13 research outputs found

    A First-Order Complete Temporal Logic for Structured Context-Free Languages

    Get PDF
    The problem of model checking procedural programs has fostered much research towards the definition of temporal logics for reasoning on context-free structures. The most notable of such results are temporal logics on Nested Words, such as CaRet and NWTL. Recently, the logic OPTL was introduced, based on the class of Operator Precedence Languages (OPLs), more powerful than Nested Words. We define the new OPL-based logic POTL and prove its FO-completeness. POTL improves on NWTL by enabling the formulation of requirements involving pre/post-conditions, stack inspection, and others in the presence of exception-like constructs. It improves on OPTL too, which instead we show not to be FO-complete; it also allows to express more easily stack inspection and function-local properties. In a companion paper we report a model checking procedure for POTL and experimental results based on a prototype tool developed therefor. For completeness a short summary of this complementary result is provided in this paper too.Comment: Partially supersedes arXiv:1910.0932

    A First-Order Complete Temporal Logic for Structured Context-Free Languages

    Get PDF
    The problem of model checking procedural programs has fostered much research towards the definition of temporal logics for reasoning on context-free structures. The most notable of such results are temporal logics on Nested Words, such as CaRet and NWTL. Recently, the logic OPTL was introduced, based on the class of Operator Precedence Languages (OPLs), more powerful than Nested Words. We define the new OPL-based logic POTL and prove its FO-completeness. POTL improves on NWTL by enabling the formulation of requirements involving pre/post-conditions, stack inspection, and others in the presence of exception-like constructs. It improves on OPTL too, which instead we show not to be FO-complete; it also allows to express more easily stack inspection and function-local properties. In a companion paper we report a model checking procedure for POTL and experimental results based on a prototype tool developed therefor. For completeness a short summary of this complementary result is provided in this paper too

    An Experiment in Ping-Pong Protocol Verification by Nondeterministic Pushdown Automata

    Get PDF
    An experiment is described that confirms the security of a well-studied class of cryptographic protocols (Dolev-Yao intruder model) can be verified by two-way nondeterministic pushdown automata (2NPDA). A nondeterministic pushdown program checks whether the intersection of a regular language (the protocol to verify) and a given Dyck language containing all canceling words is empty. If it is not, an intruder can reveal secret messages sent between trusted users. The verification is guaranteed to terminate in cubic time at most on a 2NPDA-simulator. The interpretive approach used in this experiment simplifies the verification, by separating the nondeterministic pushdown logic and program control, and makes it more predictable. We describe the interpretive approach and the known transformational solutions, and show they share interesting features. Also noteworthy is how abstract results from automata theory can solve practical problems by programming language means.Comment: In Proceedings MARS/VPT 2018, arXiv:1803.0866

    Faster Algorithms for Weighted Recursive State Machines

    Full text link
    Pushdown systems (PDSs) and recursive state machines (RSMs), which are linearly equivalent, are standard models for interprocedural analysis. Yet RSMs are more convenient as they (a) explicitly model function calls and returns, and (b) specify many natural parameters for algorithmic analysis, e.g., the number of entries and exits. We consider a general framework where RSM transitions are labeled from a semiring and path properties are algebraic with semiring operations, which can model, e.g., interprocedural reachability and dataflow analysis problems. Our main contributions are new algorithms for several fundamental problems. As compared to a direct translation of RSMs to PDSs and the best-known existing bounds of PDSs, our analysis algorithm improves the complexity for finite-height semirings (that subsumes reachability and standard dataflow properties). We further consider the problem of extracting distance values from the representation structures computed by our algorithm, and give efficient algorithms that distinguish the complexity of a one-time preprocessing from the complexity of each individual query. Another advantage of our algorithm is that our improvements carry over to the concurrent setting, where we improve the best-known complexity for the context-bounded analysis of concurrent RSMs. Finally, we provide a prototype implementation that gives a significant speed-up on several benchmarks from the SLAM/SDV project

    A Model Checker for Operator Precedence Languages

    Get PDF
    The problem of extending model checking from finite state machines to procedural programs has fostered much research toward the definition of temporal logics for reasoning on context-free structures. The most notable of such results are temporal logics on Nested Words, such as CaRet and NWTL. Recently, Precedence Oriented Temporal Logic (POTL) has been introduced to specify and prove properties of programs coded trough an Operator Precedence Language (OPL). POTL is complete w.r.t. the FO restriction of the MSO logic previously defined as a logic fully equivalent to OPL. POTL increases NWTL's expressive power in a perfectly parallel way as OPLs are more powerful that nested words.In this article, we produce a model checker, named POMC, for OPL programs to prove properties expressed in POTL. To the best of our knowledge, POMC is the first implemented and openly available model checker for proving tree-structured properties of recursive procedural programs. We also report on the experimental evaluation we performed on POMC on a nontrivial benchmark

    Model Checking Temporal Properties of Recursive Probabilistic Programs

    Get PDF
    Probabilistic pushdown automata (pPDA) are a standard operational model for programming languages involving discrete random choices and recursive procedures. Temporal properties are useful for specifying the chronological order of events during program execution. Existing approaches for model checking pPDA against temporal properties have focused mostly on ω\omega-regular and LTL properties. In this paper, we give decidability and complexity results for the model checking problem of pPDA against ω\omega-visibly pushdown languages that can be described by specification logics such as CaRet. These logical formulae allow specifying properties that explicitly take the structured computations arising from procedural programs into account. For example, CaRet is able to match procedure calls with their corresponding future returns, and thus allows to express fundamental program properties such as total and partial correctness

    IST Austria Thesis

    Get PDF
    This dissertation focuses on algorithmic aspects of program verification, and presents modeling and complexity advances on several problems related to the static analysis of programs, the stateless model checking of concurrent programs, and the competitive analysis of real-time scheduling algorithms. Our contributions can be broadly grouped into five categories. Our first contribution is a set of new algorithms and data structures for the quantitative and data-flow analysis of programs, based on the graph-theoretic notion of treewidth. It has been observed that the control-flow graphs of typical programs have special structure, and are characterized as graphs of small treewidth. We utilize this structural property to provide faster algorithms for the quantitative and data-flow analysis of recursive and concurrent programs. In most cases we make an algebraic treatment of the considered problem, where several interesting analyses, such as the reachability, shortest path, and certain kind of data-flow analysis problems follow as special cases. We exploit the constant-treewidth property to obtain algorithmic improvements for on-demand versions of the problems, and provide data structures with various tradeoffs between the resources spent in the preprocessing and querying phase. We also improve on the algorithmic complexity of quantitative problems outside the algebraic path framework, namely of the minimum mean-payoff, minimum ratio, and minimum initial credit for energy problems. Our second contribution is a set of algorithms for Dyck reachability with applications to data-dependence analysis and alias analysis. In particular, we develop an optimal algorithm for Dyck reachability on bidirected graphs, which are ubiquitous in context-insensitive, field-sensitive points-to analysis. Additionally, we develop an efficient algorithm for context-sensitive data-dependence analysis via Dyck reachability, where the task is to obtain analysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almost linear time, after which the contribution of the library in the complexity of the client analysis is (i)~linear in the number of call sites and (ii)~only logarithmic in the size of the whole library, as opposed to linear in the size of the whole library. Finally, we prove that Dyck reachability is Boolean Matrix Multiplication-hard in general, and the hardness also holds for graphs of constant treewidth. This hardness result strongly indicates that there exist no combinatorial algorithms for Dyck reachability with truly subcubic complexity. Our third contribution is the formalization and algorithmic treatment of the Quantitative Interprocedural Analysis framework. In this framework, the transitions of a recursive program are annotated as good, bad or neutral, and receive a weight which measures the magnitude of their respective effect. The Quantitative Interprocedural Analysis problem asks to determine whether there exists an infinite run of the program where the long-run ratio of the bad weights over the good weights is above a given threshold. We illustrate how several quantitative problems related to static analysis of recursive programs can be instantiated in this framework, and present some case studies to this direction. Our fourth contribution is a new dynamic partial-order reduction for the stateless model checking of concurrent programs. Traditional approaches rely on the standard Mazurkiewicz equivalence between traces, by means of partitioning the trace space into equivalence classes, and attempting to explore a few representatives from each class. We present a new dynamic partial-order reduction method called the Data-centric Partial Order Reduction (DC-DPOR). Our algorithm is based on a new equivalence between traces, called the observation equivalence. DC-DPOR explores a coarser partitioning of the trace space than any exploration method based on the standard Mazurkiewicz equivalence. Depending on the program, the new partitioning can be even exponentially coarser. Additionally, DC-DPOR spends only polynomial time in each explored class. Our fifth contribution is the use of automata and game-theoretic verification techniques in the competitive analysis and synthesis of real-time scheduling algorithms for firm-deadline tasks. On the analysis side, we leverage automata on infinite words to compute the competitive ratio of real-time schedulers subject to various environmental constraints. On the synthesis side, we introduce a new instance of two-player mean-payoff partial-information games, and show how the synthesis of an optimal real-time scheduler can be reduced to computing winning strategies in this new type of games

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems
    corecore