7 research outputs found

    Automated Operational Modal Analysis of a Cable-Stayed Bridge

    Full text link
    © 2017 American Society of Civil Engineers. Automated techniques for analyzing the dynamic behavior of full-scale civil structures are becoming increasingly important for continuous structural health-monitoring applications. This paper describes an experimental study aimed at the identification of modal parameters of a full-scale cable-stayed bridge from the collected output-only vibration data without the need for any user interactions. The work focuses on the development of an automated and robust operational modal analysis (OMA) algorithm, using a multistage clustering approach. The main contribution of the work is to discuss a comprehensive case study to demonstrate the reliability of a novel criterion aimed at defining the hierarchical clustering threshold to enable the accurate identification of a complete set of modal parameters. The proposed algorithm is demonstrated to work with any parametric system identification algorithm that uses the system order n as the sole parameter. In particular, the results from the covariance-driven stochastic subspace identification (SSI-Cov) methods are presented

    Estudo da influência do dano no amortecimento do concreto

    Get PDF
    Trabalho de Conclusão de Curso apresentado ao Instituto Latino-Americano de Tecnologia, Infraestrutura e Território da Universidade Federal da Integração Latino-Americana, como requisito parcial à obtenção do título de Bacharel em Engenharia Civil de Infraestrutura.A vibração aleatória é uma das principais solicitações às quais muitas estruturas são submetidas. Consequentemente, a inspeção durante a manufatura das peças estruturais e vida útil ou de serviço, torna-se imprescindível por meio de ferramentas de diagnósticos econômicos e de fácil execução. Nesse sentido, as técnicas e metodologias convencionais de detecção de dano (por exemplo, métodos visuais de detecção) nem sempre são viáveis, motivo pelo qual buscam-se alternativas, especialmente em pequenas peças estruturais, onde há maior risco de falha. A avaliação da condição destas peças é realizada a partir da seleção de um indicador sensível à presença de qualquer variação no comportamento estrutural, assim, através do método de decremento randômico, é possível analisar a evolução do parâmetro dinâmico no tempo. Neste contexto, o método de decremento randômico em conjunto com o método de ajuste de curva para a estimação do parâmetro dinâmico, serão utilizados no presente trabalho para o estudo da influência do dano na taxa de amortecimento de corpos de prova cilíndricos de concreto, submetidos a três valores de carga de compressão uniaxial. Para este fim, foi desenvolvido por parte do autor em conjunto com o orientador, um programa em linguagem MATLAB® a fim de avaliar a sensibilidade do amortecimento ao dano, quando comparando-a as variações de frequências apresentadas no programa. Para tanto, os materiais foram caracterizados e foram realizados ensaios pela técnica de excitação por impulso, utilizando um equipamento também fabricado pelo autor em conjunto com o orientador deste trabalho. Os resultados numéricos obtidos no estado inicial não danificado foram comparados para os diferentes valores de carga aplicadas ao mesmo corpo de prova, gerando na etapa final um gráfico que relaciona a taxa de amortecimento com a amplitude de vibração. Assim, a taxa de amortecimento se apresenta como um indicador altamente sensível ao dano, especialmente em valores de carga menor a 50% da carga última de ruptura dos corpos de prova cilíndricos de concreto

    DATA DRIVEN INTELLIGENT AGENT NETWORKS FOR ADAPTIVE MONITORING AND CONTROL

    Get PDF
    To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments

    Hybrid Time and Time-Frequency Blind Source Separation Towards Ambient System Identi cation of Structures

    Get PDF
    Blind source separation methods such as independent component analysis (ICA) and second order blind identification (SOBI) have shown considerable potential in the area of ambient vibration system identification. The objective of these methods is to separate the modal responses, or sources, from the measured output responses, without the knowledge of excitation. Several frequency domain and time domain methods have been proposed and successfully implemented in the literature. Whereas frequency-domain methods pose several challenges typical of dealing with signals in the frequency-domain, popular time-domain methods such as NExT/ERA and SSI pose limitations in dealing with noise, low sensor density, modes having low energy content, or in dealing with systems having closely-spaced modes, such as those found in structures with passive energy dissipation devices, for example, tuned mass dampers.Motivated by these challenges, the current research focuses on developing methods to address the problem of separability of sources with low energy content, closely-spaced modes, and under-determined blind identification, that is, when the number of response measurements is less than the number of sources. These methods, requiring the time and frequency diversities of the measured outputs, are referred to as hybrid time and time-frequency source separation methods. The hybrid methods are classified into two categories. In the first one, the basic principles of modified SOBI are extended using the stationary wavelet transform (SWT) in order to improve the separability of sources, thereby improving the quality of identification. In the second category, empirical mode decomposition is employed to extract the intrinsic mode functions from measurements, followed by an estimation of the mode shape matrix using iterative and/or non iterative procedures within the framework of modified-SOBI. Both experimental and large-scale structural simulation results are included to demonstrate the applicability of these hybrid approaches to structural system identification problems

    Numerical Methods for the Multi-Physical Analysis of Long Span Cable-Stayed Bridges

    Get PDF
    The main categories of wind effects on long span bridge decks are buffeting, flutter, vortex-induced vibrations (VIV) which are often critical for the safety and serviceability of the structure. With the rapid increase of bridge spans, research on controlling wind-induced vibrations of long span bridges has been a problem of great concern.The developments of vibration control theories have led to the wide use of tuned mass dampers (TMDs) which has been proven to be effective for suppressing these vibrations both analytically and experimentally. Fire incidents are also of special interest in the stability and safety of long span bridges due to significant role of the complex phenomenon through triple interaction between the deck with the incoming wind flow and the thermal boundary of the surrounding air. This work begins with analyzing the buffeting response and flutter instability of three dimensional computational structural dynamics (CSD) models of a cable stayed bridge due to strong wind excitations using ABAQUS finite element commercial software. Optimization and global sensitivity analysis are utilized to target the vertical and torsional vibrations of the segmental deck through considering three aerodynamic parameters (wind attack angle, deck streamlined length and viscous damping of the stay cables). The numerical simulations results in conjunction with the frequency analysis results emphasized the existence of these vibrations and further theoretical studies are possible with a high level of accuracy. Model validation is performed by comparing the results of lift and moment coefficients between the created CSD models and two benchmarks from the literature (flat plate theory) and flat plate by (Xavier and co-authors) which resulted in very good agreements between them. Optimum values of the parameters have been identified. Global sensitivity analysis based on Monte Carlo sampling method was utilized to formulate the surrogate models and calculate the sensitivity indices. The rational effect and the role of each parameter on the aerodynamic stability of the structure were calculated and efficient insight has been constructed for the stability of the long span bridge. 2D computational fluid dynamics (CFD) models of the decks are created with the support of MATLAB codes to simulate and analyze the vortex shedding and VIV of the deck. Three aerodynamic parameters (wind speed, deck streamlined length and dynamic viscosity of the air) are dedicated to study their effects on the kinetic energy of the system and the vortices shapes and patterns. Two benchmarks from the literature (Von Karman) and (Dyrbye and Hansen) are used to validate the numerical simulations of the vortex shedding for the CFD models. A good consent between the results was detected. Latin hypercube experimental method is dedicated to generate the surrogate models for the kinetic energy of the system and the generated lift forces. Variance based sensitivity analysis is utilized to calculate the main sensitivity indices and the interaction orders for each parameter. The kinetic energy approach performed very well in revealing the rational effect and the role of each parameter in the generation of vortex shedding and predicting the early VIV and the critical wind speed. Both one-way fluid-structure interaction (one-way FSI) simulations and two-way fluid-structure interaction (two-way FSI) co-simulations for the 2D models of the deck are executed to calculate the shedding frequencies for the associated wind speeds in the lock-in region in addition to the lift and drag coefficients. Validation is executed with the results of (Simiu and Scanlan) and the results of flat plate theory compiled by (Munson and co-authors) respectively. High levels of agreements between all the results were detected. A decrease in the critical wind speed and the shedding frequencies considering (two-way FSI) was identified compared to those obtained in the (one-way FSI). The results from the (two-way FSI) approach predicted appreciable decrease in the lift and drag forces as well as prediction of earlier VIV for lower critical wind speeds and lock-in regions which exist at lower natural frequencies of the system. These conclusions help the designers to efficiently plan and consider for the design and safety of the long span bridge before and after construction. Multiple tuned mass dampers (MTMDs) system has been applied in the three dimensional CSD models of the cable stayed bridge to analyze their control efficiency in suppressing both wind -induced vertical and torsional vibrations of the deck by optimizing three design parameters (mass ratio, frequency ratio and damping ratio) for the (TMDs) supporting on actual field data and minimax optimization technique in addition to MATLAB codes and Fast Fourier Transform technique. The optimum values of each parameter were identified and validated with two benchmarks from the literature, first with (Wang and co-authors) and then with (Lin and co-authors). The validation procedure detected a good agreement between the results. Box-Behnken experimental method is dedicated to formulate the surrogate models to represent the control efficiency of the vertical and torsional vibrations. Sobol's sensitivity indices are calculated for the design parameters in addition to their interaction orders. The optimization results revealed better performance of the MTMDs in controlling both the vertical and the torsional vibrations for higher mode shapes. Furthermore, the calculated rational effect of each design parameter facilitates to increase the control efficiency of the MTMDs in conjunction with the support of the surrogate models which simplifies the process of analysis for vibration control to a great extent. A novel structural modification approach has been adopted to eliminate the early coupling between the bending and torsional mode shapes of the cable stayed bridge. Two lateral steel beams are added to the middle span of the structure. Frequency analysis is dedicated to obtain the natural frequencies of the first eight mode shapes of vibrations before and after the structural modification. Numerical simulations of wind excitations are conducted for the 3D model of the cable stayed bridge. Both vertical and torsional displacements are calculated at the mid span of the deck to analyze the bending and the torsional stiffness of the system before and after the structural modification. The results of the frequency analysis after applying lateral steel beams declared that the coupling between the vertical and torsional mode shapes of vibrations has been removed to larger natural frequencies magnitudes and higher rare critical wind speeds with a high factor of safety. Finally, thermal fluid-structure interaction (TFSI) and coupled thermal-stress analysis are utilized to identify the effects of transient and steady state heat-transfer on the VIV and fatigue of the deck due to fire incidents. Numerical simulations of TFSI models of the deck are dedicated to calculate the lift and drag forces in addition to determining the lock-in regions once using FSI models and another using TFSI models. Vorticity and thermal fields of three fire scenarios are simulated and analyzed. The benchmark of (Simiu and Scanlan) is used to validate the TFSI models, where a good agreement was manifested between the two results. Extended finite element method (XFEM) is adopted to create 3D models of the cable stayed bridge to simulate the fatigue of the deck considering three fire scenarios. The benchmark of (Choi and Shin) is used to validate the damaged models of the deck in which a good coincide was seen between them. The results revealed that the TFSI models and the coupled thermal-stress models are significant in detecting earlier vortex induced vibration and lock-in regions in addition to predicting damages and fatigue of the deck and identifying the role of wind-induced vibrations in speeding up the damage generation and the collapse of the structure in critical situations
    corecore