5,157 research outputs found

    Serviços multimédia multicast de próxima geração

    Get PDF
    Mestrado em Engenharia ElectrĂłnica e TelecomunicaçÔesUma das mais recentes conquistas na evolução mĂłvel foi o 3G, permitindo o acesso a serviços multimĂ©dia com qualidade de serviço assegurada. No entanto, a tecnologia UMTS, tal como definida na sua Release ’99, Ă© apenas capaz de transmitir em modo unicast, sendo manifestamente ineficiente para comunicaçÔes multimĂ©dia almejando grupos de utilizadores. A tecnologia IMS surge na Release 5 do 3GPP que começou a responder jĂĄ a algumas necessidades, permitindo comunicaçÔes sobre IP oferecendo serviços Internet a qualquer momento e em qualquer lugar sobre tecnologias de comunicação mĂłveis fornecendo pela primeira vez sessĂ”es multimĂ©dia satisfatĂłrias. A Release 6 por sua vez trouxe a tecnologia MBMS que permite transmissĂ”es em broadcast e multicast para redes mĂłveis. O MBMS fornece os serviços de aplicaçÔes multimĂ©dia que todos estavam Ă  espera, tanto para os utilizadores como para os prestadores de serviços. O operador pode agora fazer uso da tecnologia existente aumentando todo o tipo de benefĂ­cios no serviço prestado ao cliente. Com a possĂ­vel integração destas duas tecnologias passa a ser possĂ­vel desenvolver serviços assentes em redes convergentes em que os conteĂșdos sĂŁo entregues usando tecnologias unicast, multicast ou broadcast. Neste contexto, o principal motivo deste trabalho consiste essencialmente em fazer uso dos recursos da rede terminando com o desperdĂ­cio dos mesmos e aumentando a eficiĂȘncia dos serviços atravĂ©s da integração das tecnologias IMS e MBMS. O trabalho realizado começa com o estudo do estado da arte das telecomunicaçÔes mĂłveis com referĂȘncia Ă s tecnologias referidas, seguindo-se a apresentação da possĂ­vel integração IMS-MBMS e terminando com o projecto de uma plataforma de demonstração que no futuro possa ser uma implementação de serviço multimĂ©dia multicast. O objectivo principal Ă© mostrar os benefĂ­cios de um serviço que era normalmente executado em unicast relativamente ao modo multicast, fazendo uso da nova convergĂȘncia de tecnologias IMS e MBMS. Na conclusĂŁo do trabalho sĂŁo referidas as vantagens do uso de portadoras multicast e broadcast, tendo como perspectiva de que este trabalho possa ser um ponto de partida para um novo conjunto de serviços poupando recursos de rede e permitindo uma eficiĂȘncia considerĂĄvel em serviços inovadores.3G is bang up to date in the mobile phone industry. It allows access to multimedia services and gives a guarantee of quality of service. The UMTS technology, defined in 3GPP Release ’99, provides an unicast transmission, but it is completely inefficient when it comes to multimedia group communications. The IMS technology first appeared in Release 5 that has already started to consider the interests of the clients. It provides communications over IP, offering Internet services anytime, anywhere on mobile communication technologies. Also, it offers for the first time satisfactory multimedia sessions. On the other hand, Release 6 gave rise to the MBMS technology that provides broadcast and multicast transmissions for mobile networks. The MBMS provides multimedia applications services that everyone was waiting, including users and service providers. Now the operator makes use of existing technology in order to provide better costumer services. The possible integration of these two technologies will contribute to develop services based on converged networks in which contents are delivered through the unicast, multicast or broadcast technologies. Therefore, the objective of this work is basically to make use of network resources avoiding wastes and improving customer services through the integration of the IMS and the MBMS technologies. The executed work starts with the mobile telecommunications state of the art with reference to the referred technologies, followed by the IMS-MBMS convergence presentation and finishing with the proposal for implementation of a service platform that can be used for a multimedia multicast service. The main point is to show the benefits of a service that has been normally executed in unicast mode over the multicast mode, making use of the new IMS and MBMS technologies integration. To closure the work it is referred the advantages to use multicast and broadcast bearers, with the perspective that this work could be a starting point to a new set of services, saving network resources and allowing for innovate services a considerable efficency

    DyMo: Dynamic Monitoring of Large Scale LTE-Multicast Systems

    Full text link
    LTE evolved Multimedia Broadcast/Multicast Service (eMBMS) is an attractive solution for video delivery to very large groups in crowded venues. However, deployment and management of eMBMS systems is challenging, due to the lack of realtime feedback from the User Equipment (UEs). Therefore, we present the Dynamic Monitoring (DyMo) system for low-overhead feedback collection. DyMo leverages eMBMS for broadcasting Stochastic Group Instructions to all UEs. These instructions indicate the reporting rates as a function of the observed Quality of Service (QoS). This simple feedback mechanism collects very limited QoS reports from the UEs. The reports are used for network optimization, thereby ensuring high QoS to the UEs. We present the design aspects of DyMo and evaluate its performance analytically and via extensive simulations. Specifically, we show that DyMo infers the optimal eMBMS settings with extremely low overhead, while meeting strict QoS requirements under different UE mobility patterns and presence of network component failures. For instance, DyMo can detect the eMBMS Signal-to-Noise Ratio (SNR) experienced by the 0.1% percentile of the UEs with Root Mean Square Error (RMSE) of 0.05% with only 5 to 10 reports per second regardless of the number of UEs

    Design of a 5G Multimedia Broadcast Application Function Supporting Adaptive Error Recovery

    Full text link
    The demand for mobile multimedia streaming services has been steadily growing in recent years. Mobile multimedia broadcasting addresses the shortage of radio resources but introduces a network error recovery problem. Retransmitting multimedia segments that are not correctly broadcast can cause service disruptions and increased service latency, affecting the quality of experience perceived by end users. With the advent of networking paradigms based on virtualization technologies, mobile networks have been enabled with more flexibility and agility to deploy innovative services that improve the utilization of available network resources. This paper discusses how mobile multimedia broadcast services can be designed to prevent service degradation by using the computing capabilities provided by multiaccess edge computing (MEC) platforms in the context of a 5G network architecture. An experimental platform has been developed to evaluate the feasibility of a MEC application to provide adaptive error recovery for multimedia broadcast services. The results of the experiments carried out show that the proposal provides a flexible mechanism that can be deployed at the network edge to lower the impact of transmission errors on latency and service disruptions.Comment: 14 pages, 10 figure

    Service Platform for Converged Interactive Broadband Broadcast and Cellular Wireless

    Get PDF
    A converged broadcast and telecommunication service platform is presented that is able to create, deliver, and manage interactive, multimedia content and services for consumption on three different terminal types. The motivations of service providers for designing converged interactive multimedia services, which are crafted for their individual requirements, are investigated. The overall design of the system is presented with particular emphasis placed on the operational features of each of the sub-systems, the flows of media and metadata through the sub-systems and the formats and protocols required for inter-communication between them. The key features of tools required for creating converged interactive multimedia content for a range of different end-user terminal types are examined. Finally possible enhancements to this system are discussed. This study is of particular interest to those organizations currently conducting trials and commercial launches of DVB-H services because it provides them with an insight of the various additional functions required in the service provisioning platforms to provide fully interactive services to a range of different mobile terminal types

    MBMS—IP Multicast/Broadcast in 3G Networks

    Get PDF
    In this article, the Multimedia Broadcast and Multicast Service (MBMS) as standardized in 3GPP is presented. With MBMS, multicast and broadcast capabilities are introduced into cellular networks. After an introduction into MBMS technology, MBMS radio bearer realizations are presented. Different MBMS bearer services like broadcast mode, enhanced broadcast mode and multicast mode are discussed. Streaming and download services over MBMS are presented and supported media codecs are listed. Service layer components as defined in Open Mobile Alliance (OMA) are introduced. For a Mobile TV use case capacity improvements achieved by MBMS are shown. Finally, evolution of MBMS as part of 3GPP standardization is presented

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft
    • 

    corecore