13 research outputs found

    Models of Interaction as a Grounding for Peer to Peer Knowledge Sharing

    Get PDF
    Most current attempts to achieve reliable knowledge sharing on a large scale have relied on pre-engineering of content and supply services. This, like traditional knowledge engineering, does not by itself scale to large, open, peer to peer systems because the cost of being precise about the absolute semantics of services and their knowledge rises rapidly as more services participate. We describe how to break out of this deadlock by focusing on semantics related to interaction and using this to avoid dependency on a priori semantic agreement; instead making semantic commitments incrementally at run time. Our method is based on interaction models that are mobile in the sense that they may be transferred to other components, this being a mechanism for service composition and for coalition formation. By shifting the emphasis to interaction (the details of which may be hidden from users) we can obtain knowledge sharing of sufficient quality for sustainable communities of practice without the barrier of complex meta-data provision prior to community formation

    Adding debugging support to the Prometheus methodology

    Get PDF
    This paper describes a debugger which uses the design artifacts of the Prometheus agent-oriented software engineering methodology to alert the developer testing the system, that a specification has been violated. Detailed information is provided regarding the error which can help the developer in locating its source. Interaction protocols specified during design, are converted to executable Petri net representations. The system can then be monitored at run time to identify situations which do not conform to specified protocols. A process for monitoring aspects of plan selection is also described. The paper then describes the Prometheus Design Tool, developed to support the Prometheus methodology, and presents a vision of an integrated development environment providing full life cycle support for the development of agent systems. The initial part of the paper provides a detailed summary of the Prometheus methodology and the artifacts on which the debugger is based

    Proceedings of the 11th European Agent Systems Summer School Student Session

    Get PDF
    This volume contains the papers presented at the Student Session of the 11th European Agent Systems Summer School (EASSS) held on 2nd of September 2009 at Educatorio della Providenza, Turin, Italy. The Student Session, organised by students, is designed to encourage student interaction and feedback from the tutors. By providing the students with a conference-like setup, both in the presentation and in the review process, students have the opportunity to prepare their own submission, go through the selection process and present their work to each other and their interests to their fellow students as well as internationally leading experts in the agent field, both from the theoretical and the practical sector. Table of Contents: Andrew Koster, Jordi Sabater Mir and Marco Schorlemmer, Towards an inductive algorithm for learning trust alignment . . . 5; Angel Rolando Medellin, Katie Atkinson and Peter McBurney, A Preliminary Proposal for Model Checking Command Dialogues. . . 12; Declan Mungovan, Enda Howley and Jim Duggan, Norm Convergence in Populations of Dynamically Interacting Agents . . . 19; Akın Günay, Argumentation on Bayesian Networks for Distributed Decision Making . . 25; Michael Burkhardt, Marco Luetzenberger and Nils Masuch, Towards Toolipse 2: Tool Support for the JIAC V Agent Framework . . . 30; Joseph El Gemayel, The Tenacity of Social Actors . . . 33; Cristian Gratie, The Impact of Routing on Traffic Congestion . . . 36; Andrei-Horia Mogos and Monica Cristina Voinescu, A Rule-Based Psychologist Agent for Improving the Performances of a Sportsman . . . 39; --Autonomer Agent,Agent,Künstliche Intelligenz

    Framework for knowledge management

    Get PDF
    This thesis studies the underlying processes of Knowledge Management (KM) and proposes a generic framework for knowledge management that is appli- cable to real-life case studies. We define KM as gathering, refining, organising and disseminating knowl- edge in an organisation, modelled as a multi-agent system. We identify the processes that support KM in such a system. We then for- malise the processes using the syntax and semantics of epistemic logic and translate multi-agent dialogues into a protocol language, which is verifiable by model checking in SPIN. We investigate two real life case studies, knowl- edge sharing and knowledge gap and verify the underlying processes. We finally check for correctness properties of the knowledge processes, including absence of deadlock and termination

    Contributions of formal language theory to the study of dialogues

    Get PDF
    For more than 30 years, the problem of providing a formal framework for modeling dialogues has been a topic of great interest for the scientific areas of Linguistics, Philosophy, Cognitive Science, Formal Languages, Software Engineering and Artificial Intelligence. In the beginning the goal was to develop a "conversational computer", an automated system that could engage in a conversation in the same way as humans do. After studies showed the difficulties of achieving this goal Formal Language Theory and Artificial Intelligence have contributed to Dialogue Theory with the study and simulation of machine to machine and human to machine dialogues inspired by Linguistic studies of human interactions. The aim of our thesis is to propose a formal approach for the study of dialogues. Our work is an interdisciplinary one that connects theories and results in Dialogue Theory mainly from Formal Language Theory, but also from another areas like Artificial Intelligence, Linguistics and Multiprogramming. We contribute to Dialogue Theory by introducing a hierarchy of formal frameworks for the definition of protocols for dialogue interaction. Each framework defines a transition system in which dialogue protocols might be uniformly expressed and compared. The frameworks we propose are based on finite state transition systems and Grammar systems from Formal Language Theory and a multi-agent language for the specification of dialogue protocols from Artificial Intelligence. Grammar System Theory is a subfield of Formal Language Theory that studies how several (a finite number) of language defining devices (language processors or grammars) jointly develop a common symbolic environment (a string or a finite set of strings) by the application of language operations (for instance rewriting rules). For the frameworks we propose we study some of their formal properties, we compare their expressiveness, we investigate their practical application in Dialogue Theory and we analyze their connection with theories of human-like conversation from Linguistics. In addition we contribute to Grammar System Theory by proposing a new approach for the verification and derivation of Grammar systems. We analyze possible advantages of interpreting grammars as multiprograms that are susceptible of verification and derivation using the Owicki-Gries logic, a Hoare-based logic from the Multiprogramming field

    Specifying and Verifying Contract-driven Composite Web Services: a Model Checking Approach

    Get PDF
    As a promising computing paradigm in the new era of cross-enterprise e-applications, web services technology works as plugin mode to provide a value-added to applications using Service-Oriented Computing (SOC) and Service-Oriented Architecture (SOA). Verification is an important issue in this paradigm, which focuses on abstract business contracts and where services’ behaviors are generally classified in terms of compliance with / violation of their contracts. However, proposed approaches fail to describe in details both compliance and violation behaviors, how the system can distinguish between them, and how the system reacts after each violation. In this context, specifying and automatically generating verification properties are challenging key issues. This thesis proposes a novel approach towards verifying the compliance with contracts regulating the composition of web services. In this approach, properties against which the system is verified are generated automatically from the composition’s implementation. First, Business Process Execution Language (BPEL)that specifies actions within business processes with web services is extended to create custom activities, called labels. Those labels are used as means to represent the specifications and mark the points the developer aims to verify. A significant advantage of this labeling is the ability to target specific points in the design to be verified, which makes this verification very focused. Second, new translation rules from the extended BPEL into ISPL, the input language of the MCMAS model checker, are provided so that model checking the behavior of our contract-driven compositions is possible. The verification properties are expressed in the CTLC logic, which provides a powerful representation for modeling composition contracts using commitment-based multiagent interactions. A detailed case study with experimental results are also reported ins the thesis

    Runtime Verification of Deontic and Trust Models in Multiagent Interactions

    Get PDF
    In distributed open systems, such as multiagent systems, new interactions are constantly appearing and new agents are continuously joining or leaving. It is unrealistic to expect agents to automatically trust new interactions. It is also unrealistic to expect agents to refer to their users for help every time a new interaction is encountered. An agent should decide for itself whether a specific interaction with a given group of agents is suitable or not. This thesis presents a runtime verification mechanism for addressing this problem. Verifying multiagent systems has its challenges. It is hard to predict the reliability of interactions, in systems that are heavily influenced by autonomous agents, without having access to the agent specifications. Available verification mechanisms may roughly be divided into two categories: (1) those that verify interaction models independently of specific agents, and (2) those that verify agent models whose constraints shape the interactions. Interaction models are not sufficient when verifying dynamic properties that depend on the agents engaged in an interaction. On the other hand, verifying agent specifications, such as BDI models, is extremely inefficient. Specifications are usually not explicit enough, resulting in the verification of a massive number of permissible interactions. Furthermore, in open systems, an agent’s internal specification is usually not accessible for many reasons, including security and privacy. This thesis proposes a model checker that verifies a combination of a global interaction model and local deontic models. The deontic model may be viewed as a list of agent constraints that are deemed necessary to share and verify, such as the inability of the buyer to pay by credit card. The result is a lightweight, efficient, and powerful model checker that is capable of verifying rich properties of multiagent systems without the need for accessing agents’ internal specifications. Although the proposed model checker has potential for addressing a variety of problems, the trust domain receives special attention due to the critically of the trust issue in distributed open systems and the lack of reliable trust solutions. The thesis illustrates how a dynamic model checker, using deontic/trust models, can help agents decide whether the scenarios they wish to join are trustworthy or not. In summary, the main contribution of this research is in introducing interaction time verification for checking deontic and trust models multiagent interactions. When faced with new unexplored interactions, agents can verify whether joining a given interaction with a given set of collaborating agents would violate any of its constraints
    corecore