Be Lazy and Don’t Care: Faster CTL Model
Checking for Recursive State Machines*

Clemens Dubslaff®!, Patrick Wienhoft!, and Ansgar Fehnker?

! Technische Universitét Dresden, Dresden, Germany
{clemens.dubslaff,patrick.wienhoeft}@tu-dresden.de
2 University of Twente, Enschede, The Netherlands
ansgar.fehnker@utwente.nl

Abstract. Recursive state machines (RSMs) are state-based models for
procedural programs with wide-ranging applications in program verifica-
tion and interprocedural analysis. Model-checking algorithms for RSMs
and related formalisms and various temporal logic specifications have
been intensively studied in the literature.

In this paper, we devise a new model-checking algorithm for RSMs and
requirements in computation tree logic (CTL) that exploits the composi-
tional structure of RSMs by ternary model checking in combination with
a lazy evaluation scheme. Specifically, a procedural component is only
analyzed in those cases in which it might influence the satisfaction of
the CTL requirement. We evaluate our prototypical implementation on
randomized scalability benchmarks and on an interprocedural data-flow
analysis of JAVA programs, showing both practical applicability and sig-
nificant speedups in comparison to state-of-the-art model-checking tools
for procedural programs.

1 Introduction

Model checking [4JT12] is a well-established technique for verifying that a system
model meets a given requirement. System models are most commonly given as
Kripke structures, i.e., directed graphs over states whose edges model the op-
erational behavior of the system with labels over a set of atomic propositions
specifying properties of states. Over these labels, requirements are usually for-
malized in a temporal logic such as computation tree logic (CTL, [I1)).

In this paper, we revisit the model-checking problem for recursive state ma-
chines (RSMs) models and CTL requirements [I]. RSMs provide a standard
model for the operational behavior of programs with recursive procedure calls.
They closely follow the compositional structure of the procedural program by
modeling procedures by separate Kripke structures (called components) that are
connected through call and return nodes. Due to the infinite-state semantics

* The authors are supported by the DFG through the Cluster of Excellence EXC
2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy) and
the TRR 248 (see https://perspicuous-computing.science, project ID 389792660).

http://orcid.org/0000-0001-5718-8276
https://perspicuous-computing.science

2 Clemens Dubslaff, Patrick Wienhoft, and Ansgar Fehnker

of RSMs, the standard CTL model-checking algorithm for finite Kripke struc-
tures [4UTT] is not directly applicable [1]. Fortunately, the satisfaction of a given
CTL formula in a component of an RSM solely depends on the satisfaction of
subformulas in return nodes of the component, so-called contexts [9I3]. Intu-
itively, contexts model the environmental influence on the component, i.e., how
the satisfaction of the formula depends on the calling component. Exhaustively
generating all contexts that could arise during program execution and apply-
ing the standard CTL model-checking algorithm for finite Kripke structures on
components directly leads to an algorithm to model check RSMs against CTL
formulas [I]. This algorithm runs in exponential time in the size of the RSM
due to possibly exponentially many contexts that have to be considered for each
component. Since the model-checking problem for RSMs and CTL formulas is
ExpTIME-complete [5], this algorithm cannot be improved in the worst case.
Nevertheless, there is plenty of room for heuristic optimizations that might show
runtime improvements in practice.

This paper devises a new method to reduce the number of subformulas and
contexts evaluated during the model-checking decision procedure, following a
lazy rather than an exhaustive deduction scheme. The main idea behind our
lazy approach is to use ternary model checking and successively refine the global
satisfaction relation by step-wise evaluating new contexts that could contribute
to deciding the overall model-checking problem [14]. While our lazy approach
might also have to consider all subformulas and contexts in the worst case, this
is usually not the case in practice, as we show in this paper.

We implemented a ternary variant of the exhaustive approach by Alur et
al. [I] and our new lazy approach in a tool called RSMCHECI&H To the best
of our knowledge, RSMCHECK is the first model checker specifically dedicated
to RSMs, while existing state-of-the-art model checkers for procedural programs
such as PDSOLVER [I5] and PuUMOoC [20] rely on pushdown systems. RSMs and
pushdown systems can be linearly transformed to each other while preserving
their Kripke structure semantics (see, e.g., [6]). However, RSMs have the advan-
tage of directly reflecting the compositional structure of a procedural program
and providing an intuitive visual representation. To this end, choosing RSMs
as model for procedural programs can ease the interpretation of counterexam-
ples and witnesses generated by model checking and hence facilitate debugging
during program development steps.

We conduct three experimental studies for RSMCHECK, addressing scalabil-
ity, comparison to existing model-checking tools, and application to real-world
examples in terms of an interprocedural data-flow analysis on JAVA programs.
In these studies we show that our lazy approach is effective, evaluates less con-
texts than in the exhaustive case, and leads to significant speedups up to one
order of magnitude compared to the exhaustive approach. Applied on their own
benchmark suites, PDSOLVER and PUMOC show timeouts or exceed memory
constraints on several instances [20]. We demonstrate that our lazy approach

3 The tool along with data to reproduce our experimental studies can be downloaded
at |https://github.com/PattuX/RSMCheck.

https://github.com/PattuX/RSMCheck

Faster CTL Model Checking for Recursive State Machines 3

manages to verify all instances and outperforms PDSOLVER and PuUMoC by
being up to two orders of magnitude faster.

Outline. After settling notations and basic definitions required to formally state
the CTL model-checking problem for RSMs in Section [2] we first extend the
exhaustive model-checking approach by Alur et al. [I] to the ternary setting in
Section [3] The lazy approach is detailed in Section [and evaluated in Section [
We close the paper with further related work and future work in Section [6]

2 Preliminaries

For a set X we denote by p(X) the power set of X and by X*, X*, and X¥
the sets of finite, finite non-empty, and infinite sequences of elements in X,
respectively. Given a sequence m = x1,x3,..., we denote by 7[i] = x; the ith
element of m. A (ternary) interpretation over X is a function 9: X — {tt, ff,??}
where tt stands for “true”, ff for “false”, and ?? for “unknown”. We denote
by A(X) the set of all interpretations over X. An interpretation d € A(X) is a
refinement of &' € A(X) if for all x € X we have 0'(x) = tt implies d(z) = tt,
and &' (x) = ff implies d(z) = ff.

A Kripke structure (see, e.g., []) is a tuple K = (S, —, AP, L) where S is
a set of states, — C S x S is a transition relation, AP is a finite set of atomic
propositions, and L: S — p(AP) is a labeling function that labels states with
atomic propositions. To ease notations, we write s — s’ for (s, s’) € —. A path
in K is a sequence s1, S3,... € S¥ where for each i € N we have s; — s;41. The
set of all paths starting in a state s € S is denoted by I (s).

2.1 Computation Tree Logic

To reason about Kripke structures we specify system requirements in computa-
tion tree logic (CTL, [11]). A CTL formula over AP is defined by the grammar

® = tt|a|~®|dVve|IXP|3IGP | IOU P

where a ranges over AP. Further standard operators, e.g., A, F, and V, can
be derived through standard transformations such as DeMorgan’s rule [4]. We
denote by Subf () and Subf5(P) the set of subformulas and existential quantified
subformulas of @, respectively. Given a Kripke structure K = (S, —, AP, L) we
define the satisfaction relation = for CTL formulas over AP recursively by

s tt sEPI VO iff sEP or s Py

skEa iff a€L(s) sk=3IXP ifft Irell(s)n2] =P
sE-9 iff sEP s E=3IGP iff 3rell(s)VieNn[i| =
s 30, Ud, iff Ime I(s),j € NVi < jrli] = &1 Axlj] = &o

An interpretation 0 over S x Subf(P) is consistent with K if for all s € S and
¢ € Subf (P) we have 9(s, ¢) = tt implies s = ¢ and 9(s, ¢) = ff implies s [~ ¢.

4 Clemens Dubslaff, Patrick Wienhoft, and Ansgar Fehnker

2.2 Recursive State Machines

A labeled recursive state machine (RSM, [1]) over a set of atomic propositions
AP is a tuple A = (A4, ..., Ax) comprising components

Ai = (NhBiijiaEnivExiv—>i7Ii7AP7Li)
fori=1,...,k where

— N; is a set of nodes for which N;NN; =@ forall j =1,...,k, i # 7,

— B, is a set of boxes for which BN B; =@ forall j =1,...,k, i # j,

— Y;: B, = {1,...,k} is a mapping assigning a component index to every box,

— En;, Ez;CN; with En;NFEz; =3, are sets of entry and exit nodes, respectively,

— —; C (N;\Ez;)UReturn; x (N;\En;)UCall; is a transition relation, and

— L;: N; U Call; U Return; — ©(AP) is a node labeling function for which
Li((b,n)) = Ly ®)(n) for all (b,n) € Call; U Return;.

Here, Call; = (yep, Cally where Call, = {(b,en) | en € Eny)} denotes the
set of call nodes of a box b and Return; = UbeBi Returny, where Return;, =
{(byex) | ex € Exy)} denotes the set of return nodes of a box b. We assume
that all nodes except exit nodes are not final, i.e., for all ¢ € {1,...,k} and
n € (N;\Ez;) U Return; there is n’ € (N; \ Fn;) U Call; such that n —; n'.
Note that we allow for direct transitions from return to call nodes. By omitting
component indices, we denote the union of all corresponding entities in the RSM,
e.g., we write N for Ui;l N;, B for Ule B;, and — for Ule —.

The semantics of a component A4; is defined as Kripke structure [A;] = (N; U
Call; U Return;, —;, AP, L;). The semantics of A is a Kripke structure

[Al = (B*x(NU CallU Return),=, AP, L)

where L labels each state as the corresponding node, i.e., L((c,n)) = L;(n) for
all 0 € B* and n € N; U Call; U Return;, and = is the smallest transition
relation that obeys the following rules:

o€ B* n—sn' obe BT (b,en) € Cally, en—n

(loe) (o0,n) = (0,n) (cal) (o, (b,en)) = (ob,n)

ex € Ex (return) obe BT (b,ex) € Returny, (byex) —n
(e,ex) = (e, e) (ob, ex) = (o,n)

(loop)

Intuitively, a state (o,n) of the Kripke structure [A] comprises a call stack
o and a local node n of some component of A. Rule (loc) represents an internal
transition of a component, (loop) implements that the execution stays in the exit
nodes when leaving the outermost component, and (call) and (return) formalize
entering and leaving a box, respectively. For a CTL formula @, we write A = &
if for all n € Enq we have (e,n) = @ in [A] [9I0]. The model-checking problem
we consider here in this paper asks whether A |= @ for a given RSM A and CTL
formula &, both over AP.

Faster CTL Model Checking for Recursive State Machines 5

1 | public class Dataflow { m

2 public static int i; _ i

3 public static void main(Stringl[] main_11_0
— args) {

4 i=57/7 a0; bO;

50 3

6 public static void a() {

7 // do nothing

g | 3

9 public static void b() {

10 i=1x* i

11 }

12 |}

Fig.1: Java Dataflow example from [I5] and its generated control-flow RSM.

Ezxample. Figuredepicts a JAVA program (left) and an automatically generated
RSM model (right). Nodes in the RSM stand for control-flow locations with
names encoding references back to the abstract syntax tree of the source code.
Furthermore, nodes are labeled with use; and def;, which indicate whether the
variable i is read or written, respectively. Model checking on RSMs with such
use-def annotations can be used for an interprocedural data-flow analysis. For
instance, the requirement that whenever the variable i is defined, it is eventually
used, can be expressed by the CTL formula VG (defi — EIF(usei)). Our Dataflow
example does not meet this requirement: after squaring ¢ in Line 10, the new
value of ¢ is not used in later program execution steps. In the RSM of Figure
this is witnessed by the only existing execution that starts in the initial node
main_11.0, reaches the def;-labeled node b_23_6 after calling b(), and finally
continues with b_24_7 and main_14_3 that are both not labeled with use;.

3 Ternary RSM Model Checking

This section provides the foundations for our exhaustive and lazy model-checking
algorithms. For this, we closely follow the approach of [I] and adapt their algo-
rithm for model checking single-exit RSMs against CTL* requirements towards
a ternary model-checking algorithm of multi-exit RSMs against CTL. Multi-exit
RSMs, i.e., RSMs where components might have more than one exit node, are
especially relevant for modeling real-world procedural programs. In fact, except
the Dataflow example from Figure[I] all examples we consider in our experimen-
tal studies of Section [5] require multi-exit RSMs for their analysis. Meanwhile,
CTL as a subclass of CTL* is still expressive enough to specify lots of relevant
properties, e.g., use-def properties for interprocedural static analysis.

The support of ternary CTL model checking follows the ideas by [7] and
replaces the role of refinement operations on satisfaction sets as employed in [IJ.
To ensure compositional RSM model checking, we discuss two kinds of deduc-
tions: first, how ternary interpretations are refined locally on each component,
and second, how ternary refinements are globally propagated.

6 Clemens Dubslaff, Patrick Wienhoft, and Ansgar Fehnker

Algorithm 1: CONTEXTUALIZE(A, @, 0,b)

input :an RSM A = (A4,...,Ax), a CTL formula &, a vector
9= (01,...,0k) of ternary interpretations 9; for A;, and a box
be B;

output: a modified RSM A’ with a ®-contextualized interpretation &’

Yo i= {(e;c,qS, n) | ¢ € Subf (D), (b,ex) € Returny, 9;((b, ex),) = 77}
if there is j where v, C 0; then

A=A
Y/ (b) =
Ise
Art1 := Ay,)

A = (A, . Ak, Ak1)
11 := Oy, (v)
forall (s, $,n) € 5 do Ok+1(s,¢) := (s, @)

© 0N, N W N
o

10 9 = (01,...,0k, O s1)
11 Y/(b):=k+1
12 return A, 9’

3.1 Local Deduction

To locally refine ternary interpretations on RSM components, we use a function
LoCcALDEDUCE(K, @, 9) that maps a finite Kripke structure K = (S, —, AP, L),
a CTL formula @ over AP, and an interpretation 9: S x Subf(®) — {tt, ff,??}
that is consistent with K to an interpretation 8’: S x Subf(®) — {tt,ff,??}
refining 9. In essence, LOCALDEDUCE implements one step of the CTL model-
checking algorithm by [7] where interpretations on subformulas are refined in
a bottom-up fashion as in classical CTL model checking [II] but on ternary
interpretations instead of binary ones. To achieve ternary deduction, an opti-
mistic and a pessimistic run of the classical CTL deduction step is performed
on binary interpretations of subformulas. In the optimistic run all subformulas
that are “unknown” are assumed to hold, while in the pessimistic run they are
assumed to not hold. Then, all subformulas that do not hold after the optimistic
run do surely not hold in the ternary setting and likewise, all subformulas that
do hold after the pessimistic run surely hold.

3.2 Contextualization of Components

A slight difference of our LOCALDEDUCE method compared to a single deduction
step by [7] is that we explicitly give an arbitrary consistent partial interpretation
0 as input parameter, while the algorithm by [7] assumes a maximally refined
consistent partial interpretation over all subformulas. To this end, we can include
assumptions on the satisfaction of subformulas in the deduction process such as
knowledge on the environment the system is executed in. In the setting of RSMs,
the environment of a component is constituted by their calling components.
Specifically, following the notion of contexts [3l9], the environmental influence on

Faster CTL Model Checking for Recursive State Machines 7

Algorithm 2: GLOBALDEDUCE(A, @, 0)
input :an RSM A = (A4,...,Ax), a CTL formula &, and a vector
9 = (01,...,0k) of ternary interpretations 9; for A;
output: refined interpretations &' of &
9 =0
repeat
=0
forall i € {1,...,k} do
forall (b,en) € Call; do
9;((b,en), ®) := 6;/1“7)(6717 b)
8} := LOCALDEDUCE([A:], ®, 9})
until d = &'
return 9’

© 0 g9 o A W N =

a component can be fully captured by a given satisfaction relation on existential
formulas in exit nodes of the componentsEI For an RSM A and a CTL formula &
both over a set of atomic propositions AP as formalized in Section |2 a ®-context
of a component A; in A is formalized as an interpretation v; € A(Ez; x Subf5(®))
over the component’s exit nodes and existential subformulas of &.

To reason about components in a modular way, we have to keep track of
the contexts and deduction results under these contexts for their reuse. This is
achieved by the function CONTEXTUALIZE, described in Algorithm ([T} which maps
A, a tuple 9 = (94,...,0k) of local interpretations for components Ay, ..., Ax
of A, and a target box b € B; to a possibly modified RSM A’ with a &-
contextualized interpretation 9. Our algorithm for CONTEXTUALIZE checks whether
we already considered the component assigned to b w.r.t. the context induced
from b’s return nodes. If this is the case, we (re)assign b to the found contex-
tualized component. Otherwise a Copyﬂ Ajy1 of the component Ay, ;) with the
new context is generated (i.e., the number of components of the RSM increases
from k to k + 1) and the box b is reassigned to the fresh component Agy1 by
updating function Y; (see Section [2.2]).

3.3 Global Deduction

To propagate information from inside a component to a calling component, we
use a function GLOBALDEDUCE, described in Algorithm 2] that maps an RSM
A, a target CTL formula @, and a tuple 9 = (01, ..., k) of local interpretations
to refined interpretations 8’ = (91, ..., d;). Our algorithm for GLOBALDEDUCE
starts with @ = 0 and performs the following two steps until a fixed point is

4 Since the standard CTL model-checking deduction follows a backward-search ap-
proach, the contextual information contained in the exit nodes of the component
propagates towards the entry nodes of the component during a local deduction step.

5 This is done due to better understandability of the approach. For practical imple-
mentations, one might only copy and modify interpretations on the components.

8 Clemens Dubslaff, Patrick Wienhoft, and Ansgar Fehnker

Algorithm 3: EXHAUSTIVECHECK(B, P)

input :an RSM B = (B1,...,8¢) and a CTL formula &, both over AP
output: tt if B =& and ffif B £ @

1 A, 09 := INITIALIZE(B, ?)
2 F:=0
3 while F # Subf(®) do
4 Pick ¢ € Subf(®) with Subf(¢) \ F = {¢}
5 F:=FU{¢}
6 repeat
7 forall b € Bdo A,0:= CONTEXTUALIZE(A, ¢, 0, b)
8 9 := GLOBALDEDUCE(A, ¢, 9)
9 until 9 did not change
10 forall : € {1,...,k}, n € N; with 9;(n,¢) =27 do
11 if ¢ = 3Gy then 9;(n, o) := tt
12 if ¢ = 31 Utpo then 9;(n,) := ff
13 if there is en € Eny with 01 (en,®) = ff then return ff
14 else return tt

reached for the local interpretations, i.e., @' does not change anymore: First, a
local deduction step LOCALDEDUCE(A;, @, 9;) is performed for each component
A; and their current interpretations 0;. Second, we copy the refined interpreta-
tions on the entry nodes of each component A4; to their corresponding call nodes
in the calling component. This refinement in the call nodes may cause new possi-
ble local deductions in the calling components, leading to further refinements in
their entry nodes. As such, we alternate between these two steps until we reach
a fixed point.

3.4 Exhaustive Approach to RSM Model Checking

Piecing together the algorithms sketched so far, we define a compositional algo-
rithm for model checking RSMs against CTL formulas. That is, the algorithm
runs locally on the components of the RSM and propagates their satisfaction re-
lations towards a global satisfaction relation. The procedure follows ideas from
[1] where satisfaction of CTL subformulas is evaluated in a bottom-up fashion,
determining the truth value of minimal subformulas in all nodes before proceed-
ing to larger subformulas. During the evaluation, contextualized components are
created whenever there is not enough information present to fully determine
the truth values for subformulas in all nodes of calling components. Algorithm
shows the decision procedure EXHAUSTIVECHECK (A, P) that decides for an RSM
A and a CTL formula ¢ whether A = @ or not. The algorithm starts with an ini-
tialization of the local ternary interpretations of the components of A (function
INITIALIZE, see in Line [I]). Specifically, INITIALIZE sets all local interpretations
to evaluate to ?? and then performs a local deduction for A; to determine basic
truth assignments in the exit nodes of A; following rule (loop) in the definition

Faster CTL Model Checking for Recursive State Machines 9

of RSM semantics. After initialization, EXHAUSTIVECHECK iterates over all sub-
formulas of @ in a bottom-up fashion as within classical CTL model checking. For
each formula we alternate between contextualizing components assigned to boxes
by CONTEXTUALIZE and a global deduction by GLOBALDEDUCE, refining local
interpretations of components and determining new contexts towards a propaga-
tion from calling components to called ones. This is done until we reach a fixed
point, i.e., local interpretations are not refined any further by GLOBALDEDUCE.

Global dependency cycle resolution. The reached fixed point does not solely
ensure that all truth values for the considered subformula are determined in all
nodes, i.e., some local interpretations may still map to ??. This can happen
when the context of a box depends on the evaluation of the boxes’ entry nodes.
To illustrate this situation, let us consider an example RSM A = (A;,.A3) over
AP = {0, @, @} depicted in Figure [2} The truth value of & = IX3GO in ny
depends on the truth value of ¢ = 9GO in A

the return node (b, n7), providing the context
of Ay in its exit node n7. However, we can-
not deduce this truth value locally in A; as it
depends on whether ¢ holds in the call node
(b,ng) or not. Intuitively, we thus have a cy-
cle of dependencies connected through several
components that hinders further refinement
via CONTEXTUALIZE and GLOBALDEDUCE.

We resolve such situations by the following As

. . . 6 7
reasoning: Since there is a dependency cycle fo. o
that hindered refinement, all nodes on this cy-

cle have to satisfy O. Thus, this cycle can serve
as a witness of ¢ to hold and we refine all local
interpretations for ¢ and nodes on the cycle towards tt. A similar argumentation
can be applied when ¢ is an until formula but with refining all ??-nodes towards
ff. For instance, @ is not reachable from (b, ng), such that ¢ = 30U @ cannot
hold on the dependency cycle illustrated above. Note that our efficient resolution
of global dependency cycles relies on ternary deduction, since cycles of ??-nodes
directly provide information about undeducibility of truth values. While our al-
gorithm is based on [, their algorithm uses binary refinements and thus cannot
exploit such a resolution. However, their algorithm also includes mechanisms to
reason about satisfaction of formulas expressed in linear temporal logic (LTL),
which is used to cover the cycle resolution step.

Fig. 2: Example RSM

Exhaustive RSM Model Checking. Taking global dependency cycle resolu-
tion into account and with proof techniques from [7[1], we obtain correctness of
our exhaustive model-checking algorithm EXHAUSTIVECHECK:

Theorem 1. EXHAUSTIVECHECK(A, @) terminates for any RSM A and CTL
formula @ over a common set of atomic propositions and returns tt iff A = &.

Proof sketch. We show termination and soundness of each of the subroutines
INITIALIZE, LOCALDEDUCE, GLOBALDEDUCE and CONTEXTUALIZE, and then

10 Clemens Dubslaff, Patrick Wienhoft, and Ansgar Fehnker

lift the results to the full algorithm for EXHAUSTIVECHECK. First, observe that
INITIALIZE can be seen of a special case of a CONTEXTUALIZE where the context
is given by the rule (loop) in the definition of [A].

The termination of LOCALDEDUCE directly follows from [7]. Termination
of CONTEXTUALIZE is straight forward (see Algorithm. For GLOBALDEDUCE
the important observation is that it strictly refines an interpretation until a fixed
point is reached, which is done in finitely many steps as the set of nodes N and
subformulas Subf (P) are finite. Since the number of contextualizations of each
box is bounded by 31E215ubf3(2)] the calls of CONTEXTUALIZE in Line[7] can only
add finitely many contextualized components to A. Further, GLOBALDEDUCE
is idempotent and 9 does not change if A did not change. Thus, each iteration
of the main loop from Line [3|to Line [12|is guaranteed to terminate. Lastly, it is
clear that the main loop is executed exactly once for each ¢ € Subf(®) and thus
the algorithm terminates.

For soundness, we show that at each execution point of the algorithm the
computed partial interpretation 9 is sound, i.e.,

(s, p) =tt = VYo € B*:(0,8) = ¢

and
(s, p) = ff = Yo € B*: (0,s) I~ ¢.

Soundness of LOCALDEDUCE follows immediately from [7]. For GLOBALDEDUCE
and CONTEXTUALIZE the statement follows from using the definition of the
underlying Kripke structure [A] of A and the soundness of LOCALDEDUCE.
The main effort in the proof is to show that the assertions following Line [10] are
correct. The arguments here follow the same ideas as outlined in the last section
about global dependency cycle resolution. a

4 Lazy RSM Model Checking

The model-checking algorithm presented in Section [3| mainly combined existing
techniques for model-checking RSMs and CTL formulas [TTJ9I73]. In this section,
we devise a new algorithm that uses elements of the former but aims towards
reducing the number of deduction steps involved. This is achieved by exploiting
the structure of the target CTL formula and the compositional structure of the
RSM towards lazy evaluation of subformulas and components, respectively.

4.1 Lazy Contextualization

Exhaustive RSM model checking determines satisfaction of subformulas ¢ €
Subf (®) in all nodes of the RSM A by evaluating the satisfaction relation within
components w.r.t. all possible contexts. The possibly exponentially many con-
texts that have to be considered with this approach is the main reason for CTL
model checking over RSMs to be EXPTIME-complete [5]. Reducing the number

Faster CTL Model Checking for Recursive State Machines 11

of contexts considered during the deduction process thus provides a potential to
speed up the model checking of RSMs.

Ternary formula evaluation. The main idea towards reducing the number of
contexts to be evaluated is to leave satisfaction of subformulas ¢ of @ unspecified
in case they do not have any influence on the satisfaction of @. For instance, let
us consider the RSM of Figure [2fand ¢ = 3X®V3IX(30U @). Then, satisfaction of
@ can be determined by solely regarding ¢ = IX® in n; and not reasoning about
either disjunct in other nodes, which would be necessarily done in the bottom-
up approach. Further, evaluating ¢ in n; does not require any contextualization
of box b since ng is labeled by @ and thus, in component A; we can already
locally deduce ¢ to hold in ny and thus n; |= @, directly leading to A = é. In
this example, we reduced the number of contexts to be evaluated as we did not
evaluate any context for component As.

Lazy expansion. To determine those contexts that have to be evaluated to
solve the model-checking problem, we combine the ternary formula evaluation
with a heuristic that determines those contexts that might be the reason for un-
derspecified satisfaction of subformulas and impact satisfaction of @ in the RSM.
We provide such a heuristic by the function GETNEXTEXPANSION, specified by
Algorithm @] Depending on a node n where it is unknown whether the target
formula @ holds or not, this function selects a box for which a contextualization
step in combination with a global deduction (see Section could determine
the truth value of @ in n. GETNEXTEXPANSION is defined in a recursive man-
ner, traversing @ in a top-down fashion to reason on why @ is unknown in n
and to find a box b where adding a subformula to its context might refine the
interpretation of @ in n. By lazily contextualizing heuristically selected boxes
rather than contextualizing all boxes as in the case of the exhaustive approach,
we can potentially save contextualization steps.

Algorithm [] considers several cases during recursion, from which we exem-
plify the most significant ones. First, those properties that could be locally re-
solved are considered. For instance, Line [2] deals with & being a disjunction
where it is known that at least one disjunct must be unknown since otherwise @
would be determined in n. Then, a disjunct ¢; is chosen nondeterministically and
GETNEXTEXPANSION is recursively called, determining which contextualization
could resolve whether ¢; holds in n. The cases of entering and leaving a box b are
considered in Line [5] and Line [f] respectively. Notably, if n is an exit node, we
consider the satisfaction of @ in the calling component, i.e., in its return node.
If @ is already known, we found a box where contextualizing yields additional
information and thus return that box as our base case in Line [§] Otherwise, we
continue our search. For existential path properties, let us exemplify the case
where @ = Fp U (see Line . Here, we determine the next recursive call ar-
guments following the well-known CTL expansion law & = ¢ V (gb A3IX(pU 1[1))
First, we consider the local cases where v or ¢ are unknown in n, asking for a
box to contextualize by invoking GETNEXTEXPANSION on v and ¢, respectively.
Otherwise, the reason for @ being unknown in n cannot be locally given and we
continue in a successor node of n where @ is still unknown.

12 Clemens Dubslaff, Patrick Wienhoft, and Ansgar Fehnker

Algorithm 4: GETNEXTEXPANSION(A, n, ®,9, o)

input : RSM A = (A4,..., Ax), node n € N;, formula &, a vector
9= (01,...,0k) of interpretations d; for A;, and a call stack o € B
output: a box b to contextualize

// ... other local case & = —¢ ...

if ®=¢1 V...V ¢, then

choose j € {1,...,¢} with 9;(n, ¢;) = ??

return GETNEXTEXPANSION(A, n, ¢;,0,)

if n = (b,en) € Call; then return GETNEXTEXPANSION(A, en, ®,d, ob)

if n € Ex; and there are p € B* and b € B with pb = o then

if Oy, s)((b,n),P) =?? then return
GETNEXTEXPANSION(A, (b,n), ®,d, p)

return b // base case
9 // ... other existential cases @ = 3G¢ and & = IX¢ ...

10 if & =3¢y Uy then

B [>T N JURE VI

11 if 9;(n,¢) = ?? then return GETNEXTEXPANSION(A,n,v, 9, 0)
12 if 0;(n,¢) = 7? then return GETNEXTEXPANSION(A,n,¢,d,0)
13 choose n’ with n —s; n’ and 8;(n’, ®) = ??
14 return GETNEXTEXPANSION(A,n’, @, 9, 0)

Global dependency cycle resolution. Similar as in the case of exhaustive
RSM model checking (see Section, global dependency cycles are an issue also
within GETNEXTEXPANSION. When implementing GETNEXTEXPANSION ex-
actly as described in Algorithm[d] the algorithm is not ensured to terminate: If an
exit node’s context depends on itself, we recursively call GETNEXTEXPANSION
infinitely often, not reaching the base case in Line[8] An example where this hap-
pens is in the RSM Figure [2] when checking against the formula & = VX30U @
where GETNEXTEXPANSION would be called with (b,n6) and ¢ = 30U @. In
the following steps, GETNEXTEXPANSION would be invoked with ¢ on ng, nz,
(b,n7), n2, and finally (b, ng) again. To resolve such cycles, we first keep track
of the node-formula pairs for which GETNEXTEXPANSION has been already in-
voked. If a cycle is detected by trying to invoke GETNEXTEXPANSION with
the same parameters, we backtrack until we can make a different choice in a
disjunction- or exists-case, possibly leading to a box to be contextualized. This
backtracking procedure is only successful if there is such a box not involved in
any dependency cycle. For instance, in the example above such a box does not
exist. However, in such a case, similar reasoning as done for global dependency
cycle resolution in Section [34] can be applied to refine interpretations in nodes
of a global dependency cycle.

4.2 Lazy Approach to RSM Model Checking

The idea of lazy contextualization of boxes in an RSM can be incorporated
into the exhaustive RSM model-checking approach EXHAUSTIVECHECK pre-

Faster CTL Model Checking for Recursive State Machines 13

Algorithm 5: LAzYCHECK(B, ®)

input : RSM B = (B1,...,B;) and CTL formula @, both over AP
output: ttif A= and ffif A £ &

1 A, 9 := INITIALIZE(B, ?)
2 F:=0
3 while F # Subf(®) do
4 Pick ¢ € Subf(®) with Subf(¢) \ F = {¢}
5 F:=FU{¢}
6 9 := GLOBALDEDUCE(A, ¢, 9)
7 if there is en € Eny with 01(en,®) = ff then return ff
8 while there is en € Eny with 01 (en,®) = ?? do
9 b = GETNEXTEXPANSION(A, en, ®, 9, €)
10 CONTEXTUALIZE(A, &, 9, b)
11 while F' # Subf(®) do
12 Pick ¢ € Subf () with Subf(¢) \ F = {¢}
13 0 := GLOBALDEDUCE(A, ¢, 9)
14 if there is en € Eni with 01(en,®) = ff then return ff
15 return tt

sented in Algorithm [3] This leads to a method LAZYCHECK presented in Al-
gorithm [5] While EXHAUSTIVECHECK surely contextualizes all boxes with con-
texts encountered during global deduction GLOBALDEDUCE, Algorithm [5| uses
GETNEXTEXPANSION to contextualize only those boxes that might contribute
to deciding whether the target formula @ holds in the outermost component
of the RSM. In essence, Algorithm [5] follows the same reasoning principles as
EXHAUSTIVECHECK given in Algorithm [3] by employing functions INITIALIZE,
GLOBALDEDUCE, and CONTEXTUALIZE. The main difference is that due to the
lazy evaluation of subformulas, the satisfaction of subformulas is not a pri-
ori known before invoking a global deduction GLOBALDEDUCE (see Line .
However, due to our ternary reasoning implemented in LOCALDEDUCE and the
progress in contextualizing boxes through GETNEXTEXPANSION in combination
with the global dependency cycle resolution described in Section we obtain
correctness and soundness of our new model-checking algorithm for RSMs.

Theorem 2. LazYCHECK(A, ®) terminates for any RSM A and CTL formula
® over a common set of atomic propositions and returns tt iff A= @.

Proof sketch. The termination and soundness arguments are analogous to the
arguments in the proof of Theorem [I| but require an additional step to prove
that GETNEXTEXPANSION terminates and is sound. This is achieved by care-
ful analysis of the implementation of the cycle resolution described in the last
section about global dependency cycle resolution. Termination of the full algo-
rithm LAZYCHECK then follows from the strict refinements also within adding
new contexts, for which there are only finitely many. Soundness follows by the
soundness of all subroutines as LAzZYCHECK does not directly modify 0. O

14 Clemens Dubslaff, Patrick Wienhoft, and Ansgar Fehnker

Note that in the worst case, all boxes have to be contextualized to determine
whether the RSM A satisfies a CTL formula @. In this case, our algorithm is also
an exhaustive algorithm with a slight polynomial-time overhead of the reason-
ing steps involved in GETNEXTEXPANSION. However, the termination condition
might be satisfied after fewer contextualizations as we have seen in our example
of Figure[2] resulting in strictly less computation steps than EXHAUSTIVECHECK
and illustrating the potential of our lazy model-checking approach.

5 Implementation and Evaluation

We implemented both the exhaustive and the lazy approach presented in this
paper in a prototypical tool RSMCHECK. Written in PYTHONS, it is supported
by almost all common operating systems. RSMs are specified by a dedicated
JSON format, to which our tool also provides a translation from pushdown
systems for model checkers PDSOLVER [I5] or PUMoC [20] that follows the
standard translation method (see, e.g., [6]).

Research questions. To demonstrate applicability of our tool and investigate
properties of the algorithms presented in this paper, we conducted several ex-
perimental studies driven by the following research questions:

(RQ1) Is our lazy approach effective, i.e., generates significantly less contexts
and is faster compared to the exhaustive approach?

(RQ2) How do analysis times of our approaches implemented in RSMCHECK
compare to state-of-the-art procedural model checkers?

(RQ3) Can real-world procedural programs be verified with our approaches?

Experimental setup. All our experiments were carried out using PYPy 7.3.3
on an Intel 19-10900K machine running Ubuntu 21.04, with a timeout threshold
of 30 minutes and a memory limit of 4 GB of RAM.

5.1 Scalability Experiment

First, we conducted a scalability experiment to compare the exhaustive and lazy
approach. We randomly generated 2 500 RSM/CTL-formula pairs (A4;,®,) of in-
creasing sizes and formula lengths: For 4,5 € {1,...,50} the RSM A, contains
i components, each having |i/3] boxes and 3i nodes with connectivity of 20%,
while the formula @; has a quantifier depth of |j/9]. Figureshows the analysis
times in seconds for our lazy (left) and exhaustive (right) approach. We observe
that the more compositional structure and the bigger the requirement formulas,
the more the lazy approach pays off compared to the exhaustive approach, both
in memory consumption and analysis speed. In 5% of the cases, the exhaustive
approach ran into memouts and in all other cases the lazy approach is on av-
erage eight times faster than the exhaustive one. For [(RQ1)| we conclude that
lazy contextualization is an effective method that allows for faster RSM model
checking.

Faster CTL Model Checking for Recursive State Machines 15

50 - EEEEEREEMmmEE 50
e R
SESEE s, 10°
LomeEEEEEEERREREERRAREY
10 B H 10
I T
ERmEa .
T T 10
mEEEENERENEEEEEES - —
. ; B =
& 30] & 30] T L dg)
=] =
El El H 10° .z
]] FHHH z
8 3 -y g
=20 =20 HHAH]
<
.
107"
10 10
102
10 20 30 40 50 10 20 30 40 50
RSM A, RSM A,

Fig. 3: Analysis times for the scalability experiment in seconds (logarithmic scale,
lazy on the left, exhaustive on the right, e marks stand for memouts)

Ta af £y T2aa T & 2 mass 4 A A T
IS

10°

analysis time [s]
analysis time [s]

5
i

~exhaustive @ exhaustive memout o lazy

=
5
T
3
3
»
<

&4 PuMoC & PuMoC timeout 4 PuMoC memout o lazy 1072

I I I
50 100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500

Py or A,, respectively A,

Fig.4: Analysis times for 500 PUMOC examples in seconds (logarithmic scale)

5.2 PuMoC Benchmark Set

Our second experimental study compares RSMCHECK to the procedural CTL
model checker PUMOC on its benchmark set [20]. The benchmark set of PUMoC
comprises 500 randomly generated pushdown systems P; and CTL formulas @;,
numbered as in [20] with ¢ € {10,...,509}. Here, the sizes of the pushdown
systems increase with increasing ¢. To enable RSM model checking, we trans-
lated each P; to an RSM A, in the input format of RSMCHECK. The resulting
RSMs have only one component and thus, our lazy approach is expected to not
fully use its potential. However, while PUMOC runs into time- or memouts in
28 examples, the lazy approach successfully completes each experiment in less
than 40 seconds. Most of the analysis times are in the same range (see Figure
on the left) even though PUMOC is implemented in C, while RSMCHECK is
implemented in PYTHON, known for broad applicability but comparably weak
performance. Regarding [(RQ2)| we can conclude that RSMCHECK is competi-
tive with the state-of-the-art model checker PUMOC even on single-component
RSMs. Figure [4] on the right shows a comparison of the lazy approach to the
exhaustive one, applied on the 500 PUMOC examples. The exhaustive approach

16 Clemens Dubslaff, Patrick Wienhoft, and Ansgar Fehnker

Table 1: Analysis statistics for JAVA interprocedural analysis (time in seconds)

PDSorwver | PUMOC exhaustive lazy
JAVA program result time time k | #ctx time| #ctx time
Dataflow (Fig.[t) || ff| <001 o002| 3| 6 <oo01| 1 <001
avroraCFG tt| >1800| >1800/(|3169|4372 133.41 2 7.46
avroraDisassemble tt| 806.66| >1800/|2085|4628 233.18 1 3.19
avroraELF tt 26.68 71.28 || 248 | 614 4.79 1 0.29
avroraMedTest tt 12.48 37.09(238| 264 1.28 4 043
avroraReg tt 8.73 16.12 173 477 1.69 2 0.32
dom2pdf tt 80.46| 1345.56 || 615|2002 17.88 1 0.76
fop2pdf tt 61.68| >1800| 607|2029 27.65 6 1.19

is always slower than the lazy approach and runs into memouts in 69% of the
cases. This also supports our positive answer to|[(RQ1)|drawn in the last section.

5.3 Interprocedural Static Analysis for Java Programs

Our last experimental study considers an interprocedural analysis for real-world
systems, borrowed from the benchmark set of [15]. These benchmarks comprise
pushdown systems modeling the control-flow of JAVA programs with use-def
annotations for all variables of the program, allowing for a data-flow analysis
of the program. We first used our implementation to translate programs and
the annotated requirement from the input formalism of PDSOLVER to the input
formalisms of PUMOC and RSMCHECK. The requirement formalizes that when-
ever the selected variable is defined, it is eventually used (see the Dataflow exam-
ple in the preliminaries). Table shows characteristics of our analysis. First, the
lazy and even the exhaustive approach are significantly faster than PDSOLVER
and PUMOC. Thus, contributing to |[(RQ2)| and [(RQ3)l RSMCHECK can be
faster than state-of-the-art procedural model checkers also on real-world models.
This can be explained by the compositional structure of RSMs and their gener-
ation of contexts: Even the exhaustive approach generates only those contexts
that arise during deduction steps in exit nodes. These studies also support that
our lazy approach is effective (cf. [(RQ1)): Column k of Table [1] indicates the
number of components of the RSM for the JAVA program, while #ctx indicates
the number of generated contexts during analysis. We can observe that the lazy
approach effectively avoids context generation, having a direct impact on the
analyzed state spaces and timings. Further, we observe speedups of up to two
orders of magnitude compared to the exhaustive approach.

Faster CTL Model Checking for Recursive State Machines 17

6 Conclusion and Discussion

We presented a novel technique to model check RSMs against CTL requirements,
combining ternary reasoning with lazy contextualization of components. While of
heuristic nature, our experimental studies showed significant speedups compared
to existing methods in both scalability benchmarks and in an interprocedural
data-flow analysis on real-world systems. Our tool RSMCHECK is, to the best of
our knowledge, the first tool that implements the RSM model-checking approach
by Alur et al. [I] for verifying CTL formulas.

Counterexamples and witnesses. One major advantage of model-checking
approaches is the generation of counterexamples or witnesses for refuting or
fulfilling the analyzed requirement, respectively. Also in RSMCHECK we im-
plemented a witness-generation method that traverses the nodes of the RSM
according to computed interpretations similarly as GETNEXTEXPANSION does
to find a path responsible for requirement satisfaction. The main difference to
the standard witness-generation methods in Kripke structures is that not only
nodes are tracked but also call stacks and contexts. Counterexamples for uni-
versally quantified requirements are obtained by our witness-generation method
applied on the complement existential requirement.

Expansion heuristics. Central in our lazy approach is the nondeterministic al-
gorithm GETNEXTEXPANSION, which determines the next context to be consid-
ered. This algorithm leaves some freedom in how the nondeterminism is resolved,
for which plenty of heuristics are reasonable. We implemented two methods, a
random selection of subformulas and a deterministic selection that chooses the
left-most unknown subformula for further recursive calls, e.g., in the disjunctive
case in Line 2 of Algorithm[4 The latter is set as default to enable developers to
control the verification process by including domain knowledge, e.g., by placing
most influential subformulas upfront to further exploit lazy context evaluation.
In our experimental studies, choosing either heuristic did not significantly change
runtimes, which is explainable since the CTL requirements were either randomly
generated or a comparably simple use-def formula.

Related work. The most commonly used state-based formalisms for proce-
dural programs are pushdown systems (PDSs) and RSMs, for which there are
linear-time transformations that lead to bisimilar Kripke structure semantics [2].
While PDSs take a more theoretical perspective, essentially encoding push-
down automata, RSMs directly reflect the programs procedural structure. Model
checkers for procedural programs have been first-and-foremost implemented for
PDSs, ranging from PuMoC [20] for CTL requirements and PDSOLVER [15]
for requirements specified in the CTL-subsuming p-calculus, to the LTL model
checker MOPED [19] also integrated into PUMOC. The latter relies on a symbolic
engine that uses binary decision diagrams (BDDs) [8], shown to be beneficial for
LTL model checking on large-scale procedural programs [19]. On-demand or lazy
approaches for interprocedural analysis have been considered, e.g., to determine
evaluation points for a priori narrowed scopes [16], or to analyze the interplay be-

18 Clemens Dubslaff, Patrick Wienhoft, and Ansgar Fehnker

tween classes and objects in JAVASCRIPT programs [I7]. Contrary, our approach
focuses on lazy verification on state-based models.

Further work. In next development steps, we plan to also include the support
for CTL* requirements, using well-known automata-theoretic constructions for
LTL model checking (see, e.g., [1l4]). Further, we plan to extend RSMCHECK
with a BDD-based model-checking engine to investigate the impact of our lazy
algorithms also in the symbolic setting. Remind that our experiments showed
that explicit lazy model checking is already efficient on large real-world systems
where state-of-the-art (symbolic) procedural model checkers were not able to
complete the verification process. Many extensions for PDSs have been presented
in the literature, which could also serve as bases for extending our work on lazy
RSM model checking. For instance, weighted RSMs (see, e.g., [18]) equip RSMs
with labels from a semi-ring, similarly as probabilistic RSMs equip transitions
with probabilities (see, e.g., [6/I13]).

References

1. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4),
786-818 (Jul 2005)

2. Alur, R., Bouajjani, A., Esparza, J.: Model Checking Procedural Programs, pp.
541-572. Springer International Publishing, Cham (2018)

3. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM
Trans. Program. Lang. Syst. 23(3), 273-303 (2001)

4. Baier, C., Katoen, J.P.: Principles of model checking. The MIT Press (2008)

5. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Proc. of CONCUR’97, LNCS, vol. 1243, pp.
135-150. Springer (1997)

6. Brazdil, T.: Verification of Probabilistic Recursive Sequential Programs. Ph.D.
thesis, Masaryk University Brno (2007)

7. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Proc. of CAV’99. pp. 274-287. Springer (1999)

8. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Ma-
nipulation. IEEE Transactions on Computers 35, 677-691 (1986).
https://doi.org/10.1109/TC.1986.1676819

9. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Proc. of
CONCUR’92. pp. 123-137 (1992)

10. Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for infinite
sequential processes. Theor. Comput. Sci. 221(1-2), 251-270 (1999)

11. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logic of Programs. LNCS, vol. 131, pp.
52-71 (1981)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2000)

13. Etessami, K., Yannakakis, M.: Recursive markov chains, stochastic grammars, and
monotone systems of nonlinear equations. J. ACM 56(1) (2009)

14. Fehnker, A., Dubslaff, C.: Inter-procedural analysis of computer programs. US
Patent 8,296,735 (2012)

https://doi.org/10.1109/TC.1986.1676819

15.

16.

17.

18.

19.

20.

Faster CTL Model Checking for Recursive State Machines 19

Hague, M., Ong, C.H.: A saturation method for the modal u-calculus over push-
down systems. Information and Computation 209(5), 799 — 821 (2011)

Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In:
Proc. of SIGSOFT’95. pp. 104-115. ACM (1995)

Jensen, S.H., Mgller, A., Thiemann, P.: Interprocedural analysis with lazy propa-
gation. In: Proc. of Static Analysis. pp. 320-339. Springer (2010)

Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-
2), 206-263 (2005)

Schwoon, S.: Model checking pushdown systems. Ph.D. thesis, Technical University
Munich, Germany (2002)

Song, F., Touili, T.: PuMoC: A CTL model-checker for sequential programs. In:
Proc. of ASE’12. pp. 346-349. ACM (2012)

	Be Lazy and Don't Care: Faster CTL Model Checking for Recursive State Machines

