81,143 research outputs found

    Quantitative Safety: Linking Proof-Based Verification with Model Checking for Probabilistic Systems

    Full text link
    This paper presents a novel approach for augmenting proof-based verification with performance-style analysis of the kind employed in state-of-the-art model checking tools for probabilistic systems. Quantitative safety properties usually specified as probabilistic system invariants and modeled in proof-based environments are evaluated using bounded model checking techniques. Our specific contributions include the statement of a theorem that is central to model checking safety properties of proof-based systems, the establishment of a procedure; and its full implementation in a prototype system (YAGA) which readily transforms a probabilistic model specified in a proof-based environment to its equivalent verifiable PRISM model equipped with reward structures. The reward structures capture the exact interpretation of the probabilistic invariants and can reveal succinct information about the model during experimental investigations. Finally, we demonstrate the novelty of the technique on a probabilistic library case study

    Practical applications of probabilistic model checking to communication protocols

    Get PDF
    Probabilistic model checking is a formal verification technique for the analysis of systems that exhibit stochastic behaviour. It has been successfully employed in an extremely wide array of application domains including, for example, communication and multimedia protocols, security and power management. In this chapter we focus on the applicability of these techniques to the analysis of communication protocols. An analysis of the performance of such systems must successfully incorporate several crucial aspects, including concurrency between multiple components, real-time constraints and randomisation. Probabilistic model checking, in particular using probabilistic timed automata, is well suited to such an analysis. We provide an overview of this area, with emphasis on an industrially relevant case study: the IEEE 802.3 (CSMA/CD) protocol. We also discuss two contrasting approaches to the implementation of probabilistic model checking, namely those based on numerical computation and those based on discrete-event simulation. Using results from the two tools PRISM and APMC, we summarise the advantages, disadvantages and trade-offs associated with these techniques

    Model-Checking Branching-Time Properties of Stateless Probabilistic Pushdown Systems and Its Quantum Extension

    Full text link
    In this work, we first resolve a question in the probabilistic verification of infinite-state systems (specifically, the probabilistic pushdown systems). We show that model checking stateless probabilistic pushdown systems (pBPA) against probabilistic computational tree logic (PCTL) is generally undecidable. We define the quantum analogues of the probabilistic pushdown systems and Markov chains and investigate whether it is necessary to define a quantum analogue of probabilistic computational tree logic to describe the branching-time properties of the quantum Markov chain. We also study its model-checking problem and show that the model-checking of stateless quantum pushdown systems (qBPA) against probabilistic computational tree logic (PCTL) is generally undecidable, too. The immediate corollaries of the above results are summarized in the work.Comment: Obvious typos corrected in new version; this work is a quantum extension of arXiv:1405.4806, [v13]; 30 pages; comments are welcom

    Evaluating the reliability of NAND multiplexing with PRISM

    Get PDF
    Probabilistic-model checking is a formal verification technique for analyzing the reliability and performance of systems exhibiting stochastic behavior. In this paper, we demonstrate the applicability of this approach and, in particular, the probabilistic-model-checking tool PRISM to the evaluation of reliability and redundancy of defect-tolerant systems in the field of computer-aided design. We illustrate the technique with an example due to von Neumann, namely NAND multiplexing. We show how, having constructed a model of a defect-tolerant system incorporating probabilistic assumptions about its defects, it is straightforward to compute a range of reliability measures and investigate how they are affected by slight variations in the behavior of the system. This allows a designer to evaluate, for example, the tradeoff between redundancy and reliability in the design. We also highlight errors in analytically computed reliability bounds, recently published for the same case study

    Evaluating the reliability of NAND multiplexing with PRISM

    Get PDF
    Probabilistic-model checking is a formal verification technique for analyzing the reliability and performance of systems exhibiting stochastic behavior. In this paper, we demonstrate the applicability of this approach and, in particular, the probabilistic-model-checking tool PRISM to the evaluation of reliability and redundancy of defect-tolerant systems in the field of computer-aided design. We illustrate the technique with an example due to von Neumann, namely NAND multiplexing. We show how, having constructed a model of a defect-tolerant system incorporating probabilistic assumptions about its defects, it is straightforward to compute a range of reliability measures and investigate how they are affected by slight variations in the behavior of the system. This allows a designer to evaluate, for example, the tradeoff between redundancy and reliability in the design. We also highlight errors in analytically computed reliability bounds, recently published for the same case study

    On the Termination Problem for Probabilistic Higher-Order Recursive Programs

    Get PDF
    In the last two decades, there has been much progress on model checking of both probabilistic systems and higher-order programs. In spite of the emergence of higher-order probabilistic programming languages, not much has been done to combine those two approaches. In this paper, we initiate a study on the probabilistic higher-order model checking problem, by giving some first theoretical and experimental results. As a first step towards our goal, we introduce PHORS, a probabilistic extension of higher-order recursion schemes (HORS), as a model of probabilistic higher-order programs. The model of PHORS may alternatively be viewed as a higher-order extension of recursive Markov chains. We then investigate the probabilistic termination problem -- or, equivalently, the probabilistic reachability problem. We prove that almost sure termination of order-2 PHORS is undecidable. We also provide a fixpoint characterization of the termination probability of PHORS, and develop a sound (but possibly incomplete) procedure for approximately computing the termination probability. We have implemented the procedure for order-2 PHORSs, and confirmed that the procedure works well through preliminary experiments that are reported at the end of the article

    Separable GPL: Decidable Model Checking with More Non-Determinism

    Get PDF
    Generalized Probabilistic Logic (GPL) is a temporal logic, based on the modal mu-calculus, for specifying properties of branching probabilistic systems. We consider GPL over branching systems that also exhibit internal non-determinism under linear-time semantics (which is resolved by schedulers), and focus on the problem of finding the capacity (supremum probability over all schedulers) of a fuzzy formula. Model checking GPL is undecidable, in general, over such systems, and existing GPL model checking algorithms are limited to systems without internal non-determinism, or to checking non-recursive formulae. We define a subclass, called separable GPL, which includes recursive formulae and for which model checking is decidable. A large class of interesting and decidable problems, such as termination of 1-exit Recursive MDPs, reachability of Branching MDPs, and LTL model checking of MDPs, whose decidability has been studied independently, can be reduced to model checking separable GPL. Thus, GPL is widely applicable and, with a suitable extension of its semantics, yields a uniform framework for studying problems involving systems with non-deterministic and probabilistic behaviors
    corecore