562 research outputs found

    The middeck 0-gravity dynamics experiment

    Get PDF
    The Middeck 0-Gravity Dynamics Experiment (MODE), flown onboard the Shuttle STS-48 Mission, consists of three major elements: the Experiment Support Module, a dynamics test bed providing computer experiment control, analog signal conditioning, power conditioning, an operator interface consisting of a keypad and display, experiment electrical and thermal control, and archival data storage: the Fluid Test Article assembly, used to investigate the dynamics of fluid-structure interaction in 0-gravity; and the Structural Test Article for investigating the open-loop dynamics of structures in 0-gravity. Deployable, erectable, and rotary modules were assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. Change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity. An experimental study of the lateral slosh behavior of contained fluids is also presented. A comparison of the measured earth and space results identifies and highlights the effects of gravity on the linear and nonlinear slosh behavior of these fluids

    Studies of propellant sloshing under low-gravity conditions Final report, 4 Jan. 1966 - 10 oct. 1970

    Get PDF
    Studies of propellant sloshing under low gravity condition

    Study of Hybrid Magneto-Active Propellant Management Device for Slosh Damping

    Get PDF
    Sloshing of liquid upon the application of an external force is a natural phenomenon as the free surface is allowed to move without any constraints. Study of slosh is an ongoing research for many decades and many novel inventions in Propellant Management Devices (PMDs) such as the rigid baffles and elastomeric membranes have been implemented to counteract the free surface effect in both passive and active membrane known as Magneto-Active Propellant Management Device (MAPMD) to actively control the free surface effect and reduce fuel slosh is explored in this research. Being a hybrid membrane, it would initially offer passive resistance to liquid motion and when activated would form a semi-rigid structural layer suppressing the free surface motion. This would eliminate the use of bulky baffle structures thereby decreasing the overall weight of the tank while increasing its volume. Two configurations of the membrane were made out of Metglas 2605SA1 alloy for this study and were tested for their effectiveness. To justify the hybrid membrane as a viable Propellant Management Device (PMD), proof-of-concept experiments involving low amplitude at 1.8 mm and high amplitude at 3.0 mm actuator displacement were carried out. Computational Fluid Dynamics (CFD) simulations were setup with parameters as that of the experiment to verify and validate the experimental setup. Results of this study demonstrated an overall improvement on the damping effectiveness from the existing hybrid active Propellant Management Device (PMD)

    Slosh Damping with Floating Magnetoactive Micro-Baffles

    Get PDF
    Liquid sloshing within propellant tanks of launch vehicles and other major vehicles has been a major concern. Various methods have been utilized for the damping of slosh through Propellant Management Devices (PMD) accomplishing a wide range of results. Exploratory research conducted at the Embry-Riddle Aeronautical University Fuel Slosh Test Facility in development of an innovative PMD is presented. Embedding floating micro-baffles with a magnetoactive material such that the baffle can be manipulated when exposed to a magnetic field preserves the benefits of both floating and static baffle designs. Activated micro-baffles form a rigid layer at the free surface and provide a restriction of the fluid motion. Proposed micro-baffle design and magnetic activation source method along with proof-of-concept experiments comparing the scope of this research to previous PMD methods are presented. A computational fluid dynamics approach is outlined to compliment these experimental results

    Experimental Investigation and CFD Simulation of Active Damping Mechanism for Propellant Slosh in Spacecraft Launch Systems

    Get PDF
    Motion of propellant in the liquid propellant tanks due to inertial forces transferred from actions like stage separation and trajectory correction of the launch vehicle is known as propellant slosh. If unchecked, propellant slosh can reach resonance and lead to complete loss of the spacecraft stability, it can change the trajectory of the vehicle or increase consumption of propellant from the calculated requirements, thereby causing starvation of the latter stages of the vehicle. Predicting the magnitude of such slosh events is not trivial. Several passive mechanisms with limited operating range are currently used to mitigate the effects of slosh. An active damping mechanism concept developed here can operate over a large range of slosh frequencies and is much more effective than passive damping devices. Spherical and cylindrical tanks modeled using the ANSYS CFX software package considers the free surface of liquid propellant exposed to atmospheric pressure. Hydrazine is a common liquid propellant and since it is toxic, it cannot be used in experiment. But properties of hydrazine are similar to the properties of water; therefore water is substituted as propellant for experimental study. For close comparison of the data, water is substituted as propellant in CFD simulation. The research is done in three phases. The first phase includes modeling free surface slosh using CFD and validation of the model by comparison to previous experimental results. The second phase includes developing an active damping mechanism and simulating the behavior using a CFD model. The third phase includes experimental development of damping mechanism and comparing the CFD simulation to the experimental results. This research provides an excellent tool for low cost analysis of damping mechanisms for propellant slosh as well as proves that the concept of an active damping mechanism developed here, functions as expected

    The MODE family of facility class experiments

    Get PDF
    The objective of the Middeck 0-gravity Dynamics Experiment (MODE) is to characterize fundamental 0-g slosh behavior and obtain quantitative data on slosh force and spacecraft response for correlation of the analytical model. The topics are presented in viewgraph form and include the following: space results; STA objectives, requirements, and approach; comparison of ground to orbital data for the baseline configuration; conclusions of orbital testing; flight experiment resources; Middeck Active Control Experiment (MACE); MACE 1-G and 0-G models; and future efforts

    A Non-dimensional Characterization of Structural Vibration Induced Vertical Slosh Damping

    Get PDF
    Τhis paper aims to present a non-dimensional analysis which characterises the structural vibration induced slosh damping for a single-degreeof-freedom (SDOF) tank system under vertical motion. We identify several key non-dimensional relations which are then characterised in terms of slosh loads and dissipated power using volume of fluid (VoF) computational fluid dynamics (CFD) simulations. Scaling-laws are then constructed for future quantification of these phenomena. The fitted scaling rules are shown to offer a clear correlation for the selected SDOF system, contingent on minimal changes to the flow Weber number

    Parameter Estimation of Spacecraft Fuel Slosh Using Pendulum Analogs

    Get PDF
    The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. Its rate of growth is characterized by the Nutation Time Constant (NTC). For analytical prediction of the NTC, fuel slosh is often modeled using simple mechanical analogs such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining a good NTC estimate. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results compared with the experimental results. This research is a pioneering effort toward automating the parameter identification process by using a MATLAB/SimMechanics based computer simulation modeling of a free-surface fuel slosh in a spherical propellant tank of a spacecraft

    Liquid Slosh Analysis Using Smoothed Particle Hydrodynamics

    Get PDF
    The purpose of the research described here is to study the implementation of Smoothed Particle Hydrodynamics (SPH) algorithms as an adequate means for propellant slosh simulations in 1g and 0g environments. The dualSPHysics solver has been adapted for propellant slosh simulations. Simulated sloshing liquid frequency and damping ratio data for 1g cases has been compared to existing experiments for both spherical and prismatic container geometries. The 0g case has been studied to determine what further modifications would be required to obtain realistic simulations results. The findings in this research will be used to create a sloshing simulation to determine torques applied to a Cubesat during operations
    • …
    corecore