146,090 research outputs found

    Model driven architecture for modeling of logical security based on RBAC approach

    Get PDF
    This paper presents an approach of role-based access control (RBAC) for information systems with the use of MDA (Model Driven Architecture). The main purpose is to join the concepts of MDA approach with the concepts of access control models, in particular with the concepts of access control based on roles and on usage concept. To reach this objectives the appropriate solution was created to model the extended RBAC model and URBAC model with the use of concepts and tools of software engineering, in particular MDA methodology and UML (UniïŹed Modeling Language). The presented approach was developed for role engineering in the aspects of logical security of information systems

    Modernizing science&engineering software systems

    Get PDF
    As the demands for modernized legacy systems rise, so does the need for frameworks for information integration and tool interoperability. The Object Management Group (OMG) has adopted the Model Driven Architecture (MDA), which is an evolving conceptual architecture that aligns with this demand. MDA could help solve coupling problems of multidisciplinary character in science and engineering that consist of one or more applications, supported by one or more platforms. The objective of this paper is to describe rigorous techniques to control the evolution from science & engineering software legacy systems to MDA technologies. We propose a rigorous framework to reverse engineering code in the context of MDA. Considering that validation, verification and consistency are crucial activities in the modernization of systems that are critical to safety, security and economic profits, our approach emphasizes the integration of MDA with formal methods

    Engineering secure systems: Models, patterns and empirical validation

    Get PDF
    Several development approaches have been proposed to handle the growing complexity of software system design. The most popular methods use models as the main artifacts to construct and maintain. The desired role of such models is to facilitate, systematize and standardize the construction of software-based systems. In our work, we propose a model-driven engineering (MDE) methodological approach associated with a pattern-based approach to support the development of secure software systems. We address the idea of using patterns to describe solutions for security as recurring security problems in specific design contexts and present a well-proven generic scheme for their solutions. The proposed approach is based on metamodeling and model transformation techniques to define patterns at different levels of abstraction and generate different representations according to the target domain concerns, respectively. Moreover, we describe an operational architecture for development tools to support the approach. Finally, an empirical evaluation of the proposed approach is presented through a practical application to a use case in the metrology domain with strong security requirements, which is followed by a description of a survey performed among domain experts to better understand their perceptions regarding our approach

    A Model-based Repository of Security and Dependability Patterns for Trusted RCES

    Get PDF
    International audienceThe requirement for higher Security and Dependability (S&D) of systems is continuously increasing, even in domains traditionally not deeply involved in such issues. Nowadays, many practitioners express their worries about current S&D software engineering practices. New recommendations should be considered to ground this discipline on two pillars: solid theory and proven principles. We took the second pillar towards software engineering for embedded system applications, focusing on the problem of integrating S&D by design to foster reuse. Model driven approaches combined with patterns can be extremely helpful to deal with these strong requirements. In this work, we present a framework for trusted Resource Constrained Embedded Systems (RCES) development by design, by defining both a model to represent S&D pattern language and an architecture for development tools. The implementation of a repository of S&D patterns and their complementary property models is discussed in detail

    A Model-Driven Methodology Approach for Developing a Repository of Models

    Get PDF
    International audienceTo cope with the growing complexity of embedded system design, several development approaches have been proposed. The most popular are those using models as main artifacts to be constructed and maintained. The wanted role of models is to ease, systematize and standardize the approach of the construction of software-based systems. In order to enforce reuse and to interconnect the process of models’ specification and the system development with models, we promote a model-based approach coupled with a repository of models. In this paper, we propose a Model-Driven Engineering methodological approach for the development of a repository of models and an operational architecture for development tools. In particular, we show the feasibility of our own approach by reporting some preliminary prototype providing a model-based repository of security and dependability (S&D) pattern models

    Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems.

    Get PDF
    Unlike practices in electrical and mechanical equipment engineering, Cyber-Physical Systems (CPS) do not have a set of standardized and harmonized practices for assurance and certification that ensures safe, secure and reliable operation with typical software and hardware architectures. This paper presents a recent initiative called AMASS (Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems) to promote harmonization, reuse and automation of labour-intensive certification-oriented activities via using model-based approaches and incremental techniques. AMASS will develop an integrated and holistic approach, a supporting tool ecosystem and a self-sustainable community for assurance and certification of CPS. The approach will be driven by architectural decisions (fully compatible with standards, e.g. AUTOSAR and IMA), including multiple assurance concerns such as safety, security and reliability. AMASS will support seamless interoperability between assurance/certification and engineering activities along with third-party activities (external assessments, supplier assurance). The ultimate aim is to lower certification costs in face of rapidly changing product features and market needs.This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 692474. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Czech Republic, Germany, Sweden, Austria, Italy, United Kingdom, Franc

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Incorporating Agile with MDA Case Study: Online Polling System

    Full text link
    Nowadays agile software development is used in greater extend but for small organizations only, whereas MDA is suitable for large organizations but yet not standardized. In this paper the pros and cons of Model Driven Architecture (MDA) and Extreme programming have been discussed. As both of them have some limitations and cannot be used in both large scale and small scale organizations a new architecture has been proposed. In this model it is tried to opt the advantages and important values to overcome the limitations of both the software development procedures. In support to the proposed architecture the implementation of it on Online Polling System has been discussed and all the phases of software development have been explained.Comment: 14 pages,1 Figure,1 Tabl
    • 

    corecore