6,800 research outputs found

    Counterpart semantics for a second-order mu-calculus

    Get PDF
    We propose a novel approach to the semantics of quantified Ī¼-calculi, considering models where states are algebras; the evolution relation is given by a counterpart relation (a family of partial homomorphisms), allowing for the creation, deletion, and merging of components; and formulas are interpreted over sets of state assignments (families of substitutions, associating formula variables to state components). Our proposal avoids the limitations of existing approaches, usually enforcing restrictions of the evolution relation: the resulting semantics is a streamlined and intuitively appealing one, yet it is general enough to cover most of the alternative proposals we are aware of

    Generic Trace Semantics via Coinduction

    Get PDF
    Trace semantics has been defined for various kinds of state-based systems, notably with different forms of branching such as non-determinism vs. probability. In this paper we claim to identify one underlying mathematical structure behind these "trace semantics," namely coinduction in a Kleisli category. This claim is based on our technical result that, under a suitably order-enriched setting, a final coalgebra in a Kleisli category is given by an initial algebra in the category Sets. Formerly the theory of coalgebras has been employed mostly in Sets where coinduction yields a finer process semantics of bisimilarity. Therefore this paper extends the application field of coalgebras, providing a new instance of the principle "process semantics via coinduction."Comment: To appear in Logical Methods in Computer Science. 36 page

    Actors, actions, and initiative in normative system specification

    Get PDF
    The logic of norms, called deontic logic, has been used to specify normative constraints for information systems. For example, one can specify in deontic logic the constraints that a book borrowed from a library should be returned within three weeks, and that if it is not returned, the library should send a reminder. Thus, the notion of obligation to perform an action arises naturally in system specification. Intuitively, deontic logic presupposes the concept of anactor who undertakes actions and is responsible for fulfilling obligations. However, the concept of an actor has not been formalized until now in deontic logic. We present a formalization in dynamic logic, which allows us to express the actor who initiates actions or choices. This is then combined with a formalization, presented earlier, of deontic logic in dynamic logic, which allows us to specify obligations, permissions, and prohibitions to perform an action. The addition of actors allows us to expresswho has the responsibility to perform an action. In addition to the application of the concept of an actor in deontic logic, we discuss two other applications of actors. First, we show how to generalize an approach taken up by De Nicola and Hennessy, who eliminate from CCS in favor of internal and external choice. We show that our generalization allows a more accurate specification of system behavior than is possible without it. Second, we show that actors can be used to resolve a long-standing paradox of deontic logic, called the paradox of free-choice permission. Towards the end of the paper, we discuss whether the concept of an actor can be combined with that of an object to formalize the concept of active objects

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them
    • ā€¦
    corecore