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Abstract. As  the  demands  for  modernized  legacy  systems  rise,  so  does  the  need  for 

frameworks for information integration and tool interoperability.  The Object  Management 

Group (OMG) has adopted the Model  Driven Architecture  (MDA),  which is  an evolving 

conceptual  architecture  that  aligns  with  this  demand.  MDA  could  help  solve  coupling 

problems of multidisciplinary character in science and engineering that consist of one or more 

applications, supported by one or more platforms. The objective of this paper is to describe 

rigorous  techniques  to  control  the  evolution  from science  & engineering  software  legacy 

systems to MDA technologies. We propose a rigorous framework to reverse engineering code 

in the context of MDA. Considering that validation, verification and consistency are crucial 

activities in the modernization of systems that are critical to safety, security and economic 

profits, our approach emphasizes the integration of MDA with formal methods. 

1 INTRODUCTION

Nowadays,  software  industry  is  evolving  and  tackling  new  approaches  aligned  with 

Internet,  object  orientation,  distributed  components,  new  modeling  languages  and  new 

platforms. However, the majority of the large engineering applications running today in many 

research organizations were developed many years ago with technology that is now obsolete. 

These old systems, known as legacy systems, are still business-critical. New platforms and 

applications must interoperate with legacy software systems. Their complete replacement is 

dangerous and their maintenance is increasingly expensive. That is the reason for the demand 

of modernization of legacy system to extend their useful lifetime [18].

As the demands for modernized legacy systems rise, so does the need for frameworks for 

information integration and tool interoperability. The Object Management Group (OMG) has 

adopted the Model Driven Architecture (MDA), which is an evolving conceptual architecture 

that addresses the challenges of networked and changing system environments. MDA could 
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help solve coupling problems of multidisciplinary character in science and engineering that 

consist of one or more applications, supported by one or more platforms [14].

The  outstanding  ideas  behind  MDA  are  separating  the  specification  of  the  system 

functionality from its implementation on specific platforms, managing the software evolution 

from abstract models to implementations. MDA shifted the center of software development 

from code to models. In the MDA context, code is considered as an artifact derived from 

model  transformations.  The concepts  of  model,  metamodel  and model  transformation  are 

central in MDA. Models play a major role in MDA which distinguishes at least the following 

models:

•  Platform Independent  Model  (PIM):  a  model  with  a  high level  of  abstraction  that  is 

independent of any implementation technology.

• Platform Specific Model (PSM): a tailored model to specify the system in terms of the 

implementation constructs available in one specific platform.

•  Implementation  Specific  Model  (ISM):  a  description  (specification)  of  the  system in 

source code.

The initial diffusion of MDA was focused on its relation with UML as modeling language 

[20,21]. However, there are UML users who do not use MDA, and MDA users who use other 

modeling languages such as Domain Specific Languages (DSL).  The essence of MDA is 

MOF (Meta Object Facility) metamodel that allows different kinds of software artifacts to be 

used together in a single project [15]. The basic idea is to create a common specification for 

communication  between applications.  The MOF 2.0 Query,  View,  Transformation (QVT) 

metamodel is the standard for expressing transformations [17].

Validation,  verification  and  consistency  are  crucial  activities  in  the  modernization  of 

legacy systems  that  are critical  to  safety,  security and economic  profits.  Reasoning about 

models  of  systems is  well  supported  by automated theorem provers  and model  checkers, 

however these tools are not integrated into CASE tools environments. 

The objective of this paper is to describe rigorous techniques to control the evolution from 

science &engineering software legacy systems to MDA technologies. We propose a rigorous 

framework to reverse engineering code in the context of MDA that emphasizes the integration 

of techniques related to MDA, such as metamodeling, with formal methods. 

The paper is organized as follows. In the next section we provide background material on 

modernization of systems and Case tools. The next four sections consist of the main ideas of 

our work. Section 3 describes a framework for reverse engineering. Section 4 describes how 

to transform code into models through static and dynamic analysis. Section 5 and Section 6 

describe how to formalize reverse engineering processes in terms of MOF metamodels and 

formal specifications respectively. Finally, conclusions are drawn in Section 7.

2 RELATED WORK

 The  article  [4]  compares  existing  work,  discusses  success  and provides  a  road map  for 

possible future developments in the area. The reengineering of a deteriorated object oriented 

industrial program written in C++ is described in [9]. In order to deal with this problem, the 

authors  designed  and  implemented  several  restructuring  tools  and  used  them  in  specific 

reengineering scenarios. A variety of techniques for object oriented reengineering based on 

patterns are distinguished in [7].
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Many works  are  linked to  MDD-based  reverse  engineering.  A rigorous  framework for 

automatic legacy system migration in MDA called MOMENT is described in [3]. A tool-

assisted way of introducing models in the migration towards MDA is presented in [12]. The 

article [13] describes model-based dynamic analysis techniques that relate system execution 

traces and its models such as testing whether a system run satisfies a property that a certain 

model specifies and measuring how various model features materialize in a system run. 

The material presented in [19] is based on techniques developed during a collaboration 

with CERN (Conseil Européen pour la Recherche Nucléari) in the introduction of tools for 

software  quality  assurance,  among  which  a  reverse  engineering  tool  called  RevEng  was 

presented. This tool extracts UML diagrams (class diagrams, object diagrams, state diagrams, 

sequence and collaboration diagrams and package diagrams) from C++ code. 

Modernizing  large  industrial  software  systems  is  impossible  without  appropriate  tool 

support. All of the MDA tools are partially compliant to MDA features. They provide good 

support  for  modeling  and  limited  support  for  automated  transformation  in  reverse 

engineering. 

Techniques that currently exist in MDA CASE tools provide little support for validating 

models  in  the  design  stages.  Reasoning  about  models  of  systems  is  well  supported  by 

automated theorem provers and model checkers, however these tools are not integrated into 

CASE tools environments. Another problem is that as soon as the requirements specifications 

are handed down, the system architecture begins to deviate from specifications. Only research 

tools provide support for formal specification and deductive verification. Many CASE tools 

support reverse engineering, however, they only use more basic notational features with a 

direct code representation and produce very large diagrams. 

To  be  able  to  reason  about  software  systems,  MDA  CASE  tools  need  a  common 

information base aligned to MOF. However few MDA-based CASE tools support MOF and 

QVT or at least, any of the QVT languages. As an example, IBM Rational Software Architect 

and Spark System Enterprise Architect do not implement QVT. Other tools partially support 

QVT, for instance Together allows defining and modifying transformations model-to-model 

(M2M) and model-to-text (M2T) that are QVT-Operational compliant [5].

The Eclipse Modeling Framework (EMF) [8] was created for facilitating system modeling 

and  the  automatic  generation  of  Java  code.  EMF  started  as  an  implementation  of  MOF 

resulting Ecore, the EMF metamodel comparable to EMOF. EMF has evolved starting from 

the experience of the Eclipse community to implement a variety of tools and to date is highly 

related  to  Model  Driven  engineering  (MDE).  Commercial  tools  such  as  IBM  Rational 

Software  Architect,  Spark  System  Enterprise  Architect  or  Together  are  integrated  with 

Eclipse-EMF [5].

3 A RIGOROUS FRAMEWORK FOR REVERSE ENGINEERING

We propose to reverse engineering MDA models from object oriented code starting from 

the  integration  of  compiler  techniques,  metamodeling  and  formal  specification.  Figure  1 

shows  a  framework  for  reverse  engineering  that  integrates  static  and  dynamic  analysis, 

metamodeling  and  formal  specification.  It  distinguishes  three  different  abstraction  levels 

linked to models, metamodels and formal specifications.
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Figure 1.  MDA-based reverse engineering

The model level includes code, PIM and PSM. A PIM is a model with a high level of 

abstraction that is independent of an implementation technology [14]. A PSM is a tailored 

model to specify a system in terms of specific platform such J2EE or .NET.  PIM and PSM 

are expressed in UML and OCL [20,21,16]. The subset of UML diagrams that are useful for 

PSM  includes  class  diagrams,  object  diagrams,  state  diagrams,  interaction  diagrams  and 

package diagrams. On the other hand, a PIM can be expressed by means of use case diagrams, 

activity diagrams, interactions diagrams to model system processes and, state diagrams to 

model lifecycle of the system entities.  An ISM is a specification of the system in source code.

At model level, transformations are based on classical compiler construction techniques. 

They involve  processes  with  different  degrees  of  automation,  which  can  go  from totally 

automatic static analysis to human intervention requiring processes to dynamically analyze 

the  resultant  models.  All  the  algorithms  that  deal  with  the  reverse  engineering  share  an 

analysis  framework.  The  basic  idea  is  to  describe  source  code or  models  by  an  abstract 

language  and  perform a  propagation  analysis  in  a  data-flow graph called  in  this  context 

object-data flow. This static analysis is complemented with dynamic analysis supported by 

tracer tools.  

The metamodel level includes MOF metamodels that describe the transformations at model 

level [15]. A metamodel is an explicit model of the constructs and rules needed to construct 

specific models. MOF metamodels use an object modeling framework that is essentially a 

subset  of  UML  2.3  core  [20].  The  modeling  concepts  are  classes  which  model  MOF 

metaobjects,  associations,  which  model  binary  relations  between  metaobjects,  data  types 

which  model  other  data,  and packages which modularize  the models.  At  this  level  MOF 

metamodels describe families of ISM, PSM and PIM. Every ISM, PSM and PIM conforms to 

a MOF metamodel.  Metamodel transformations are specified as OCL contracts between a 

source metamodel and a target metamodel.  MOF metamodels “control” the consistency of 

these transformations. 

The formal specification level includes specifications of MOF metamodels and metamodel 

transformations in the metamodeling language NEREUS that can be used to connect them 

with different formal and programming languages [10,11].
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To sum up, at model level, instances of ISM, PSM and PIM are generated by applying 

static  and  dynamic  analysis.  Static  analysis  builds  an  abstract  model  of  the  state  and 

determines how the program executes to this state. Dynamic analysis operates by executing a 

program  and  evaluating  the  execution  traces  of  the  program.  Contracts  based  on  MOF-

metamodels “control” the consistency of these transformations and NEREUS facilitates the 

connection of the metamodels and transformations with different formal languages.

Our work could be considered as an MDA-based formalization of the process described by 

Tonella and Potrich in [19].  Additionally,  we propose a different algorithm for extracting 

UML State diagrams and new processes to recover PIM including use case diagrams and 

activity  diagrams.  We  also  propose  to  include  OCL  specifications  (preconditions, 

postconditions  and  invariants)  in  UML  diagrams.  Other  contributions  are  linked  to  the 

automation of the formalization process and interoperability of formal languages [10,11].  

The following sections describe reverse engineering at three different abstraction levels 

corresponding to code-to-model transformation, MOF-metamodel formalization and algebraic 

formalization.

4 RECOVERING MODELS FROM CODE

At model level, transformations are based on static and dynamic analysis. Static analysis 

extracts  static  information  that  describes  the  software  structure  reflected  in  the  software 

documentation  (e.g.,  the  text  of  the  source  code)  whereas  dynamic  analysis  information 

describes the structure of the run-behavioral.  Static information can be extracted by using 

techniques and tools based on compiler techniques such as parsing and data flow algorithms. 

Dynamic information can be extracted by using debuggers, event recorders and general tracer 

tools. 

We suppose that the reverse engineering process starts from an ISM that could reflect, for 

instance, the migration of legacy code to object oriented code. The first step in the migration 

towards MDA is the introduction of PSMs. Then, a PIM is abstracted from the PSMs omitting 

platform specific details. 

Next, we describe the process for recovery PSMs from code. Figure 2 shows the different 

phases. The source code is parsed to obtain an abstract syntax tree (AST) associated with the 

source programming language grammar.  Then, a metamodel extractor extracts a simplified, 

abstract version of a language that ignores all instructions that do not affect the data flows, for 

instance all control flows such as conditional and loops. 

The information represented according to this metamodel allows building the data-flow 

graph for a given source code, as well as conducting all other analysis that do not depend on 

the graph. The idea is to derive statically information by performing a propagation of data. 

Different kinds of analysis propagate different kinds of information in the data-flow graph, 

extracting the different kinds of diagrams that are included in a PSM.  

The static analysis is based on classical compiler techniques and abstract interpretation [1]. 

On  the  one  hand,  data-flow  graph  and  the  generic  flow  propagation  algorithms  are 

specializations  of  classical  flow  analysis  techniques  [1].  On  the  other  hand,  abstract 

interpretation allows obtaining automatically as much information as possible about program 

executions  without  having  to  run  the  program  on  all  input  data  and  then  ensuring 

computability or tractability. These ideas were applied to optimizing compilers. 



1038

Liliana Favre, Liliana Martinez and Claudia Pereira

Figure 2. From code to models: Static and dynamic analysis

The static and dynamic information could be shown as separated views or merged in a 

single  view.  In  general,  the  dynamic  behavior  could be  visualized as  execution sceneries 

which describe interaction between objects. To extract specific information, it is necessary to 

define particular views of these sceneries. Although, the construction of these views can be 

automated, their analysis requires some manual processing in most cases. 

In the MDA context, we can distinguish code-based dynamic analysis and model-based 

dynamic  analysis.  The  first  is  based  on  an  execution  model  including  the  following 

components: a set of objects, a set of attributes for each object, a location and value of an 

object type for each object, and a set of messages. On the other hand, model-based dynamic 

analysis is based on model-level debugging and evolution. 

4.1 Recovering Class Diagrams

A class diagram is a representation of the static view that  shows a collection of static 

model  elements,  such  as  classes,  interfaces,  methods,  attributes,  types  as  well  as  their 

properties (e.g., type and visibility). Besides, the class diagram shows the interrelationships 

holding among the classes [21].

Reverse  engineering  of  class  diagrams  from  code  is  a  difficult  task  that  cannot  be 

automated  due to  certain  elements  in  the class  diagram carry behavioral  information that 

cannot be inferred just from the analysis of the code. By analyzing the syntax of the source 

code,  internal  class  features  such  as  attributes  and methods  and their  properties  (e.g.  the 

parameters  of  the  methods  and  visibility)  can  be  recovered.  From  the  source  code, 

associations, generalization, realizations and dependencies may be inferred too. However, to 

distinguish between aggregation and composition we need to capture system states through 

dynamic analysis. Figure 3 shows relationships that can be detected statically between a C++ 

program and a UML class diagram.

Dynamic analysis allows generating execution snapshot to collect life cycle traces of object 

instances and reason from tests and proofs. Execution tracer tools generate execution model 

snapshots that allow us to deduce complementary information, for instance information to 

detect compositions. A composition is a particular aggregation in which the lifetime of the 

part is controlled by the whole (directly or transitively) and we can identify it by generating 

tests and scanning dependency configurations between the birth and the death of a part object 

according to those of the whole. In the same way, the execution traces of different instances 

of the same class or method could guide the construction of invariants or preconditions and 

postconditions respectively. 
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C++ Code 

Class attribute

class A {
…B b;    }

Parameter
class A { 
    void f(B b) {…b.g(…);}}

Local variable
class A {
    void f (..) { B b; …b.g(..);}}

Inheritance
class A: access-specifier B 
{…}

access-specifier = public,  
         private or protected

UML 
relationship

Association/Aggregation/
Composition

Dependency

ClassA ClassB

Generalization 

ClassA ClassB

Figure 3.  From C++ code to UML class diagram

4.2 Recovering State Diagrams

A state transition diagram describes the life cycle of objects that are instances of a class 

from the time they are created until they are destroyed. Object state is determined by the value 

of its attributes and possibly by the variables involved in attribute computations. The basic 

elements of a state diagram are states, identified as equivalence classes of attribute values, and 

transitions triggered by method invocation.

Our approach to recover state diagrams has similar  goals to abstract  interpretation that 

allows obtaining automatically as much information as possible about program executions 

without having to run it  on all  input data and then ensuring computability or tractability. 

These ideas were applied to optimizing compilers, often under the name data-flow analysis 

[1].  In  our  context,  an  abstract  interpretation  performs  method  invocation  using  abstract 

domains  instead  of  concrete  attribute  values  to  deduce  information  about  the  object 

computation on its actual state from the resulting abstract descriptions of its attributes. This 

implies  to  abstract  equivalence  classes  that  groups  attribute  values  corresponding  to  the 

different states in which the class can be and the transitions among state equivalence classes. 

Then, the first step is to define an appropriate abstract interpretation for attributes (which 

give the state of the object) and modifier class method (which give the transitions from state 

to state to be represented in the state diagram).

The recovery algorithm iterates over the following activities: the construction of a finite 

automata by executing abstract interpretations of class methods and the minimization of the 

automata  for  recovering approximate state equivalence classes.  To ensure tractability,  our 

algorithm proposes an incremental minimization every time a state is candidate to be added to 

the automaton. When it is detected that two states are equivalents, they are merged in an only 

state. This could lead to modification of the parts of the automaton that had been previously 

minimized. To optimize the comparison of pairs of states, these are classified according to 

their emerging transitions. Let m be a bound of the number of transformer methods of a class, 

the idea is to generate subsets of the set of transformer methods. The subset of emerging 

transitions of a new state belongs, in a particular snapshot, to one of them. Two states are 

candidates to be equivalent if they belong to the same subset. Then, it is sufficient to compare 

all  the  pairs  composed  by  the  state  and  one  element  of  the  subset.  Considerable  human 

interaction to select which abstract interpretations should be executed is required [6].

ClassA
ClassB
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As an example, Figure 4 (a) shows a diagram including states (s1, s2,..,s8) and transitions 

(m1,m2,…,m6). Fig. 4 (b) shows a simplified snapshot of the automaton when a transition to s5 

is added. Then, the shaded states could belong to the same equivalence state class. s8 belongs 

to the same subset of s4  and an equivalence analysis is carried out concluding that s8 and s4 

can be  merged. Figure 4 (c) (d) (e) shows the successive transformations.   

Figure 4. Recovering minimum State Diagram

A C++ implementation was developed to test the feasibility of our recovering algorithm. In 

the following, the algorithm for the identification of the states is described: 

/* initialization of  different sets*/
set-of-states initialStates = {};     /* states defined by class constructors*/ 
set-of-states pendingStates ={};  /* set of states pending of analysis*/
set-of-states allStates = {};          /* set of all states*/
/*definition of initial states for the objects of the class*/
for each class constructor c 

  /*executing an abstract interpretation of each class constructor*/
                   state s = abstractInterpretationState (c, {});

initialStates = initialStates  ∪ {s};

pendingStatesPending = pendingStates ∪ {s};

allStates = allStates ∪{s}
endfor
set-of-transitions transitionSet = {};            /* initialization of  transition set*/
set-of-bins b = classifiedStates (allStates); /*generation of subsets of transformer methods*/

while pendingStates > 0
state r = extract (pendingStates);
pendingState = pendingStates – {r};
for each transformer class method  m 

/*generating transitions of the state r*/
s = abstractInterpretationState (m, r);

if s  ∉ allStates

pendingStates = pendingStates ∪ {s};

allStates = allStates  ∪ {s}
endif

transitionSet = transitionSet ∪ abstractInterpretationTransition (m,r,s)
endfor
/* updating subsets of transformer methods*/
b = modifyBins (r, transitionSet, allStates);

for each e ∈ b

if s ∈ b {/*defining equivalence of states and merging equivalent  states*/ 

           for each q  ∈ bin and s< > q
                if equivalents (s, q) mergeStates (transitionSet, allStates, s, q) endif
              endfor 
           endif  endfor  endwhile
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5 REVERSE ENGINEERING AT METAMODEL LEVEL 

We specify reverse engineering processes as MOF-defined transformations. MOF allows 

capturing all the diversity of modeling standards and interchange constructs that are used in 

MDA. We call anti-refinement the process of extracting from a more detailed specification (or 

code) another one, more abstract, that is conformed by the more detailed one. 

Figure 5 shows partially an ISM-C++ metamodel that includes constructs for representing 

classes, variables and functions. It also shows different kind of relationships between classes, 

for instance, a C++ class can have super classes or nested classes.  Figure 6.a shows partially 

a  PSM-C++  metamodel  that  includes  constructs  for  representing  classes,  attributes, 

association ends and functions. The main difference between an ISM-C++ and a PSM-C++ is 

that the latter includes constructs for associations. The state diagram metamodel (Figure 6.b) 

defines a set of concepts than can be used for modeling discrete behavior through finite state 

transition systems such as state machines, states and transitions. We specify metamodel-based 

model  transformations  as  OCL contracts  that  are described by means of  a  transformation 

name,  parameters,  preconditions,  postconditions  and additional  operations.  Transformation 

semantics is aligned with QVT, with the QVT Core in particular. In Figure 7 we partially 

exemplify a transformation from an ISM-C++ to a PSM-C++. This transformation uses both 

the specialized UML metamodel of C++ code and the UML metamodel of a C++ platform as 

source and target parameters respectively.  The postconditions state relations at metamodel 

level between the elements of the source and target model. The transformation specification 

guarantees that for each class in C++ code there is a class in the PSM-C++, both of them with 

the same name, the same parent class, equivalent operations and so on. Besides, the PSM-C++ 

has a ‘stateMachine’ for each class having a significant dynamic behavior.
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Figure  6.  PSM Metamodel

6 TRANSFORMATION AT FORMAL LEVEL 

This  work  is  strongly  integrated  with  previous  ones  that  show  how  to  formalize 

metamodels  and  metamodel-based  transformations  in  terms  of  a  formal  metamodeling 

language called NEREUS. This language takes advantage of existing theoretical background 

on formal specifications and can be integrated with different algebraic languages. 

NEREUS focused on interoperability of formal languages in MDD. A detailed description 

may  be  found  at  [10]  that  defines  a  bridge  between  MOF  metamodels  and  NEREUS 

consisting of a system of transformation rules to convert automatically MOF into NEREUS. 

Also,  the  articles  [10,11]  shows how to integrate  NEREUS with  the  Common Algebraic 

Specification  Language  (CASL)  [2].  On  the  other  hand,  NEREUS  allows  specifying 

metamodels  such as the Ecore metamodel,  the specific metamodel  for defining models in 

EMF (Eclipse Modeling Framework) [8]. Today, we are integrating NEREUS in EMF.
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Figure 7. ISM-C++ to PSM-C++ Transformation

7 CONCLUSIONS

MDA addresses the challenges of networked, changing system environment, providing a 

conceptual  architecture  that  promotes  portability,  cross-platform interoperability,  platform 

independent, better code quality and easier maintainability. Therefore, it is possible to define 

Domain-Specific  languages  adapted  to  new,  industry-specific  applications  over  diverse 

platforms. 

This paper describes rigorous techniques to control the evolution of legacy systems in the 

context of science and engineering applications. We propose an MDA-based framework to 

reverse engineering code. Considering that testing, verification and consistency analysis are 

crucial  activities  in  the  modernization  of  systems  that  are  critical  to  safety,  security  and 

economic  profits,  our  approach  stresses  the  integration  of  historic  reverse  engineering 

Transformation ISM-C++  to PSM-C++  { 

parameter sourceModel: ISM-C++Metamodel:: C++Project 
targetModel: PSM-C++Metamodel:: Package 

postconditions

/* For each class ‘sourceClass’ in the sourceModel*/
sourceModel.ownedMember->select(oclIsTypeOf(C++Class))->forAll(sourceClass |

/*there is a class ‘targetClass’ in the targetModel so that both classes have the same name,*/
targetModel.ownedMember-> select(oclIsTypeOf(C++Class))-> exists (   

targetClass | targetClass.name = sourceClass.name and

/*For each superClass  of ‘sourceClass’ there is a superClass  in ‘targetClass’ so that both super classes are 
equivalent*/

sourceClass.superClass-> forAll ( superCsource | targetClass.superClass-> exists (
 superCtarget |  superCtarget.classMatch(superCsource)  )    and 

/*For each member function  of ‘sourceClass’ there is an operation in targetClass so that both operations are 
equivalent*/

sourceClass.C++MemberFunction->forAll(sourceF | targetClass.C++MemberFunction -> 
exists(targetF |    targetF.operationMatch(sourceF) ))  and 

/*For each variable in ‘sourceClass’ whose type is a primitive or library type there is an attribute in 
‘targetClass’ so that the attribute conform to the variable*/
 sourceClass.C++MemberVariable-> select (v | 

v.C++Type.oclIsTypeOf(Primitive) or v.C++Type.oclIsTypeOf(Library)  ) -> forAll 
(sourceVar | targetClass.attribute -> exists (  targetAtt | 
   targetAtt.conformTo (sourceVar)  ) )  and

/*For each variable in ‘sourceClass’ whose type is a user defined type there is an association end in 
‘targetClass’ so that the association end correspond to the variable:*/

sourceClass.C++MemberVariable->select(v | v.C++Type.oclIsTypeOf(UserC++Class) )
->forAll (sourceVar |  targetClass.associationEnd -> exists (  targetAssocEnd | 

targetAssocEnd.correspondTo (sourceVar)  )  )  and 

/*If ‘sourceClass’ has some significant dynamic behavior, targetModel has  a ‘stateMachine’ so that:*/
 sourceClass.hasSignificantDynamicBehavior()  implies 

targetModel.ownedMember->select(oclIsTypeOf(StateMachine))-> exists (targetMachine |

/*‘targetMachine’ and ‘sourceClass’ have the same name and*/
targetMachine.name = sourceClass.name   and

/*For each modifier function in the ‘sourceClass’ there is a transition in ‘targetMachine’*/
   sourceClass.C++MemberFunction-> select (f| f.isModifier() )-> forAll( f | 

targetMachine.region.transition-> exists( t | t.isCreatedFrom(f))) and … ) )   
and …  
}
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techniques with MDA and formal specifications. 

We describe how to transform code into models in a higher level of abstraction that allows 

moving from these abstractions to new implementations.
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