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Abstract

Deployed machine learning models are confronted with
the problem of changing data over time, a phenomenon
also called concept drift. While existing approaches
of concept drift detection already show convincing
results, they require true labels as a prerequisite for
successful drift detection. Especially in many real-world
application scenarios—like the ones covered in this
work—true labels are scarce, and their acquisition is
expensive. Therefore, we introduce a new algorithm
for drift detection, Uncertainty Drift Detection (UDD),
which is able to detect drifts without access to true
labels. Our approach is based on the uncertainty
estimates provided by a deep neural network in
combination with Monte Carlo Dropout. Structural
changes over time are detected by applying the ADWIN
technique on the uncertainty estimates, and detected
drifts trigger a retraining of the prediction model.
In contrast to input data-based drift detection, our
approach considers the effects of the current input
data on the properties of the prediction model rather
than detecting change on the input data only (which
can lead to unnecessary retrainings). We show that
UDD outperforms other state-of-the-art strategies on
two synthetic as well as ten real-world data sets for both
regression and classification tasks.

Keywords: Concept Drift Detection, Uncertainty,
Monte Carlo Dropout, No Labels, Data Stream

1. Introduction

Across most industries, machine learning (ML)
models are deployed to capture the benefits of the
ever-increasing amounts of available data. When
deploying models, most practitioners assume that future

incoming data streams are stationary, i.e., the data
generating process does not change over time. However,
this assumption does not hold true for the majority of
real-world applications (Aggarwal et al., 2003). In the
literature, this phenomenon is referred to as concept drift
or dataset shift, which usually leads to a decreasing
prediction performance (Baier et al., 2019; Gama et al.,
2014). Even small changes or perturbations in the
distribution can cause large errors—which has been
shown through, e.g., adversarial examples (Szegedy
et al., 2014).

The concept drift community has developed several
learning algorithms that are able to adapt incrementally
(Shalev-Shwartz, 2011) or detect concept drift and
trigger retrainings of a corresponding learning algorithm
(Bifet and Gavalda, 2007; Gama et al., 2004). These
techniques usually require full and immediate access to
ground-truth labels, which is an unrealistic assumption
in most real-world use cases. As an example, let us
consider a manufacturing line with a manual end-of-line
quality control. By collecting sensor data from all
manufacturing stations and combining this information
with previously acquired quality assessments (labels) of
human experts, a predictive model can be built to replace
the manual quality control and thus reduce repetitive
and expensive human labour. However, this prediction
model is likely exposed to concept drift due to, e.g.,
modifications in raw materials, machine wear, ageing
sensors or changing indoor temperatures due to seasonal
changes. A continuous stream of true labels for concept
drift detection is not available in this use case—which
is why traditional concept drift detection algorithms are
not applicable.

To address these shortcomings, we investigate the
following research question: How can we improve
concept drift detection in situations with limited
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availability of true labels? To that end, we propose a
novel concept drift detection algorithm which detects
drifts based on the prediction uncertainty of a neural
network at inference time, and we call this method
Uncertainty Drift Detection (UDD). Specifically, we
derive uncertainty by applying Monte Carlo Dropout
(Gal and Ghahramani, 2016). In case of a detected drift,
we assume that true labels are available upon request
(e.g., provided by domain experts) for retraining of the
prediction model. In contrast to most drift detection
algorithms, UDD can be used for both regression and
classification problems. We evaluate UDD on two
synthetic as well as ten real-world benchmark data sets
and show that it outperforms other state-of-the-art drift
detection algorithms.

2. Background and Related Work

2.1. Dataset Shift and Concept Drift

The ML and data mining communities use different
terms to describe the phenomenon of changing
data distributions over time and its impact on ML
models (Moreno-Torres et al., 2012). Dataset shift
(Quionero-Candela et al., 2009) is described as a change
in the common probability distribution of input data x
and corresponding labels y between training (tr) and
test time (tst): Ptr(x, y) ̸= Ptst(x, y). This is similar
to a common definition of concept drift (Gama et al.,
2014): Pt0(x, y) ̸= Pt1(x, y), where t0 and t1 are two
different points in time with t1 > t0. Note the difference
regarding the indices: Dataset shift focuses on the
difference between training and testing environment,
whereas concept drift refers to the temporal structure of
the data.

Dataset shift and concept drift can be further divided
into different subcategories: Virtual drift (Gama et al.,
2014) refers to changes in the distribution of the
input data x, without affecting the distribution of
labels: Ptr(x) ̸= Ptst(x) and Ptr(y|x) = Ptst(y|x).
Real concept drift refers to any changes in P (y|x),
independent of whether this change is triggered by P (x)
or not.

2.2. Handling Concept Drift

There are many reasons for changing data.
Usually, it is intractable to measure all confounding
factors—which is why those factors cannot directly
be included in the ML model. Often, those factors
are considered as “hidden context” of the ML models’
environment (Tsymbal, 2004). Concept drift handling
has been applied in a variety of different application
domains such as spam detection (Gama et al., 2014)

or demand prediction (Baier et al., 2021). In general,
three different categories for detecting concept drift
can be distinguished (Lu et al., 2018): First, error
rate-based drift detection, which is also the largest group
of methods (Lu et al., 2018) and aims at tracking
changes in the error rate of a ML model. Popular
algorithms in this category are the Drift Detection
Method (DDM) (Gama et al., 2004), Page-Hinkley
test (Page, 1954), and ADaptive WINdowing (ADWIN)
(Bifet and Gavalda, 2007). Note that the error
rate-based drift detection necessarily requires access to
ground-truth labels. Second, data distribution-based
drift detection usually applies some distance function
to quantify the similarity between the distributions of a
reference batch of data and the current data. Algorithms
in this category work on the input data x only and
do not require true labels for drift detection. Popular
approaches are based on tests for distribution similarity,
such as Kolomogorov-Smirnov test (Raab et al., 2020).
Third, the multiple hypothesis test category detects drift
by combining several methods from the previous two
categories.

In many real-world applications, the assumption that
all true labels are available is unrealistic (Krawczyk
et al., 2017). Furthermore, the acquisition of true
labels from experts (e.g., in quality control) is likely
expensive. Those limitations have inspired research on
handling concept drift under limited label availability.
In general, methods can be distinguished based on
their (non-)requirement of true labels for either drift
detection or for retraining of the corresponding model:
The first category of algorithms assumes that true labels
are available for both drift detection and retraining, but
they are only provided in limited portions at specific
points in time. In this category, algorithms based
on active learning have been developed, where true
labels for selected samples are acquired based on a
certain decision criterion (Fan et al., 2004; Žliobaitė
et al., 2013). The second category requires no true
labels for detection of concept drifts, but it uses them
for retraining of the model in case of a drift. One
approach uses confidence scores produced by support
vector machines during prediction time and compares
those over time (Lindstrom et al., 2013). If there
is a large enough difference, the model is retrained
using a limited set of current true labels. Other
algorithms monitor the ratio of samples within the
decision margin of a support vector machine for change
detection (Sethi and Kantardzic, 2015). An incremental
version of the Kolmogorov-Smirnov test has also been
applied in this category (dos Reis et al., 2016). The
third category handles concept drift without any label
access, neither for drift detection nor for retraining,
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e.g., by applying ongoing self-supervised learning to the
underlying classifier (Sun et al., 2020).

Note that the first category requires some true labels
continuously over time in order to be able to detect a
drift and trigger corresponding retraining. In contrast,
the second category monitors the data stream for drifts
based on the input data only and then requires true
labels in case a drift has been detected. This is also
the category that UDD belongs to. The third category
can adapt without any true label knowledge. However,
this category of algorithms also has the least adaption
capabilities due to its limited knowledge of changes.

2.3. Uncertainty in Neural Networks

In many applications it is desirable to understand
the certainty of a model’s prediction. Often times,
class probabilites (e.g., outputs of a softmax layer) are
erroneously interpreted as a model’s confidence. In fact,
a model can be uncertain in its predictions even with a
high softmax output for a particular class (Gal, 2016).
Generally, neural networks are not good at extrapolating
to unseen data (Haley and Soloway, 1992). Hence, if
some unusual data is introduced to the model, the output
of a softmax layer can be misleading—e.g., unjustifiably
high. This likely happens in the case of concept drifts.

Generally, existing literature distinguishes two types
of uncertainty: aleatory and epistemic (Der Kiureghian
and Ditlevsen, 2009). The former (also called data
uncertainty) can usually be explained by randomness in
the data generation process and, e.g., corresponds to the
error term in a regression setting. The latter (statistical
or model uncertainty) usually results from insufficient
training data. For classification tasks, uncertainty can be
for instance quantified through entropy, variation ratios
or mutual information (Hemmer et al., 2020).

One state-of-the-art approach to capture model
uncertainty for neural networks is Monte Carlo Dropout
(MCD) (Gal and Ghahramani, 2016). While dropout at
training time has been widely used as a regularization
technique to avoid overfitting (Srivastava et al., 2014),
the idea of MCD is to introduce randomness in the
predictions using dropout at inference time. This
allows to deduce uncertainty estimates by performing
multiple forward passes of a given data instance through
the network and analyzing the resulting empirical
distribution over the outputs or parameters.

Another family of methods to quantify
predictive uncertainty is called Deep Ensembles
(Lakshminarayanan et al., 2017). In essence, the
authors of this paper propose to enhance the final layer
of a neural network such that the model’s output is
not just a single prediction but a set of distributional

parameters, e.g., the mean and variance for a Gaussian
distribution. The corresponding parameters can then
be fitted by using the (negative) log-likelihood as loss
function. For previously unseen data, the approach
suggests then to train an ensemble of several neural
networks with different initializations at random. The
average of all variance estimates can eventually be
interpreted as model uncertainty.

Other recent approaches for quantifying uncertainty
in neural networks include variational inference
(Blundell et al., 2015), expectation propagation
(Hernández-Lobato and Adams, 2015), evidential deep
learning (Sensoy et al., 2018), some of which have
been applied to areas like active learning (Hemmer
et al., 2020) and others. A good overview of
state-of-the-art methods for quantifying uncertainty,
including an empirical comparison regarding their
performance under dataset shift, is provided by Ovadia
et al. (Ovadia et al., 2019).

3. Methodology

When labels are expensive and their availability is
limited, popular drift detection algorithms like ADWIN,
DDM and Page-Hinkley are not applicable in their
original form, as these algorithms detect drifts based
on a change in the prediction error rate (and therefore
require true labels). As described in Section 2.2, there
are different scenarios for concept drift handling with
limited label availability. In this paper, we develop
a novel approach which detects drifts without access
to true labels—yet it requires labels for retraining the
model. For detecting drifts, we rely on the uncertainty of
a (deep) neural network’s predictions. Previously, it has
been shown that the uncertainty of a prediction model
is correlated with the test error (Kendall and Gal, 2017;
Roy et al., 2018). Thus, we argue that model uncertainty
can be used as a proxy for the error rate and should
therefore be a meaningful indicator of concept drift.

To investigate this hypothesis, we develop the
following approach: For each data instance, we measure
the uncertainty of the corresponding prediction issued
by the neural network. Subsequently, this uncertainty
value is used as input for the ADWIN change detection
algorithm. We call our approach Uncertainty Drift
Detection (UDD). By applying UDD, we can detect
significant changes in the mean uncertainty values
over time. If a drift is detected, we require true
labels for retraining of the model. Since there are
methods for measuring uncertainty in both regression
and classification settings, this approach allows to detect
concept drifts for both learning tasks—as opposed to
most other concept drift detection algorithms, which
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handle classification tasks only (Krawczyk et al., 2017).
Note that UDD cannot detect any label shift where
Ptr(x) = Ptst(x) and Ptr(y|x) ̸= Ptst(y|x). However,
we assume that in most real-world settings there is no
label shift without any changes in the input distribution.

For drift detection without true label
availability, input data-based drift detection, such
as Kolmogorov-Smirnov (Raab et al., 2020), is
generally also appropriate. However, considering solely
input data bears the risk of detecting changes in features
that may not be important for the prediction model.
Specifically, it may occur that input data-based methods
detect drifts where no retraining is required, because this
drift will have little or no impact on the predictions of
the model (e.g., virtual drift where Pt0(x) ̸= Pt1(x) and
Pt0(y|x) = Pt1(y|x)). However, by using uncertainty
of the underlying prediction model, we are investigating
the effect of input data on properties of the prediction
model rather than considering the input data only. Thus,
only changes in the input data distribution relevant to
the prediction model are detected. Imagine a feature
in a high-dimensional feature space which is irrelevant
for a neural network at inference time (e.g., low or
zero weights have been assigned to this feature during
training). An input data-based method will detect a
significant change in this feature, even though this drift
will not influence the prediction of the model due to
the properties of the corresponding weights. In fact, a
detected drift will lead to the acquisition of new labels at
a high cost, even though no retraining is required at this
point in time. UDD, in contrast, considers only changes
in the input data that also have an impact (reflected by
the uncertainty) on the prediction model.

For measuring uncertainty and computing
predictions, we apply Monte Carlo Dropout (MCD)
because it showed the best performance during our
experiments. Furthermore, MCD has been shown to
work well in a variety of different machine learning
tasks (Gal, 2016) and the computational requirements
are limited, which is an important factor in a stream
setting. However, note that the proposed method can be
easily extended to use other uncertainty estimates (e.g.,
Deep Ensembles) as well. In practice, MCD applies
dropout at inference time with a different filter for each
stochastic forward pass through the network. We denote
T the number of stochastic forward passes. Predictions
p̂(y|x) are computed by averaging the predictions for
each forward pass T given the samples wi of model
parameters from the dropout distribution and the input
data x:

p̂(y|x) = 1

T

T∑
i=1

pi(y|wi, x) . (1)

Regression and classification require different methods
for determining predictive uncertainty. We choose to
evaluate the uncertainty for classification tasks based on
Shannon’s entropy H over all different label classes K:

H [p̂(y|x)] = −
K∑

k=1

p̂(y = k|x)∗log2 p̂(y = k|x) . (2)

For regression tasks, uncertainty estimates can be
obtained by computing the variance of the empirical
distribution of the T stochastic forward passes through
the network (Gal and Ghahramani, 2016):

σ̂2 =
1

T

T∑
i=1

(pi(y|wi, x)− p̂(y|x))2 . (3)

For change detection, we choose ADWIN as it as
able to work with any kind of real-valued input and
does not require any knowledge regarding the input
distribution (Bifet and Gavalda, 2007). Other drift
detection algorithms such as DDM (Gama et al., 2004)
or EDDM (Baena-Garcı́a et al., 2006) are designed for
inputs with a Binomial distribution and are therefore
not applicable to uncertainty measurements (which can
have different distributions by nature). Real-world data
streams for concept drift handling are heterogeneous,
e.g., in their number of class labels and size (Souza
et al., 2020). This variability is also reflected by
heterogeneous distributions of the respective uncertainty
indicator. Furthermore, due to different approaches for
computing uncertainty, this indicator varies significantly
in scale and fluctuation between regression and
classification problems. Therefore, ADWIN has to be
adjusted to each data stream, which can be achieved by
setting its sensitivity parameter α ∈ (0, 1): A change
is detected when two sub-windows of a recent window
of observations exhibit an absolute difference in means
larger than α.

New data instances arrive individually and are
predicted at the time of arrival. The obtained uncertainty
Ut (either expressed as entropy or variance) from the
prediction at time t is used as input for an ADWIN
change detector. Once a drift is detected, a retraining
of the prediction model is performed. For retraining,
UDD uses the most recent data instances in addition
to the original training data. This way, we can ensure
that the model (a) can adapt to new concepts and (b) has
enough training data for good generalization. Algorithm
1 on page 5 describes the required steps for UDD in
a regression (Ut equals variance of prediction σ̂2) or
classification setting (Ut equals entropy of prediction
Ht).
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Algorithm 1 Uncertainty Drift Detection

1: Input: Trained model M ; Data stream D; Training
data Dtr

2: Output: Prediction ŷt at time t
3: repeat
4: Receive incoming instance xt

5: ŷt, Ut ←M .predict(xt)
6: Add Ut to ADWIN
7: if ADWIN detects change then
8: Acquire most recent labels yrecent
9: M .train(Dtr ∪ Drecent)

10: end if
11: until D ends

4. Experiments

For evaluation purposes, we conduct extensive
experiments to compare UDD with several competitive
benchmark strategies on two synthetic and ten
real-world data sets. This stands in contrast to
most concept drift literature, where new methods
are mainly evaluated on simulated data sets
with artificially induced concept drifts. The
code for our experiments can be found under
https://github.com/anonymous-account-research/
uncertainty-drift-detection.

4.1. Experimental Setup

Throughout the experiments, for MCD, we set the
number of stochastic forward passes T = 100 for
regression tasks and T = 50 for classification tasks.
Regarding the deep feed forward network, we vary the
structure between three to five hidden layers with relu
activation functions depending on the data set. Each
hidden layer is followed by a dropout layer with dropout
rate 0.1 or 0.2, as it is proposed in the original MCD
paper (Gal and Ghahramani, 2016).

For initial model training, we use the first five
percent of a data stream’s instances. We perform
a parameter optimization for UDD by requiring the
associated ADWIN algorithm to detect one drift on a
given validation data set—this yields a concrete value
for the sensitivity parameter α. If no drifts are detected
on the validation data with the initial value for α, we
assume that no drifts are present in the validation data
and α is set to the scikit-multiflow (Montiel
et al., 2018) default value of 0.002. We use the ten
percent of instances following the initial training data as
validation data. Every time we detect a drift, we provide
the last data instances as well as corresponding labels
equivalent to one percent of the overall data stream’s

length. The exemplary partitioning of a data stream is
depicted in Figure 1.

In order to benchmark UDD, we compare it against
six different strategies within two groups. The
first group of strategies handles concept drift with
Limited Label Availability whereas the second group of
strategies allows for Unlimited Label Availability.

4.1.1. Limited Label Availability The first
benchmark is a non-adaptive model, No Retraining (No
Retr.). This strategy does not test for drifts and the
ML model is only trained once with the initial training
set. The performance of this strategy constitutes a
lower-bound benchmark.

The second benchmark is an Uninformed Retraining
(Uninf.) strategy which randomly draws retraining
points out of all possible time stamps included in the
respective data stream. To ensure comparability, we
set the number of retrainings of this strategy to be
equal to the UDD approach. This also ensures that
the uninformed retraining strategy receives access to the
same number of true labels. Otherwise, a strategy with
access to more true labels will likely perform better due
to larger training set sizes. To get a reliable performance
estimate for this strategy, we repeat this experiment five
times and average the results.

The third benchmark, Equal Distribution (Equal D.),
is similar to the previous benchmark but the retraining
points are equally distributed over the course of the data
stream.

The Kolmogorov-Smirnov test-based drift detector
(KSWIN) belongs to the category of input data-based
drift detection and works by individually investigating
each input feature for changes. We optimize its
sensitivity parameter α with the same procedure as
for UDD. This detector is known to produce many
false positive concept drift signals, due to multiple
hypothesis testing (Raab et al., 2020). Again, we
restrict the number of retrainings to be equal to the
UDD approach. If this strategy detects more drifts,
detected drifts are sorted by the order of their p-values
and only the top drifts are considered for retraining. For
this strategy, we use the scikit-multiflow
(Montiel et al., 2018) implementation KSWIN
(Kolmogorov-Smirnov WINdowing) with the following
parameters: window size = 200, stat size = 100.

5% 10% 85%
Train Validation for ADWIN Stream Evaluation

1%
Drift

Retrain set

Figure 1: Partitioning of data stream.
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4.1.2. Unlimited Label Availability The second
group of strategies is not restricted with respect to the
amount of allowed retrainings. Therefore, they are
not an appropriate benchmark in a context where true
labels are scarce. We still include these strategies since
they serve as an upper-bound performance benchmark.
This allows us to estimate the performance loss when
confronted with a situation where full label availability
is infeasible.

The Kolmogorov-Smirnov test with unlimited
retrainings (KSWIN(unl.)) benchmark is similar to the
previous KSWIN strategy but without restricting the
number of retrainings. Therefore, all detected drifts
trigger a retraining of the prediction model.

The last benchmark is the ADWIN change detection
algorithm applied to the prediction error rate. This
strategy already requires all true labels for the
computation of the error rate and therefore for drift
detection. Note that all other strategies manage the
drift detection without any true labels and then only
require labels for retraining. For this method, we
use the scikit-multiflow (Montiel et al., 2018)
implementation with default parameter settings.

4.2. Data Sets

For evaluation, we consider two synthetic data
sets (Friedman and Mixed) and ten real-world data
sets. All data sets are widely used in concept drift
research and are therefore suitable for evaluating UDD.
The Friedman regression data set (Friedman, 1991)
consists of ten features that are each drawn from a
uniform distribution from the interval [0, 1]. The first
five features are relevant for the prediction task, the
remaining five are noise. The Mixed classification data
set is inspired by (Gama et al., 2004) and contains six
features where two features are Boolean and the other
four features are drawn from a discrete distribution. Two
of the features are noise which do not influence the
classification function. By modifying the distribution
of some features, we can either induce real or virtual
concept drifts (see Section 2.1) in both the Friedman and
the Mixed data set.

Furthermore, ten real-world data sets—eight
classification and two regression tasks—are used for
the evaluation of the UDD method. The Air Quality
data set (De Vito et al., 2008) contains measurements
from five metal oxide chemical sensors, a temperature,
and a humidity sensor. The learning task is to predict
the benzene concentration, which is a proxy for air
pollution. Concept drift is present due to seasonal
weather changes. The Bike Sharing data set (Fanaee-T
and Gama, 2013) provides hourly rental data for a bike

sharing system in Washington, D.C., with the objective
to predict the hourly demand for bike rentals. Concept
drift is again assumed to be present due to seasonal
weather changes.

All following classification data sets are taken
from the USP Data Stream Repository (Souza et al.,
2020): The various Insects data sets were gathered
by controlled experiments on the use of optical
sensors to classify six types of different flying insects.
Concept drift is artificially induced by changes in
temperature. The Abrupt data set contains five sudden
changes in temperature, whereas in the Incremental
(Inc) data set, temperature is slowly increased over
time. The Incremental Abrupt (IncAbr) data set has
three cycles of incremental changes with additional
abrupt drifts included as well. In the Incremental
Reoccurring (IncReo) data set, the temperature
increases incrementally within several cycles. The
KDDCUP99 data set contains TCP connection records
from a local area network. The learning task is to
recognize whether the connection is normal or relates to
one of 22 different types of attacks. The Gas Sensor
data set contains records where one of six gases is
diluted in synthetic dry air, and the objective is to
identify the respective gas. Both sensor drift (due to
aging) and concept drift (due to external alterations)
are included in the data. The Electricity data set was
gathered at the Australian New South Wales Electricity
Market. The learning task is to predict whether the
market price will increase or decrease compared to the
last 24 hours. The Rialto Bridge Timelapse data set
contains images taken by a webcam close to the Rialto
Bridge in Venice, Italy. The objective is to correctly
classify nearby buildings with concept drift occurring
due to changing weather and lighting conditions.

4.3. Performance Metrics

Evaluating concept drift detection on real-world data
sets is a challenging endeavor as most real-world data
sets do not have specified drift points. Specifically, for
most real-world data, it is intractable to measure the
accuracy of drift detection itself. Therefore, we perform
two different analyses regarding the behaviour of UDD
in this work. First, we apply UDD on two synthetic
data sets to specifically evaluate its drift detection
capabilities. Second, we perform extensive experiments
to investigate its performance on ten real-world data
sets.

For synthetic data sets, the real drift points are
known, which allows to compute metrics regarding the
drift detection capabilities of a drift detector (Bifet et al.,
2013). In this work, we compute the Mean Time to
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Detection (MTD), the False Alarm Count (FAC), and the
missed detection count (MDC).

In contrast, an appropriate evaluation for real-world
data sets is more difficult. However, one can assume that
a drift is present when the prediction performance of a
static model decreases over time. Since the real drift
points are unknown, we evaluate the different strategies
based on their prediction performance, as it is common
in the concept drift literature (Elwell and Polikar, 2011).
For regression tasks, we apply the Root Mean Squared
Error (RMSE), and we use the Matthews Correlation
Coefficient (MCC) for classification tasks. MCC is
a popular metric for classification settings as it can
also handle data sets with class imbalance (Chicco and
Jurman, 2020).

4.4. Analysis on Synthetic Data Sets

To test the capabilities of UDD, we analyze its
behaviour when applied on two synthetic data sets
(Friedman and Mixed). Both data sets contain virtual
as well as real concept drifts. Virtual drifts refer to
changes in the input data with no effect on the resulting
label. Hence, UDD should not raise an alarm for these
drifts as a retraining of the ML model in this case is
unnecessary. Recall that this kind of analysis is only
feasible on synthetic data sets, as we do not have any
knowledge regarding the type of concept drift as well as
its timing on real-world data sets. On the synthetic data
sets, we test UDD and KSWIN(unl.) as they both do not
require true labels for drift detection. The parameters of
both approaches are optimized based on a validation set
which includes one drift (see Section 4.1).

Figure 2 shows the trajectory of the predictive
uncertainty over the course of the Friedman data set.
The uncertainty changes significantly each time a real
concept drift occurs. Accordingly, this is also detected
by UDD. As expected, the two virtual drifts (marked by
orange vertical lines in the figure) do not trigger a drift
detection. In contrast, the input data-based detection
(KSWIN) detects also these virtual drifts. Furthermore,
note the overall large number (20) of detected drifts
by KSWIN despite a parameter optimization. This
illustrates KSWIN’s problem of high reactivity leading
to several false-positive drift detections.

Table 1: Evaluation on synthetic data sets.

Data Set Drift Detector MTD FAC MDC

Friedman UDD 132.7 0 0
KSWIN 65.7 17 0

Mixed UDD 247.3 0 0
KSWIN 50.3 11 0
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Figure 2: Behaviour of UDD and KSWIN on synthetic
Friedman data set.

Since the real drift points for the synthetic data sets
are known, we compute the mean time to detection
(MTD), the false alarm count (FAC), and the missed
detection count (MDC) for both strategies in Table
1. UDD correctly identifies all real concept drifts
in both data sets. Furthermore, no false alarms are
raised. However, KSWIN achieves lower MTD values
compared to UDD in both data sets, which means that
KSWIN recognizes concept drifts faster. This can likely
be explained by the high sensitivity of KSWIN regarding
changes. However, this sensitivity also leads to large
numbers of false alarms (17 and 11, respectively), as
depicted in Table 1. Such a behaviour is especially
detrimental in scenarios where the acquisition of true
labels is expensive. Each time a false alarm is raised,
new true labels must be acquired at a high cost—even
though a retraining is not required since no real concept
drift has occurred.

4.5. Experimental Results

Both UDD and KSWIN require as input a suitable
value for α, which determines their sensitivity regarding
concept drift detection. Since the data sets included in
this experiment are fundamentally different from each
other (e.g., different number of class labels), individual
values of α are required for each data set. As described
in Section 4.1, we determine the respective value for
both strategies by performing a test on a validation data
set.

A summary of the experimental results on all data
sets is provided in Table 2 for regression data sets
(RMSE) and in Table 3 for classification (MCC). For the
evaluation, we primarily focus on the first five columns
of the table which as a group can be characterized by
only requiring a limited amount of true labels. This
is also illustrated by the values in parentheses which
describe how often the corresponding ML models are
retrained. As explained in Section 4.1, KSWIN(unl.) and
ADWIN serve as an upper-bound benchmark due to their
requirement of full label availability.
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Table 2: RMSE (the lower the better) on regression benchmark data sets. Number of retrainings in brackets (the
lower the less computationally expensive). No Retraining depicts the lower-bound benchmark, while KSWIN(unl.)
and ADWIN represent the upper-bound performance benchmark.

Limited Label Avail. Unlimited Label Avail.
Data Set No Retr. Uninf. Equal D. KSWIN UDD KSWIN(unl.) ADWIN
Air Quality 1.170 (0) 1.383 (14) 1.231 (14) 1.285 (14) 1.151 (14) 1.304 (19) 1.387 (12)
Bike Sharing 171.47 (0) 170.00 (5) 144.94 (5) 143.88 (5) 129.93 (5) 120.69 (27) 127.07 (8)

Table 3: MCC (the higher the better) on classification benchmark data sets. Number of retrainings in brackets (the
lower the less computationally expensive). No Retraining depicts the lower-bound benchmark, while KSWIN(unl.)
and ADWIN represent the upper-bound performance benchmark.

Limited Label Avail. Unlimited Label Avail.
Data Set No Retr. Uninf. Equal D. KSWIN UDD KSWIN(unl.) ADWIN
Insects Abrupt 0.452 (0) 0.468 (9) 0.475 (9) 0.456 (9) 0.516 (9) 0.521 (192) 0.497 (9)
Insects Inc 0.052 (0) 0.210 (4) 0.211 (4) 0.191 (4) 0.242 (4) 0.238 (27) 0.251 (3)
Insects IncAbr 0.292 (0) 0.463 (22) 0.483 (22) 0.464 (22) 0.522 (22) 0.488 (107) 0.516 (23)
Insects IncReo 0.114 (0) 0.190 (10) 0.197 (10) 0.126 (10) 0.208 (10) 0.218 (149) 0.239 (13)
KDDCUP99 0.663 (0) 0.830 (20) 0.873 (20) 0.772 (20) 0.964 (20) 0.986 (345) 0.984 (61)
Gas Sensor 0.255 (0) 0.472 (39) 0.469 (39) 0.325 (39) 0.484 (39) 0.454 (149) 0.480 (49)
Electricity 0.139 (0) 0.372 (13) 0.362 (13) 0.254 (13) 0.436 (13) 0.511 (269) 0.471 (45)
Rialto Bridge 0.534 (0) 0.558 (14) 0.561 (14) 0.583 (14) 0.583 (14) 0.586 (17) 0.600 (116)

The best strategy with limited label availability
per data set is marked in bold. For both regression
data sets, UDD outperforms the other four strategies.
Regarding the classification tasks, UDD achieves the
best prediction performance on seven out of eight
data sets and always outperforms the strategies No
Retraining, Uninformed and Equal Distribution. Solely
for the Rialto data set, the strategy based on KSWIN
performs equally well, which might be explained
with rather significant changes in individual input
features that can be detected well with KSWIN. As
expected, the No Retraining strategy usually performs
worst. This finding clearly illustrates the presence
of concept drift in all of the selected real-world
data sets even though the exact drift points are not
measurable. Interestingly, the Uninformed already
achieves good prediction performance and sometimes
even outperforms the KSWIN strategy, especially for the
regression tasks. By design, the number of retrainings
is equal for all four strategies—Uninformed, Equal
Distribution, KSWIN, and UDD.

The right two columns in both Table 2 and Table
3 show the prediction performance of the KSWIN(unl.)
and ADWIN strategy. As expected, these strategies
usually outperform all other strategies but also require
significantly more true labels for retraining. For the
KDDCUP99 data set, the difference in amounts of
retrainings for UDD compared to KSWIN(unl.) is
most striking: While UDD requires 16 retraining,
KSWIN(unl.) performs 345 retrainings in total. Yet,

the difference in predictive performance is rather small.
Also, recall that the ADWIN strategy requires all true
labels for drift detection itself. For the Insects Abrupt,
Insects IncAbr, and the Gas Sensor data set, the UDD
strategy performs even better than ADWIN.

We also investigate the average prediction
performance for UDD based on the level of uncertainty
in Figure 3. Per data set, we sort instances in deciles,
from instances with lowest uncertainty (decile 1) up to
instances with highest uncertainty (decile 10) based on
entropy H or variance σ̂2, respectively. Subsequently,
we compute the average prediction performance per
decile. As expected, the RMSE for regression data
sets increases with rising uncertainty, as shown in the
left plot (a). The right plot (b) shows the classification
data sets—decile 1 shows the highest mean accuracy
and decile 10 the lowest.1 Thus, Figure 3 confirms our
assumption that uncertainty represents a proxy for the
error metric.

5. Conclusion

In this work, we have introduced the Uncertainty
Drift Detection (UDD) algorithm for concept drift
detection. As stated in the research question, this
algorithm is also suitable for situations with limited
availability of true labels since it does not depend on
true labels for detection of concept drift. Only in case of

1KDDCUP99 data set is not included in Figure 3 because deciles
cannot be computed due to the skewed entropy distribution.
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Figure 3: Relationship between deciles of uncertainty and prediction performance.

a detected drift, it requires access to a limited set of true
labels for retraining of the prediction model. Therefore,
this algorithm is especially suitable for drift handling in
deployed ML settings within real-world environments
where the acquisition of true labels is expensive (e.g.,
quality control). Standard drift detection algorithms
such as DDM and ADWIN are not applicable in such
settings because they require access to the entire set of
true labels. Our approach is based on the uncertainties
derived from a deep neural network in combination
with Monte Carlo Dropout. Drifts are detected by
applying the ADWIN change detector on the stream of
uncertainty values over time. In contrast to most existing
drift detection algorithms, our approach is able to
detect drift in both regression and classification settings.
We have performed an extensive evaluation on two
synthetic as well as ten real-world concept drift data sets
to demonstrate the effectiveness of UDD for concept
drift handling in comparison to other state-of-the-art
strategies.

However, more evaluation of UDD in various use
cases with different data sets is required to prove its
overall effectiveness. Additionally, UDD can only
be applied successfully for use cases where concept
drift can be observed in the input data—as opposed
to drift in the labels alone. In future work, we
aim to improve the UDD method by including active
learning methods. Including only those instances with
high uncertainty in the retraining set rather than all
recent instances could further improve the prediction
performance. Furthermore, we also want to analyze
which type and magnitude of concept drift can best be
handled by applying UDD.
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