534 research outputs found

    Quantum correlations and synchronization measures

    Full text link
    The phenomenon of spontaneous synchronization is universal and only recently advances have been made in the quantum domain. Being synchronization a kind of temporal correlation among systems, it is interesting to understand its connection with other measures of quantum correlations. We review here what is known in the field, putting emphasis on measures and indicators of synchronization which have been proposed in the literature, and comparing their validity for different dynamical systems, highlighting when they give similar insights and when they seem to fail.Comment: book chapter, 18 pages, 7 figures, Fanchini F., Soares Pinto D., Adesso G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer (2017

    Emergent dynamics of the Kuramoto ensemble under the effect of inertia

    Full text link
    We study the emergent collective behaviors for an ensemble of identical Kuramoto oscillators under the effect of inertia. In the absence of inertial effects, it is well known that the generic initial Kuramoto ensemble relaxes to the phase-locked states asymptotically (emergence of complete synchronization) in a large coupling regime. Similarly, even for the presence of inertial effects, similar collective behaviors are observed numerically for generic initial configurations in a large coupling strength regime. However, this phenomenon has not been verified analytically in full generality yet, although there are several partial results in some restricted set of initial configurations. In this paper, we present several improved complete synchronization estimates for the Kuramoto ensemble with inertia in two frameworks for a finite system. Our improved frameworks describe the emergence of phase-locked states and its structure. Additionally, we show that as the number of oscillators tends to infinity, the Kuramoto ensemble with infinite size can be approximated by the corresponding kinetic mean-field model uniformly in time. Moreover, we also establish the global existence of measure-valued solutions for the Kuramoto equation and its large-time asymptotics

    The Kuramoto model: A simple paradigm for synchronization phenomena

    Get PDF
    Synchronization phenomena in large populations of interacting elements are the subject of intense research efforts in physical, biological, chemical, and social systems. A successful approach to the problem of synchronization consists of modeling each member of the population as a phase oscillator. In this review, synchronization is analyzed in one of the most representative models of coupled phase oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and many variations and extensions of the original model that have appeared in the last few years are presented. Relevant applications of the model in different contexts are also included

    Breathing synchronization in interconnected networks

    Get PDF
    Global synchronization in a complex network of oscillators emerges from the interplay between its topology and the dynamics of the pairwise interactions among its numerous components. When oscillators are spatially separated, however, a time delay appears in the interaction which might obstruct synchronization. Here we study the synchronization properties of interconnected networks of oscillators with a time delay between networks and analyze the dynamics as a function of the couplings and communication lag. We discover a new breathing synchronization regime, where two groups appear in each network synchronized at different frequencies. Each group has a counterpart in the opposite network, one group is in phase and the other in anti-phase with their counterpart. For strong couplings, instead, networks are internally synchronized but a phase shift between them might occur. The implications of our findings on several socio-technical and biological systems are discussed.Comment: 7 pages, 3 figures + 3 pages of Supplemental Materia

    Chimera states in heterogeneous networks

    Full text link
    Chimera states in networks of coupled oscillators occur when some fraction of the oscillators synchronise with one another, while the remaining oscillators are incoherent. Several groups have studied chimerae in networks of identical oscillators, but here we study these states in a heterogeneous model for which the natural frequencies of the oscillators are chosen from a distribution. We obtain exact results by reduction to a finite set of differential equations. We find that heterogeneity can destroy chimerae, destroy all states except chimerae, or destabilise chimerae in Hopf bifurcations, depending on the form of the heterogeneity.Comment: Revised text. To appear, Chao
    corecore