266,269 research outputs found

    Withdrawal ruptures in adolescents with borderline personality disorder psychotherapy are marked by increased speech pauses–can minimal responses be automatically detected?

    Get PDF
    Alliance ruptures of the withdrawal type are prevalent in adolescents with borderline personality disorder (BPD). Longer speech pauses are negatively perceived by these patients. Safran and Muran’s rupture model is promising but its application is very work intensive. This workload makes research costly and limits clinical usage. We hypothesised that pauses can be used to automatically detect one of the markers of the rupture model i.e. the minimal response marker. Additionally, the association of withdrawal ruptures with pauses was investigated. A total of 516 ruptures occurring in 242 psychotherapy sessions collected in 22 psychotherapies of adolescent patients with BPD and subthreshold BPD were investigated. Trained observers detected ruptures based on video and audio recordings. In contrast, pauses were automatically marked in the audio-recordings of the psychotherapy sessions and automatic speaker diarisation was used to determine the speaker-switching patterns in which the pauses occur. A random forest classifier detected time frames in which ruptures with the minimal response marker occurred based on the quantity of pauses. Performance was very good with an area under the ROC curve of 0.89. Pauses which were both preceded and followed by therapist speech were the most important predictors for minimal response ruptures. Research costs can be reduced by using machine learning techniques instead of manual rating for rupture detection. In combination with other video and audio derived features like movement analysis or automatic facial emotion detection, more complete rupture detection might be possible in the future. These innovative machine learning techniques help to narrow down the mechanisms of change of psychotherapy, here specifically of the therapeutic alliance. They might also be used to technologically augment psychotherapy training and supervision

    Withdrawal ruptures in adolescents with borderline personality disorder psychotherapy are marked by increased speech pauses-can minimal responses be automatically detected?

    Get PDF
    Alliance ruptures of the withdrawal type are prevalent in adolescents with borderline personality disorder (BPD). Longer speech pauses are negatively perceived by these patients. Safran and Muran's rupture model is promising but its application is very work intensive. This workload makes research costly and limits clinical usage. We hypothesised that pauses can be used to automatically detect one of the markers of the rupture model i.e. the minimal response marker. Additionally, the association of withdrawal ruptures with pauses was investigated. A total of 516 ruptures occurring in 242 psychotherapy sessions collected in 22 psychotherapies of adolescent patients with BPD and subthreshold BPD were investigated. Trained observers detected ruptures based on video and audio recordings. In contrast, pauses were automatically marked in the audio-recordings of the psychotherapy sessions and automatic speaker diarisation was used to determine the speaker-switching patterns in which the pauses occur. A random forest classifier detected time frames in which ruptures with the minimal response marker occurred based on the quantity of pauses. Performance was very good with an area under the ROC curve of 0.89. Pauses which were both preceded and followed by therapist speech were the most important predictors for minimal response ruptures. Research costs can be reduced by using machine learning techniques instead of manual rating for rupture detection. In combination with other video and audio derived features like movement analysis or automatic facial emotion detection, more complete rupture detection might be possible in the future. These innovative machine learning techniques help to narrow down the mechanisms of change of psychotherapy, here specifically of the therapeutic alliance. They might also be used to technologically augment psychotherapy training and supervision

    Detecting Concept Drift With Neural Network Model Uncertainty

    Get PDF
    Deployed machine learning models are confronted with the problem of changing data over time, a phenomenon also called concept drift. While existing approaches of concept drift detection already show convincing results, they require true labels as a prerequisite for successful drift detection. Especially in many real-world application scenarios-like the ones covered in this work-true labels are scarce, and their acquisition is expensive. Therefore, we introduce a new algorithm for drift detection, Uncertainty Drift Detection (UDD), which is able to detect drifts without access to true labels. Our approach is based on the uncertainty estimates provided by a deep neural network in combination with Monte Carlo Dropout. Structural changes over time are detected by applying the ADWIN technique on the uncertainty estimates, and detected drifts trigger a retraining of the prediction model. In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model rather than detecting change on the input data only (which can lead to unnecessary retrainings). We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks

    Aplicación de las técnicas de Machine Learning para la detección en imágenes de monedas falsas y verdaderas de cinco soles

    Get PDF
    Conseguir desarrollar un modelo con técnicas de Machine Learning para la detección por imágenes en monedas falsas y verdaderas de cinco soles Peruanos El tipo de investigación en este proyecto definió como básico tecnológico con un nivel experimental y un diseño pre-experimental al usar como métrica porcentual derivada de la ma- triz de confusión. La población se constituyó de un total de 496 imágenes de monedas de cinco soles entre verdaderas y falsas teniendo las cuales pasaran por la técnica de Data Augmentation para tener 800 imágenes por cada categoría expedidas en el modelo 2010-2015 y como instrumento de recolección de datos utilizaremos una cámara fotografía. Como conclusión principal tenemos que el modelo “Final_Model” se desarrolló usando las técnicas de Machine Learning de manera teórica y práctica que conllevo a cumplir nuestro objetivo principal en esta investigación que es aplicar las técnicas de Machine Learning en la detección de monedas falsas y verdaderas de cinco soles Peruanos satisfactoriamente respondiendo al objetivo principal de la investigación.This research focuses on the application of Machine Learning techniques for the development of a model that allows the detection by images of false and true coins of five Peruvian soles. Since the invention of currency, counterfeiting was also born. It is necessary to make proposals for change in the aspects concerning the means of security in physical means of payment to protect the economic, social and political level. For its part, the field of Machine Learning has grown more intensely since 2009, being able to apply to more branches of study, our country is late in the use of Machine Learning techniques since we find a lack of studies and development of tools that apply Machine Learning being a problem to reach a solution in detection of false and true coins in the REPUBLIC OF PERU. Therefore, we propose the application of Machine Learning techniques to contribute to a future solution to this latent problem. This research proposed the construction of a model using the Transfer Learning technique to join a pre-trained model and a personalized head model that was trained with images of true and false coins from the year 2010-2015. Analyzing the learning curve of the model and using the confusion matrix, the average error of the predictions was obtained with an approximate error of 20% in a population of 1600 photographic samples between false and true coins.Desarrollo de aplicaciones usando inteligencia artificia

    Water Across Synthetic Aperture Radar Data (WASARD): SAR Water Body Classification for the Open Data Cube

    Get PDF
    The detection of inland water bodies from Synthetic Aperture Radar (SAR) data provides a great advantage over water detection with optical data, since SAR imaging is not impeded by cloud cover. Traditional methods of detecting water from SAR data involves using thresholding methods that can be labor intensive and imprecise. This paper describes Water Across Synthetic Aperture Radar Data (WASARD): a method of water detection from SAR data which automates and simplifies the thresholding process using machine learning on training data created from Geoscience Australias WOFS algorithm. Of the machine learning models tested, the Linear Support Vector Machine was determined to be optimal, with the option of training using solely the VH polarization or a combination of the VH and VV polarizations. WASARD was able to identify water in the target area with a correlation of 97% with WOFS. Sentinel-1, Open Data Cube, Earth Observations, Machine Learning, Water Detection 1. INTRODUCTION Water classification is an important function of Earth imaging satellites, as accurate remote classification of land and water can assist in land use analysis, flood prediction, climate change research, as well as a variety of agricultural applications [2]. The ability to identify bodies of water remotely via satellite is immensely cheaper than contracting surveys of the areas in question, meaning that an application that can accurately use satellite data towards this function can make valuable information available to nations which would not be able to afford it otherwise. Highly reliable applications for the remote detection of water currently exist for use with optical satellite data such as that provided by LANDSAT. One such application, Geoscience Australias Water Observations from Space (WOFS) has already been ported for use with the Open Data Cube [6]. However, water detection using optical data from Landsat is constrained by its relatively long revisit cycle of 16 days [5], and water detection using any optical data is constrained in that it lacks the ability to make accurate classifications through cloud cover [2]. The alternative solution which solves these problems is water detection using SAR data, which images the Earth using cloud-penetrating microwaves. Because of its advantages over optical data, much research has been done into water detection using SAR data. Traditionally, this has been done using the thresholding method, which involves picking a polarization band and labeling all pixels for which this bands value is below a certain threshold as containing water. The thresholding method works since water tends to return a much lower backscatter value to the satellite than land [1]. However, this method can be flawed since estimating the proper threshold is often imprecise, complicated, and labor intensive for the end user. Thresholding also tends to use data from only one SAR polarization, when a combination of polarizations can provide insight into whether water is present. [2] In order to alleviate these problems, this paper presents an application for the Open Data Cube to detect water from SAR data using support vector machine (SVM) classification. 2. PLATFORM WASARD is an application for the Open Data Cube, a mechanism which provides a simple yet efficient means of ingesting, storing, and retrieving remote sensing data. Data can be ingested and made analysis ready according to whatever specifications the researcher chooses, and easily resampled to artificially alter a scenes resolution. Currently WASARD supports water detection on scenes from ESAs Sentinel-1 and JAXAs ALOS. When testing WASARD, Sentinel-1 was most commonly used due to its relatively high spatial resolution and its rapid 6 day revisit cycle [5]. With minor alterations to the application's code, however, it could support data from other satellites. 3. METHODOLOGY Using supervised classification, WASARD compares SAR data to a dataset pre-classified by WOFS in order to train an SVM classifier. This classifier is then used to detect water in other SAR scenes outside the training set. Accuracy was measured according to the following metrics: Precision: a measure of what percentage of the points WASARD labels as water are truly water Recall: a measure of what percentage of the total water cover WASARD was able to identify. F1 Score: a harmonic average of the precision and recall scores Both precision and recall are calculated at the end of the training phase, when the trained classifier is compared to a testing dataset. Because the WOFS algorithms classifications are used as the truth values when training a WASARD classifier, when precision and recall are mentioned in this paper, they are always with respect to the values produced by WOFS on a similar scene of Landsat data, which themselves have a classification accuracy of 97% [6]. Visual representations of water identified by WASARD in this paper were produced using the function wasard_plot(), which is included in WASARD. 3.1 Algorithm Selection The machine learning model used by WASARD is the Linear Support Vector Machine (SVM). This model uses a supervised learning algorithm to develop a classifier, meaning it creates a vector which can be multiplied by the vector formed by the relevant data bands to determine whether a pixel in a SAR scene contains water. This classifier is trained by comparing data points from selected bands in a SAR scene to their respective labels, which in this case are water or not water as given by the WOFS algorithm. The SVM was selected over the Random Forest model, which outperformed the SVM in training speed, but had a greater classification time and lower accuracy, and the Multilayer Perceptron Artificial Neural Network, which had a slightly higher average accuracy than the SVM, but much greater training and classification times. Figure 1: Visual representation of the SVM Classifier. Each white point represents a pixel in a SAR scene. In Figure 1, the diagonal line separating pixels determined to be water from those determined not to be water represents the actual classification vector produced by the SVM. It is worth noting that once the model has been trained, classification of pixels is done in a similar manner as in the thresholding method. This is especially true if only one band was used to train the model. 3.1 Feature Selection Sentinel-1 collects data from two bands: the Vertical/Vertical polarization (VV) and the Vertical/Horizontal polarization (VH). When 100 SVM classifiers were created for each polarization individually, and for the combination of the two, the following results were achieved: Figure 2: Accuracy of classifiers trained using different polarization bands. Precision and Recall were measured with respect to the values produced by WOFS. Figure 2 demonstrates that using both the VV and VH bands trades slightly lower recall for significantly greater precision when compared with the VH band alone, and that using the VV band alone is inferior in both metrics. WASARD therefore defaults to using both the VV and VH bands, and includes the option to use solely the VH band. The VV polarizations lower precision compared to the VH polarization is in contrast to results from previous research and may merit further analysis [4]. 3.2 Training a Classifier The steps in training a classifier with WASARD are 1. Selecting two scenes (one SAR, one optical) with the same spatial extents, and acquired close to each other in time, with a preference that the scenes are taken on the same day. 2. Using the WOFS algorithm to produce an array of the detected water in the scene of optical data, to be used as the labels during supervised learning 3. Data points from the selected bands from the SAR acquisition are bundled together into an array with the corresponding labels gathered from WOFS. A random sample with an equal number of points labeled Water and Not Water is selected to be partitioned into a training and a testing dataset 4. Using Scikit-Learns LinearSVC object, the training dataset is used to produce a classifier, which is then tested against the testing dataset to determine its precision and recall The result is a wasard_classifier object, which has the following attributes: 1. f1, recall, and precision: 3 metrics used to determine the classifiers accuracy 2. Coefficient: Vector which the SVM uses to make its predictions. The classifier detects water when the dot product of the coefficient and the vector formed by the SAR bands is positive 3. Save(): allows a user to save a classifier to the disk in order to use it without retraining 4. wasard_classify(): Classifies an entire xarray of SAR data using the SVM classifier All of the above steps are performed automatically when the user creates a wasard_classifier object. 3.3 Classifying a Dataset Once the classifier has been created, it can be used to detect water in an xarray of SAR data using wasard_classify(). By taking the dot product of the classifiers coefficients and the vector formed by the selected bands of SAR data, an array of predictions is constructed. A classifier can effectively be used on the same spatial extents as the ones where it was trained, or on any area with a similar landscape. Whil
    corecore