tucker decomposition and

CP decomposition are extended to extract the principle fibers of the tensor.

Tucker decomposition and CP decomposition are powerful tools for tensors’ analysis. However,

they cannot be used directly for tensor fiber selection. The first step toward tensor subset selection

is to define a concrete problem. It is straightforward to re-write Tucker decomposition in terms of

factors matrices as the following optimization problem.

(A,B,C) = argmin
A,B,C

‖X − π(3)
C (π

(2)
B (π

(1)
A (X)))‖2

F (7.7)

Columns of factor matrices are optimized in order to minimize the cost function. Inspired by

spectrum pursuit algorithm, we suggest the following problem in which columns of factor matrices

must be drawn from the corresponding set of fibers from the original tensor. As our future work

direction, we plan to extend Problem (7.7) in the same spirit of spectrum pursuit algorithm in order
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to find the best subset fibers from different ways.

CP decomposition is considered as a special case of tucker decomposition. However, its simplicity,

uniqueness conditions and straightforward interpretation make CP the most popular algorithm for

decomposition of tensors. The self CP decomposition for multi-way selection is introduced as

follows,

(A,B,C) =argmin
A,B,C

‖X − πA,B,C(X)‖2
F (7.8)

s.t. A ∈ X1, B ∈ X2, C ∈ X3. (7.9)

Here, Xn is the set of normalized fibers of tensor X w.r.t. the nth way. We plan to solve this

problem efficiently and present interesting applications of multi-way data selection.

The implementation of the self-CP decomposition algorithm is summarized in Alg. 16. MatrixXj

is the unfolded replica of tensor X w.r.t. the j th way. The mth column of this matrix is denoted by

xmj .

Algorithm 16 Self-CP Decomposition Algorithm

Require: X , and K
Output: S1,S2, and S3

Initialize: S1, S2, and S3 with empty sets.
Initialize: E byX
FOR: k = 1, · · · , K

[u1,u2,u3]← CPD on E with Rank 1
FOR: j = 1 : 3

Sj ← Sj
⋃

argmaxm <xmj ,u
j>

END FOR
E ← E − πu1,u2,u3(E)

END FOR
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Experimental Results

In order to evaluate TWSP in terms of CUR decomposition accuracy or its performance on a

machine-learning task, we apply the proposed TWSP on synthetic data as well as three real appli-

cations.

CUR Decomposition on Synthetic Data

In order to evaluate the general performance of TWSP, we compared it with the state-of-the-art

methods for selecting columns and rows. In this regards, we created a 1000 × 2000 synthetic

dataset. The dataset is generated by a rank-30 matrix contaminated with random noise. In Fig. 2,

we have illustrated the CUR error for selecting a subset of rows and columns in the range of 2

to 20. The reconstruction error of CUR is normalized by ‖X‖2
F . We employ SP as the state-of-

the-art algorithm for column subset selection [165]. We perform SP on the data matrix X and

its transpose in order to, respectively, select a subset of columns and rows independently. Then,

employing (7.6) results in a CUR decomposition. We refer to the algorithm in [168] as adaptive

CUR. A more accurate algorithm for solving CUR decomposition results in a bigger blue region

in Fig. 2. TWSP exhibits the best performance in this experiment. The convergence behavior

of TWSP for this experiment is shown in Fig. 2 (d) for selecting 20 columns and 20 rows. The

final solution of the TWSP algorithm depends on the initial selected columns and selected rows.

However, regardless of the initial condition, the algorithm minimizes the cost function of CUR

decomposition.
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Figure 7.2: (a)-(d) Performance comparison in terms of the normalized error of CUR decompo-
sition. (e) Convergence behavior of the proposed two-way SP for selecting 20 columns and 20
rows.
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Figure 7.3: The behavior of the proposed algorithm w.r.t. the initial condition of selected subset. The
initial cost function are corresponding to the initial set which are drawn randomly. The blue curves indicate
the path of optimization alongside iterations of the TWSP algorithm. Here, 100 different realizations are
studied.

Joint Sensor Selection and Channel Assignment

The output products of CUR decomposition are not limited to a subset of columns and rows. In

some applications, interestingly, matrix U is the most important output of a CUR decomposition.

Entry (i, j) inU indicates how important the cooperation of the ith column and the j th row is. This
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Figure 7.4: The original spectrum map and its comparison with the interpolated map using sampled random sam-
pling and our proposed method. The interpolation error is depicted versus number of sensed locations.

interesting property is utilized for the problem of joint sensor selection and channel assignment in

a cognitive radio network. To this aim the exact setup in [1] is considered with 900 grid points and

32 frequency channels. The received power magnitudes are organized in a 900 × 32 matrix. The

only difference here, is that the uniform sampling pattern of sensing is replaced by the selection

based on the CUR decomposition. Our proposed TWSP algorithm provides a fast and accurate

solution for CUR decomposition. We select between 20 and 80 locations for spectrum sensing and

all 32 channels. Each row of matrix U corresponds to a selected location and it has 32 entries. We

are to assign F channels for each selected sensor. In other words, each location does not sense the

whole spectrum and only F frequency channels are assigned for each sensor. The top-F entries in

each row with the highest absolute value show the most important channels for the corresponding

location to be sensed.

Fig. 7.4 shows the cartography error of spectrum sensing for the conventional random selection as

introduced in [1] and our proposed optimized joint sensors and channels. For each sampled loca-

tions F = 8 channels out of 32 channels are sensed. The sampled spectrum map is interpolated

using thin plane splines method [175] for both sampling methods. In addition to visual superior-

ity in reconstruction of the spectrum map, channel assignment based on TWSP provides a better

quantitative error.
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Figure 7.5: Comparison of the normalized prediction error with state-of-the-art algorithms obtained by
CUR decomposition for simultaneous movies and users subset selection from Netflix dataset.

Informative Users/Contents Detection

Another problem gaining a lot of interest by streaming services providers is choosing a set of users

for reflecting their feedbacks about different products. Therefore, it is crucial for such companies

to find a subset of users and media products that reviews of those users for those specific products

can leverage the most information about other users’ unknown behavior. Each person has a limited

scope of interest. For example, a user who only loves romance and action movie genres corre-

sponds to a specific personality that is able to represents a cluster of users accurately. Moreover,

his reviews for his area of interest are more valuable, not reviews for all genres.

As a result, there exist a demand for a reliable algorithm to simultaneously choose the most infor-

mative subset of users and movies. Such a subset is desirable for streaming companies to the extent

that they are willing to give the users incentives to leave comprehensive reviews for those specific

products. In this regards, we have evaluated our algorithm on Netflix Prize dataset containing

17, 770 movies and 480, 189 users. We have reduced the dataset to 990 movies and 4, 727 users by

considering only movies and users with most reviews. Then, we completed the dataset by Lin et

al. method to have a ground truth [176]. Fig. 7.5 reveals that TWSP shows the best performance

in terms of predicting scores for all users/movies based on a few selected users/movies.
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Supervised Sampling

The proposed TWSP algorithm is an unsupervised data selection algorithm. In the presence of

labels for our data, a naive approach is to select representatives from each class independently.

However, considering both classes jointly is a more efficient way for data reduction. Assume

we are given two classes data as X1 ∈ RN×M1 and X2 ∈ RN×M2 . The goal is to select K1

samples from Class 1 and K2 samples from Class 2. To this aim, we propose to construct the cross

correlation of two classes as a kernel representation for both classes jointly. Matrix X = XT
2X1

which has M1 columns and M2 rows is fed to TWSP algorithm in order to select K1 columns and

K2 rows optimally.

Supervised sampling is performed on Kaggle cats and dogs dataset. The features are obtained by a

trained Resnet-18 deep learning model [177]. Three mutually exclusive data subsets for training,

validation, and testing are partitioned randomly from 2000 images of each class. The classification

accuracy of 97.5% is achieved from a fine tuned Resnet-18 using the whole training set containing

1000 samples for each class. Afterwards, samples are selected by applying TWSP on the kernel

feature matrix and the Resnet-18 is fine-tuned by using the sampled data. The model’s accuracy

is compared on the testing set with other sampling methods. Fig. 7.6 shows the performance of

selection algorithms for different numbers of representatives per class. Using only two samples

from each class, a classification accuracy of 82.3% can be achieved which is more than 15%

improvement compared to random selection and more than 5% improvement compared to other

competitors.

We have conducted further experiments to study the effectiveness of the proposed algorithm in the

multi-class image classification problem. For this study, we use the Resnet-34 deep learning model

pre-trained on CIFAR10 and trained on a subset of ImageNet Dataset comprising of 10 classes. The

classes used for this experiment are Tench, Goldfish, Great white shark, Tiger shark, Hammerhead,
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Figure 7.6: The classification accuracy of a fine tuned Resnet-18 network using a few selected data per
each class.

Electric ray, Stingray, Cock, Hen and Ostrich. The original training data consists of 1300 images

of each class, and the idea is to use Two-Way SP to select the data samples such that K samples of

each class are used for the training purposes. After training Resnet-34 for 10 classes of CIFAR10,

the feature vectors of all the training images are extracted such that a 1300X512 matrix is obtained

for each class. Since, TWPS is applicable for the two-class problem, we employ the one-versus-all

approach. In other words, a cross correlation matrix is generated for each class such that X1 has

the dimensions 512×1300 andX2 has the dimensions 512×11700 whereX1 represents the feature

vector of the class for which samples will be selected while X2 represents the feature vectors of

the remaining 9 classes. Hence, the number of cross correlation matrices is equal to the number

of the classes and K samples are selected separately by applying TWSP on each cross correlation

matrix. This step of generating convoluted matrices is different from binary classification where

only one convoluted matrix was formed. Pre-trained Resnet-34 on CIFAR10 has been trained again

by using the sampled-data but with the same parameters. The model’s accuracy is subsequently

compared on the validation set with other sampling methods.
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Figure 7.7: Test accuracy in terms of improvement comparison with the test accuracy obtained by random
selection.

Experiments on Self-CP Decomposition

A simple extension of two-way spectrum pursuit is proposed as the general concept of Self-CP

decomposition. In order to evaluate the performance of our proposed Self-CP decomposition, a

synthetic tensor is generated which is the summation of a low-rank tensor plus a full-rank noise

tensor. The dimension of tenor is considered as 30×40×50 and the rank of the low-rank part is

assumed as 5. From each way of the tensor, K fibers are selected. Fig. 7.8 shows the normal-

ized reconstruction error versus the number of selected fibers from each way. CP decomposition

provides us a set of vectors which are not actual fibers. The performance of rank-K CPD also is

indicated as a lower bound for tensor reconstruction based on fiber selection. As it can be seen,

a significant performance is achieved using the proposed method comparison with random selec-

tion of fibers. Assuming K = 0, results in a zero tensor as the estimation based on the selected

fibers and the normalized error will be 1. As we select more fibers or increase the rank of CP, the

normalized error decreases.
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Figure 7.8: Test accuracy in terms of improvement comparison with the test accuracy obtained by random
selection.

Conclusion

Two-way spectrum pursuit is proposed as an accurate and efficient algorithm for solving CUR

decomposition. Some applications of the proposed algorithm are presented. However, they are

not limited to the mentioned applications. Moreover, the proposed algorithm can be extended to

n-way spectrum pursuit for efficient tensor subset selection.
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