16 research outputs found

    Autonomous navigation of mobile robot using kinect sensor

    Get PDF
    The problem of achieving real time process in depth camera application, in particular when used for indoor mobile robot localization and navigation is far from being solved. Thus, this paper presents autonomous navigation of the mobile robot by using Kinect sensor. By using Microsoft Kinect XBOX 360 as the main sensor, the robot is expected to navigate and avoid obstacles safely. By using depth data, 3D point clouds, filtering and clustering process, the Kinect sensor is expected to be able to differentiate the obstacles and the path in order to navigate safely. Therefore, this research requirement to propose a creation of low-cost autonomous mobile robot that can be navigated safely

    Accurate depth-color scene modeling for 3D contents generation with low cost depth cameras

    Get PDF
    In this paper, we present a depth-color scene modeling strategy for indoors 3D contents generation. It combines depth and visual information provided by a low-cost active depth camera to improve the accuracy of the acquired depth maps considering the different dynamic nature of the scene elements. Accurate depth and color models of the scene background are iteratively built, and used to detect moving elements in the scene. The acquired depth data is continuously processed with an innovative joint-bilateral filter that efficiently combines depth and visual information thanks to the analysis of an edge-uncertainty map and the detected foreground regions. The main advantages of the proposed approach are: removing depth maps spatial noise and temporal random fluctuations; refining depth data at object boundaries, generating iteratively a robust depth and color background model and an accurate moving object silhouette

    3D environment mapping using the Kinect V2 and path planning based on RRT algorithms

    Get PDF
    This paper describes a 3D path planning system that is able to provide a solution trajectory for the automatic control of a robot. The proposed system uses a point cloud obtained from the robot workspace, with a Kinect V2 sensor to identify the interest regions and the obstacles of the environment. Our proposal includes a collision-free path planner based on the Rapidly-exploring Random Trees variant (RRT*), for a safe and optimal navigation of robots in 3D spaces. Results on RGB-D segmentation and recognition, point cloud processing, and comparisons between different RRT* algorithms, are presented.Peer ReviewedPostprint (published version

    CONTROL VIRTUAL DE UN COMPUTADOR MEDIANTE EL SENSOR KINECT

    Get PDF
     Este trabajo presenta la interacción entre el Sensor Kinect y un computador, permitiendo al usuario controlar programas de Windows por medio de gestos, sin necesidad de usar un dispositivo, donde “el control eres tú”. Para el desarrollo del presente trabajo se realiza el rastreo de ciertas partes del cuerpo permitiendo al usuario manipular el ordenador depen- diendo de sus necesidades. En esta aplicación se utiliza dos funcionalidades del sensor Kinect; la cámara de profundidad y skeleton tracking, esto se efectuó utilizando una programación orientada a objetos en Visual Studio 2010 (C#, WPF). Se realizó pruebas experimentales en las cuales se comprobó el desempeño de la propuesta.  Palabras clave: Sensor Kinect, skeleton tracking, programaión orientada a objetos.  ABSTRACT:  This work presents the interaction between the Kinect Sensor and a computer, allowing the user to control Windows programs through gestures without using any devices, where “you are the control”. For the development of this work certain body parts where tracked which allows the user to manipulate the computer depending on their needs. Two of the functionalities of the Kinect sensor are used in this application; the depth camera and skeleton tracking. This was done using Visual Studio 2010 (C#, WPF) object oriented programming. Experimental tests were done with which the performance of the proposal was validated.  Keywords: Kinect sensor, skeleton tracking, object oriented programmin

    Reconstrução a partir de múltiplos registros de nuvem de pontos RGB-D

    Get PDF
    The objective of this work is to present a 3D reconstruction method using the color information.\ud The 3D reconstruction is performed by combining point clouds obtained from di erent viewpoints. The main\ud task is the point cloud registration algorithm that matches two point clouds. A well known algorithm for point\ud cloud registration is the ICP (Iterative Closest Point) that determines the rotation and translation that when\ud applied to one of the point clouds, place both point clouds in accordance. The ICP executes iteratively two\ud main steps: point correspondence determination and registration. The point correspondence determination is a\ud module that if not properly executed the ICP converges to a local minimum. To overcome such drawback an ICP\ud that uses statistics to generate a dynamic distance and color threshold on the distance allowed between closest\ud points was implemented. This approach allows subset matches, instead of matching all points from the point\ud clouds. The surface reconstruction is performed using the marching cubes and a consensus surface algorithm\ud with signed distance to compensate point cloud errors. In this paper the performance of the proposed method is\ud analyzed and compared with the conventional ICP.ANEEL PD-0061-0033/2011JSPS/CAPESFAPESP processo 2011/22402-8CNP

    Evaluation of low-cost depth cameras for agricultural applications

    Get PDF
    Low-cost depth-cameras have been used in many agricultural applications with reported advantages of low cost, reliability and speed of measurement. However, some problems were also reported and seem to be technology- related, so understanding the limitations of each type of depth camera technology could provide a basis for technology selection and the development of research involving its use. The cameras use one or a combination of two of the three available technologies: structured light, time-of-flight (ToF), and stereoscopy. The objectives were to evaluate these different technologies for depth sensing, including measuring accuracy and repeatability of distance data and measurements at different positions within the image, and cameras usefulness in indoor and outdoor settings. Then, cameras were tested in a swine facility and in a corn field. Five different cameras were used: (1) Microsoft Kinect v.1, (2) Microsoft Kinect v.2, (3) Intel® RealSenseTM Depth Camera D435, (4) ZED Stereo Camera (StereoLabs), and (5) CamBoard Pico Flexx (PMD Technologies). Results indicate that there were significant camera to camera differences for ZED Stereo Camera and Kinect v.1 camera (p \u3c 0.05). All cameras showed an increase in the standard deviation as the distance between camera and object increased; however, the Intel RealSense camera had a larger increase. Time-of-flight cameras had the smallest error between different sizes of objects. Time-of-flight cameras had non-readable zones on the corners of the images. The results indicate that the ToF technology is the best to be used for indoor applications and stereoscopy is the best technology for outdoor applications

    Sistema de Navegación Reactiva Difusa para Giros Suaves de Plataformas Móviles Empleando el Kinect

    Get PDF
    Resumen: La navegación en un robot móvil es la habilidad para desplazarse de un lugar a otro dentro de un entorno evitando los obstáculos que se presenten. La autonomía de un robot móvil se basa en su sistema de navegación. La aplicación de técnicas de Inteligencia Artificial como la lógica difusa y el uso de la visión por computadora son dos herramientas empleadas para cumplir esta tarea. En algunos sistemas de navegación la seguridad y la facilidad de operación son factores muy importantes. En estos casos, la tolerancia a la incertidumbre de información, la reacción ante objetos imprevistos, y la navegación mediante giros suaves son argumentos del diseño de estos sistemas. En este artículo se presenta el desarrollo de un sistema de navegación reactiva difusa que emplea los datos de profundidad del sensor Kinect, algoritmos de visión por computadora, y lógica difusa, para generar ángulos de giro suave para la navegación de un robot móvil. En pruebas realizadas con la plataforma móvil ERA-MOBI se observaron giros suaves con un porcentaje de evasión de obstáculos del 85.7%. Palabras clave: navegación reactiva, lógica difusa, Kinect, profundidad promedio, robot móvil

    Investigation on electric motor braking control system for electric powered wheelchair

    Get PDF
    In recent years, research on Electric Powered Wheelchair (EPW) has been widely studied due to its high importance of mobility for disabled people. During descent on a slope, the manual braking system is commonly used to control the speed by gripping the brake lever. However, the task becomes difficult if the user is an elderly or paralyzed due to their body’s deficiencies. As a result, the possibilities of collision and injuries to occur are high. In this study, the automatic electric motor braking control that is known as Hill Descent Control (HDC) is proposed to increase the safety of EPW during descending on slopes. Since the electric motor has an advantage which can generate the torque during braking, the plugging braking is integrated with the HDC system to control the speed of the EPW according to the desired speed from the user. The analysis of this study is divided into three phases; investigation of braking performance using electrical braking, development of active braking control system in the embedded system as well as the simulation environment and analysis on active braking control system in experimental and simulation work. From the experimental results, the plugging brake is most suitable to integrate with the active brake control system compared to the regenerative and dynamic brake. In the plugging brake, by changing the plugging voltage from 0.5 V to 4.5 V, a variety of dynamic behaviour effects such as braking distance, tire speed and slip ratio can be achieved. Meanwhile, from the analysis of active braking control system that was integrated with plugging braking, both of the experimental and simulation analysis results show the speed of EPW can be maintained at the desired speed o
    corecore