167,392 research outputs found

    Model-checking Quantitative Alternating-time Temporal Logic on One-counter Game Models

    Full text link
    We consider quantitative extensions of the alternating-time temporal logics ATL/ATLs called quantitative alternating-time temporal logics (QATL/QATLs) in which the value of a counter can be compared to constants using equality, inequality and modulo constraints. We interpret these logics in one-counter game models which are infinite duration games played on finite control graphs where each transition can increase or decrease the value of an unbounded counter. That is, the state-space of these games are, generally, infinite. We consider the model-checking problem of the logics QATL and QATLs on one-counter game models with VASS semantics for which we develop algorithms and provide matching lower bounds. Our algorithms are based on reductions of the model-checking problems to model-checking games. This approach makes it quite simple for us to deal with extensions of the logical languages as well as the infinite state spaces. The framework generalizes on one hand qualitative problems such as ATL/ATLs model-checking of finite-state systems, model-checking of the branching-time temporal logics CTL and CTLs on one-counter processes and the realizability problem of LTL specifications. On the other hand the model-checking problem for QATL/QATLs generalizes quantitative problems such as the fixed-initial credit problem for energy games (in the case of QATL) and energy parity games (in the case of QATLs). Our results are positive as we show that the generalizations are not too costly with respect to complexity. As a byproduct we obtain new results on the complexity of model-checking CTLs in one-counter processes and show that deciding the winner in one-counter games with LTL objectives is 2ExpSpace-complete.Comment: 22 pages, 12 figure

    Model-checking iterated games

    Get PDF

    Model checking coalitional games in shortage resource scenarios

    Full text link
    Verification of multi-agents systems (MAS) has been recently studied taking into account the need of expressing resource bounds. Several logics for specifying properties of MAS have been presented in quite a variety of scenarios with bounded resources. In this paper, we study a different formalism, called Priced Resource-Bounded Alternating-time Temporal Logic (PRBATL), whose main novelty consists in moving the notion of resources from a syntactic level (part of the formula) to a semantic one (part of the model). This allows us to track the evolution of the resource availability along the computations and provides us with a formalisms capable to model a number of real-world scenarios. Two relevant aspects are the notion of global availability of the resources on the market, that are shared by the agents, and the notion of price of resources, depending on their availability. In a previous work of ours, an initial step towards this new formalism was introduced, along with an EXPTIME algorithm for the model checking problem. In this paper we better analyze the features of the proposed formalism, also in comparison with previous approaches. The main technical contribution is the proof of the EXPTIME-hardness of the the model checking problem for PRBATL, based on a reduction from the acceptance problem for Linearly-Bounded Alternating Turing Machines. In particular, since the problem has multiple parameters, we show two fixed-parameter reductions.Comment: In Proceedings GandALF 2013, arXiv:1307.416
    • …
    corecore