93,507 research outputs found

    Science, Art and Geometrical Imagination

    Full text link
    From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental role of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Durer, Kepler, Escher, Grisey or the present author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as beauty, conciseness and emotional approach of the world.Comment: 22 pages, 28 figures, invited talk at the IAU Symposium 260 "The Role of Astronomy in Society and Culture", UNESCO, 19-23 January 2009, Paris, Proceedings to be publishe

    Schrodinger Evolution for the Universe: Reparametrization

    Get PDF
    Starting from a generalized Hamilton-Jacobi formalism, we develop a new framework for constructing observables and their evolution in theories invariant under global time reparametrizations. Our proposal relaxes the usual Dirac prescription for the observables of a totally constrained system (`perennials') and allows one to recover the influential partial and complete observables approach in a particular limit. Difficulties such as the non-unitary evolution of the complete observables in terms of certain partial observables are explained as a breakdown of this limit. Identification of our observables (`mutables') relies upon a physical distinction between gauge symmetries that exist at the level of histories and states (`Type 1'), and those that exist at the level of histories and not states (`Type 2'). This distinction resolves a tension in the literature concerning the physical interpretation of the partial observables and allows for a richer class of observables in the quantum theory. There is the potential for the application of our proposal to the quantization of gravity when understood in terms of the Shape Dynamics formalism.Comment: 25 pages (including title page and references), 1 figur

    Shape computations without compositions

    Get PDF
    Parametric CAD supports design explorations through generative methods which compose and transform geometric elements. This paper argues that elementary shape computations do not always correspond to valid compositional shape structures. In many design cases generative rules correspond to compositional structures, but for relatively simple shapes and rules it is not always possible to assign a corresponding compositional structure of parts which account for all operations of the computation. This problem is brought into strong relief when design processes generate multiple compositions according to purpose, such as product structure, assembly, manufacture, etc. Is it possible to specify shape computations which generate just these compositions of parts or are there additional emergent shapes and features? In parallel, combining two compositions would require the associated combined computations to yield a valid composition. Simple examples are presented which throw light on the issues in integrating different product descriptions (i.e. compositions) within parametric CAD

    GRASS: Generative Recursive Autoencoders for Shape Structures

    Full text link
    We introduce a novel neural network architecture for encoding and synthesis of 3D shapes, particularly their structures. Our key insight is that 3D shapes are effectively characterized by their hierarchical organization of parts, which reflects fundamental intra-shape relationships such as adjacency and symmetry. We develop a recursive neural net (RvNN) based autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code. The code effectively captures hierarchical structures of man-made 3D objects of varying structural complexities despite being fixed-dimensional: an associated decoder maps a code back to a full hierarchy. The learned bidirectional mapping is further tuned using an adversarial setup to yield a generative model of plausible structures, from which novel structures can be sampled. Finally, our structure synthesis framework is augmented by a second trained module that produces fine-grained part geometry, conditioned on global and local structural context, leading to a full generative pipeline for 3D shapes. We demonstrate that without supervision, our network learns meaningful structural hierarchies adhering to perceptual grouping principles, produces compact codes which enable applications such as shape classification and partial matching, and supports shape synthesis and interpolation with significant variations in topology and geometry.Comment: Corresponding author: Kai Xu ([email protected]
    corecore